
Noisy population recovery in polynomial time

Anindya De

Department of EECS
Northwestern University

Evanston, IL
anindya@eecs.northwestern.edu

Michael Saks and Sijian Tang

Department of Mathematics
Rutgers University

Piscataway, NJ
saks, st509@math.rutgers.edu

Abstract—In the noisy population recovery problem of Dvir
et al. [6], the goal is to learn an unknown distribution f
on binary strings of length n from noisy samples. A noisy
sample with parameter μ ∈ [0, 1] is generated by selecting a
sample from f , and independently flipping each coordinate of
the sample with probability (1 − μ)/2. We assume an upper
bound k on the size of the support of the distribution, and the
goal is to estimate the probability of any string to within some
given error ε. It is known that the algorithmic complexity and
sample complexity of this problem are polynomially related to
each other.

We describe an algorithm that for each μ > 0, provides
the desired estimate of the distribution in time bounded by a
polynomial in k, n and 1/ε improving upon the previous best
result of poly(klog log k, n, 1/ε) due to Lovett and Zhang [9].

Our proof combines ideas from [9] with a noise attenuated
version of Möbius inversion. The latter crucially uses the robust
local inverse construction of Moitra and Saks [11].

Keywords-Population recovery; Reverse Bonami-Beckner in-
equality; Fourier transform;

I. INTRODUCTION

A. Background

The population recovery problem is a problem in noisy

unsupervised learning which has received recent attention

[6], [14], [11], [9]. In this problem, there is an unknown

distribution f over binary strings of length n, and a noise

parameter 0 < μ < 1. A noisy sample from f is generated

as follows:

• Choose a string x according to f .

• Choose a binary string N according to the distribution

ημ in which each coordinate is independently set to 1

with probability (1− μ)/2.

• Output x ⊕ N , where ⊕ denotes bitwise sum modulo

2.

Given access to these noisy samples and error parameter

ε, the learner must output an estimate of the function f
(denoted by f̃), which it does by specifying the set S of

strings for which the estimate is nonzero, and an estimate

f̃(x) for each x ∈ S. The algorithm is said to succeed

provided that |f̃(x) − f(x)| ≤ ε for all x ∈ {0, 1}n. If

the algorithm succeeds with probability at least 1 − δ we

say that it is an (ε, δ)-estimation algorithm for f .

For μ = 1, there is no noise and the problem is easy

to solve, whereas for μ = 0, the distribution f cannot

be recovered with any number of samples. As μ becomes

smaller, the learning problem becomes harder.

There is an alternate (and easier) model called the lossy
model in which each sample presented to the learner is

generated by selecting x from f and then replacing each

entry by a ‘?’ independently with probability 1 − μ. This

model is easier since the learner can simulate samples from

the noisy model given samples from the lossy model by

replacing each ‘?’ by a random bit.

The complexity of an algorithm for this problem depends

on four parameters, namely, μ, n, ε, 1
δ . As usual, the value

of δ is not very significant for the complexity; if we have

an algorithm that works for δ = 1/4, we can improve it to

an arbitrary δ by repeating the algorithm log(1/δ) times and

assign to each x ∈ {0, 1}n the median of the estimates of

f(x) from the different runs. We generally think of μ and

δ as constants and focus on expressing the running time as

a function of n and 1/ε.

The problem (in both the noisy and lossy versions) was

introduced by Dvir et al. [6] who related it to the problem of

learning DNF from restrictions. For the lossy model, Dvir

et al. [6] gave an algorithm with run time polynomial in

n and 1/ε provided that μ � 0.365. Their analysis was

improved by Batman, et al. [1] who showed that the same

algorithm is polynomial time for any μ > 1−1/√2 ≈ 0.293.

Subsequently, Moitra and Saks [11] gave a polynomial time

algorithm for population recovery in the lossy model for any

μ > 0.

For the noisy model, algorithms are known only under the

following additional assumption:

Bounded Support Assumption BSA(k): f(x) �=
0 for at most k strings x.

Under BSA(k), k becomes an additional parameter for the

problem.

Dvir, et al. [6] showed that noisy population recovery

under BSA(k) can be reduced to the following seemingly

easier problem of estimating the value of the distribution at

the point 0 = 0n, when given as input a small subset that

contains supp(f) ∪ {0}.

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.77

674

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.77

675

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.77

675

Noisy Population Point Recovery with Known
Support (NPPRKS) We are given as input X ⊆
[n] of size at most k that contains supp(f)∪{0},
and an error parameter ε. Given access to samples

from Tμf , output an estimate of f(0) that has

additive error at most ε.

They show that if NPPRKS can be solved with number

of samples S in time T then the original problem can be

solved in number of samples at most S · poly(kn) and time

T · poly(kn).
Wigderson and Yehudayoff [14] developed a framework

called “partial identification” and used this to give an al-

gorithm for NPPRKS (and therefore also for NPR under

BSA(k)) that runs in time poly(klog k, n, 1/ε) for any

μ > 0. They also showed that their framework cannot obtain

algorithms running in time better than poly(klog log k).
Lovett and Zheng [9] gave an algorithm with a better

time complexity of poly(klog log k, n, 1/ε) for any μ > 0.

Interestingly, while their algorithm matches the lower bound

in [14], their algorithm departs from the framework of [14],

and thus is not subject to the same lower bound.

B. Our result

Here we show that for any μ > 0, the time com-

plexity of noisy population recovery problem is at most

poly(k, n, 1ε , log(
1
δ))

Theorem I.1. For any μ > 0, there is an algorithm for
NPPRKS (and therefore also for noisy population recov-
ery under BSA(k)), with running time nO(1) · (k

ε

)Oμ(1) ·
log(1/δ). Here Oμ(1) = Õ(1/μ4).

Previously no polynomial time algorithm was known1 for

any μ < 1.

C. A reverse Bonami-Beckner inequality

As with past results on the population recovery problem,

our result has interesting functional analytic consequences.

The process we are observing generates observations that are

obtained by taking a sample from {0, 1}n according to the

probability distribution f and applying noise independently

to each coordinate. Thus, the observed samples come from

a distribution that is obtained from f by applying a linear

operator Tμ, where for each x ∈ {0, 1}n:

(Tμf)(x) = EN∼ημ [f(x⊕N)].

The operator Tμ is usually referred to in the literature as

the Bonami-Beckner operator [3], [2], [8], [12]. Intuitively,

Tμ “smooths” f by by replacing the value of f at x by a

weighted average of values of f near x. One way that this

smoothing property is made precise is via hypercontractive
inequalities [3], [2], [8], which have the following flavor:

1An earlier version of this paper [5] gave a polynomial time algorithm
for μ > 0.555; the theorem here holds for all μ > 0.

“(A higher order) norm of Tμf can be upper bounded by (a

lower order) norm of f”, where the bounds are independent

of the dimension (number of input variables) of the function.

Given such smoothing theorems, it is natural to try to es-

tablish reverse inequalities that assert that some norm of Tμf
is never too much smaller than (the same or different) norm

of f . No such dimension independent inequality can hold for

all functions, as is demonstrated by the signed parity func-

tion (−1)
∑

i xi , but such reverse inequalities are possible

for restricted classes of functions. For example, Borell [4]

proved a reverse Bonami-Beckner inequality which roughly

states that for positive valued functions f : {0, 1}n → R+,

the norm of Tμf can’t be too small if the norm of f is large.

Lovett and Zhang [9] observed that the existence of fast

algorithms for population recovery of functions satisfying

BSA(k) is equivalent to a reverse Bonami-Beckner type

inequality for sparse functions. In particular, they showed

that for f : {0, 1}n → R, if supp(f) = k, then ‖Tμf‖1 ≥
k−Oμ(log log k)‖f‖1. The results of the present paper lead to

the following improved reverse Bonami-Beckner inequality

for sparse functions:

Theorem I.2. Assume f : {0, 1}n → R with |supp(f)| = k.
Then ‖Tμf‖1 ≥ k−Oμ(1)‖f‖1, where Oμ(1) = Õ(1/μ4).

1) Related work:: In concurrent and independent work,

Lovett and Zhang [10] considered the population recovery

problem when the noise for each coordinate is independent

but not necessarily identically distributed and further,

the flipping probabilities are unknown. For this setting,

Lovett and Zhang give an algorithm which outputs a sparse

distribution g such that the statistical distance between noisy

samples from f and g is guaranteed to be small. The running

time of the algorithm is poly(nlog k, (1/ε)log
2 k, klog

3 k).
Note that in contrast to the population recovery problem

where the distance between f and g is guaranteed to be

small, here we only have the weaker conclusion that the

distance between the noisy samples from f and g is small.

In the parlance of unsupervised learning, Lovett and Zhang

do “proper density estimation” whereas the current (and

previous) work on the population recovery problem does

“parametric estimation”. As Lovett and Zhang observe in

their paper, such a relaxation is necessary once the flipping

probabilities are unknown. This algorithm is obtained by

an extension of the Wigderson-Yehudayoff approach [14].

To contrast it with the current paper, while their running

time is worse (even compared to [14]) and the guarantee is

weaker, their algorithm works in the more general setting

when the flipping probabilities are allowed to be distinct

and unknown.

675676676

II. PRELIMINARIES

A. Fourier analysis of Boolean Functions

We begin with some definitions. We write 0 for the point

0n in {0, 1}n. For x ∈ {0, 1}n, |x| is the Hamming weight

of x, which is equal to the number of 1’s. For binary strings

x, y ∈ {0, 1}n, x ⊕ y denotes the bitwise sum mod 2, and

dH(x, y) = |x⊕ y| is the Hamming distance between x and

y, which is the number of positions where x and y differ.

For a set S, 2S denotes the set of subsets of S,
(
S
r

)
denotes

the set of subsets of size r and
(

S
≤r

)
denotes the set of

subsets of size at most r. For sets S, T , S
T denotes their

symmetric difference (S − T) ∪ (T − S).
We define the following sets of functions:

• F = Fn is the space of real-valued functions on {0, 1}n
• D = Dn is the set of nonnegative-valued f ∈ F

satisfying
∑

x∈{0,1}n f(x) = 1.

• For X ⊆ {0, 1}n and η ≥ 0, Gη(X) is the set of f ∈ F
such that f(0) = 1 and |f(x)| ≤ η for x ∈ X − {0}.

We view F as an inner product space with inner product

〈f, g〉 = 2−n
∑

x∈{0,1}n f(x)g(x).
For x ∈ {0, 1}n, the function 1x maps x to 1 and all

other points to 0, and for P ⊆ {0, 1}n, 1P =
∑

x∈P 1x.

Functions in D can be viewed as probability measures

on {0, 1}n. For f ∈ D we write x ∼ f to mean that x
is a random string sampled according to f . The set D is a

compact subset of F whose extreme points are the functions

{1x : x ∈ {0, 1}n}.
For S ⊆ [n], the character χS ∈ F is defined by χS(x) =∏
i∈S(−1)xi . The functions {χS : S ⊆ [n]} form an

orthonormal basis for F . Thus every f ∈ F can be written as

a linear combination of characters: f =
∑

S⊆[n]〈f, χS〉χS .

The Fourier coefficient of function f at S ⊆ [n] is defined2

by f̂(S) = 2n〈f, χS〉 =
∑

x∈{0,1}n f(x)χS(x). For f ∈ D
we have:

f̂(S) = E
x∼f

[χS(x)]. (1)

The following equation, known as Plancherel’s theorem

expresses the inner product of f and g in terms of their

Fourier coefficients.

〈f, g〉 =
∑
S⊆[n]

f̂(S)ĝ(S). (2)

We define:

• The support of f , supp(f) = {x ∈ {0, 1}n : f(x) �=
0}.

• The Fourier support of f , supp(f̂) = {S ⊆ [n] :
f̂(S) �= 0}

• ‖f‖1 =
∑

x∈{0,1}n |f(x)|
• ‖f̂‖L1

= 2−n
∑

S⊆[n] |f̂(S)|
2The Fourier coefficient is often defined without the normalizing factor

of 2n; this factor is included here to make (1) true.

F has two natural products. For f, g ∈ F , the pointwise
product fg is given by fg(x) = f(x)g(x) for all x and

the convolution product f ∗ g is given by f ∗ g(x) =∑
y f(y)g(x⊕ y).
If f ∈ D then f ∗ g(x) = Ez∼f [g(x⊕ z)]. If f and g are

both in D then f ∗ g ∈ D and a sample from f ∗ g can be

obtained by taking x ⊕ z where z is sampled according to

f and x is sampled according to g.

For S ⊆ [n], we have:

f̂ g(S) = 2−n
∑

T⊆[n]

f̂(T)ĝ(T
S)

f̂ ∗ g(S) = 2−nf̂(S)ĝ(S).

For a linear operator L on F , and norms ‖ · ‖α and ‖ · ‖β ,

the α→ β norm of L, denoted by ‖L‖α→β is defined to be

the supremum of
‖Lv‖β
‖v‖α over all v ∈ V .

For S ⊆ [n], the operator XS : F → F is defined as

XS : f �→ χS · f .

The Bonami-Beckner noise operator Tμ, defined for any

real number μ, is most easily defined by its action on the

character basis:

TμχS = μ|S|χS .

More generally for U ⊆ [n], the operator Tμ,U is defined

by:

Tμ,UχS = μ|S∩U |χS .

Thus Tμ = Tμ,[n]. Using linearity, we can extend the

action of Tμ to the space of all functions F . For i ∈ [n] we

will adopt the shorthand Tμ,i for Tμ,{i}.
It is easy to see that for any μ �= 0, Tμ,U is an invertible

operator with its inverse being T1/μ,U . Likewise, for any

U, U ′, the operators Tμ,U and Tμ,U ′ commute. In fact, if

U and U ′ are disjoint, then Tμ,U ◦ Tμ,U ′ = Tμ,U∪U ′ . Given

the definition of Tμ,U , it is straightforward to verify that for

x ∈ {0, 1}n,

Tμ,Uf(x) =
∑

z∈{0,1}n:zi=0 for i�∈U
f(x⊕z)

∏
i∈U

1

2
(1+(−1)ziμ).

When μ ∈ [−1, 1], Tμ,U has a nice probabilistic descrip-

tion. Recall from the introduction that for μ ∈ [−1, 1], νμ is

the probability distribution on {0, 1}n obtained by setting

each bit to 1 independently with probability (1 − μ)/2.

More generally, for U ⊆ [n] νμ,U denotes the probability

distribution on {0, 1}n obtained by setting each of the bits

indexed by U independently to 1 with probability (1−μ)/2
and setting all the bits indexed by [n]\U to 0. We then have

for μ ∈ [−1, 1], that

Tμ,Uf = νμ,U ∗ f,

676677677

and thus for x ∈ {0, 1}n

(Tμ,Uf)(x) = Ez∼νμ,U
[f(x⊕ z)].

It is easy to verify that if f ∈ D and μ ∈ [−1, 1] then

Tμ,Uf ∈ D. A sample from Tμ,Uf is generated by taking

x ⊕ z where x ∼ f and z ∼ νμ,U . A μ-noisy sample from
f is a sample from Tμf .

B. Parameter estimation

We consider the general problems of estimating a real-

valued parameter P = P (g) of an unknown probability

distribution g ∈ Dn. An estimator Pest is a random variable

that is a function of a collection of independent samples.

• The bias of Pest (as an estimator of P) is |E[Pest−P]|.
• The range of Pest is the maximum of |Pest|.
• Pest is an (ε, κ)-estimator of P provided that Pr[|Pest−

P | > ε] < κ.

It is well known that one can build (ε, κ)-estimators from

independent copies of estimators wth fairly weak estimation

properties. For an estimator Pest and positive integer k, let

Ak(Pest) denote the average of k independent copies of Pest.

Proposition II.1. For any ε, δ ∈ (0, 1), if the estimator
Pest of P has bias at most ε

2 , and range at most M , then
the estimator Ak(Pest), with k > 8M2

ε2 ln(1κ) is a (ε, δ)-
estimator.

Proof: Obviously E[Ak(Pest)] = E[Pest]. By the

Chernoff-Hoeffding bound [7],

Pr[|Ak(Pest)− P | ≥ ε] ≤ Pr[|Ak(Pest)−E[Pest]|] ≥ ε/2]

≤ e−ε2k/8M2 ≤ δ.

This concludes the proof.

1) Möbius transforms: Let (P,�) be a poset. Define

function ζP : P × P → R as ζ(x, y) = 1 if and only if

x � y and 0 otherwise. Also define μP : P × P → R

recursively as follows:

For x ∈ P, μP (x, x) = 1.

For x, y ∈ P, μP (x, y) = 1x�y ·
(∑

x�z≺y

−μP (x, z)

)
.

Let FP be the space of real-valued functions on P . We

define operators ζP : FP → FP and μP : FP → FP by:

(ζP f)(x) =
∑
x∈P

ζ(x, y)f(y) =
∑
x�y

f(y),

(μP f)(x) =
∑
x�y

μP (x, y) · f(y).

It is well known (see [13]) that the transforms ζP and μP

are inverses of each other. μP is usually referred to as the

Möbius transform of the poset P . The above notions can be

extended to the more general setting of functions from P to

a fixed vector space.

Proposition II.2. Let P be a poset and V be an arbitrary
vector space over R. Suppose (fx : x ∈ P) and (gx : x ∈ P)
are families of vectors in V satisfying fx =

∑
x�y gy . Then

gx =
∑
x�y

μ(x, y) · fy

Definition 1. For x ∈ P , define x↓ = {y : y � x}. For
C ⊆ P , define C↓ = ∪x∈Cx↓. A subset D of P such that
D↓ = D is a “downset”. It is easy to see that C↓ is the
unique minimal subset of P that is a downset and contains
C, and is referred to as the “downset generated by C”.

If C ⊆ P , then we can view C as a poset, which has its

own Möbius function μC . In general it is not true that for

all x, y ∈ C, μC(x, y) = μP (x, y) but it is true if C is a

downset.

Proposition II.3. If D ⊆ P is a downset, then for all x, y ∈
D, μD(x, y) = μP (x, y).

This is easily verified by induction using the above

inductive definition of μC and μP .

We denote by P([n]) the poset on 2[n] ordered by set

inclusion. It is well known that in this poset, for x � y,

μP([n])(x, y) = (−1)|y\x|. Combining with Proposition II.3

we have:

Corollary II.4. If D is a downset of P([n]) then for x �
y ∈ D we have μD(x, y) = (−1)|y\x|.

C. Technical computational considerations

We now mention a few technical considerations con-

cerning the cost of computation. In some cases, we will

have known functions b, � ∈ Fn, given by an nO(1)-

time algorithm that on input S ⊆ [n] evaluates �̂(S) and

b̂(S), and we will want to evaluate a function of the

form
∑

S⊆[n] �̂(S)b(S). The cost of the trivial summation

algorithm is 2nnO(1), but if supp(�̂) is small compared to

2n we can hope to speed this up by enumerating only over

sets in supp(�̂). However, even if we can evaluate �̂(S) for

any given S, this does not mean that we can enumerate over

sets in the support without looking at all sets. Technically

what we want is a family of subsets H that contains supp(�̂)
together with an efficient listing algorithm for H which is

an algorithm that lists all members of H in time |H|nO(1).

We will say that H is an listable support for �̂.
Further, for the sake of clarity of exposition, throughout

the paper, we will assume that we are able to do basic

arithmetic operations on real numbers with infinite precision.

In an actual implementation, we will only be working with

finite precision approximations of these numbers. The next

simple proposition (stated without a proof) asserts that basic

arithmetic operations on real numbers can be done efficiently

to any finite precision.

677678678

Proposition II.5. A sum of the form
∑m

i=1 Ai where each Ai

is a product of O(1) numbers can be approximated to within
additive error δ in time O(m(log(1δ

∑
i(1 + |Ai|))O(1)).

III. PROOF OF THEOREM I.1

We have an unknown probability distribution f on {0, 1}n
together with a subset X that contains supp(f). We have ac-

cess to samples from the distribution Tμf . Our goal is to give

a good estimate for f(0n) in time poly(n, |X|, 1
ε , log(

1
δ)).

Our algorithm is based on the approach of [9] (which built

on ideas from [14]). We present a framework that abstracts

this approach, and identify a critical improvement. The key

ingredient to our algorithm is a function u that satisfies the

conclusions of the following lemma.

Lemma III.1. Given X and ε, there is a function u ∈ Fn

such that for all f with supp(f) ⊆ X:
1) There is a real valued function α defined on {0, 1}n

computable in time (k/ε)Õ(1/μ4)nO(1) such that (a)
For all x ∈ {0, 1}n, |α(x)| ≤ (k/ε)Õ(1/μ4), and (b)
for z ∼ Tμf , α(z) is an unbiased estimator for 〈u, f〉.

2) |〈u, f〉 − u(0)f(0)| ≤ ε/10.
3) u(0) ∈ [1/2, 1] and there is an algorithm that esti-

mates u(0) to within an additive ε/9 and runs in time
poly

(
nk 1

ε log
1
κ

)
.

Theorem I.1 follows easily from this lemma.

Proof of Theorem I.1: Let R = (k/ε)Õ(1/μ4) be the

range of the estimator for 〈u, f〉. Applying Proposition II.2,

the average of m = poly(R/ε) = (k/ε)Õ(1/μ4) independent

copies of this estimator yields an estimate A that is within

ε/10 of 〈u, f〉 with probability at least 7/8. Also, let B
be the estimate of u(0) given by the third part of the

lemma that is within ε/10 with probability at least 7/8. Our

algorithm outputs A/B (or, more precisely, a floating point

approximation C to A/B that is within ε/10 of A/B) as

the estimate of f(0). The bound on the running time of the

algorithm follows easily from the bounds on the running

time of the estimator for 〈u, f〉 and computation of u(0).
Next, we claim that with probability at least 3/4, the

output A/B is within ε of f(0). Note that with probability

at least 3/4, |A − 〈u, f〉| ≤ ε/10 and |B − u(0)| ≤ ε/10.

Assuming this is the case, we also have B ≥ 1/3 since

u(0) ≥ 1/2 and we can assume that ε < 1. So with

probability at least 3/4, we have

|f(0)− C| ≤ ε

10
+

∣∣∣∣f(0)− A

B

∣∣∣∣
=

ε

10
+

1

B
· |Bf(0)−A|

≤ ε

10
+ 3|Bf(0)−A|

Using triangle inequality, we have

|Bf(0)−A| ≤ |Bf(0)− u(0)f(0)|+ |u(0)f(0)− 〈u, f〉|
+ |〈u, f〉 −A|.

All three quantities on the right hand side are bounded by

ε/10. Thus,

|f(0)− C| ≤ ε

10
+ 3

(
ε

10
+

ε

10
+

ε

10

)
≤ ε.

So the main part of the proof of the theorem is the

construction of the function u and the proof of the associated

Lemma III.1. It turns out that u is best described as the

pointwise product of two functions � and q, and in the next

section we motivate their construction and state the essential

properties of the functions q and � (see Lemmas IV.2

and IV.1). These properties immediately give Lemma III.1.

In Section V we construct � and show that it satisfies

Lemma IV.2 and in Appendix A we construct q and show

that it satisfies Lemma IV.1.

IV. CONSTRUCTING THE FUNCTION u

A. Estimating f(0) via estimates of Fourier coefficients

We have access to samples from Tμf and we want to

estimate f(0). Suppose � ∈ F satisfies

f(0) = 〈�, f〉. (3)

By (2), this equals
∑

S⊆[n] �̂(S)f̂(S), which suggests

estimating 〈�, f〉 by using samples from Tμf to construct

estimators for f̂(S) and replacing f̂(S) with its estimate in

the above sum.

There is a natural estimator for f̂(S) given samples from

Tμf . To see this, note that for any d ∈ Dn, if z is a sample

from d ∈ Dn, then by (1), χS(z) is an unbiased estimator

for d̂(S). In particular if z ∼ Tμf then χS(z) is an unbiased

estimator of T̂μf(S) = μ|S|f̂(S). Therefore (1μ)
|S|χS(z) is

an unbiased estimator for f̂(S). Thus for � satisfying (3),

W	(z) =
∑
S⊆[n]

�̂(S)

(
1

μ

)|S|
χS(z),

is an unbiased estimator of f(0).
An obvious choice for � satisfying (3) is 10, in which

case �̂(S) = 1 for all S, so the resulting estimator of

f(0) is
∑

S⊆[n](
1
μ)
|S|χS(z). Unfortunately, the quality of

the resulting estimator is not very good. To see this, note

that the sum W	(z) simplifies to (1 − 1
μ)
|z|(1 + 1

μ)
n−|z|.

Thus, the range of this estimator (and in fact, the variance)

is exponentially large in n. As a result,the estimator obtained

using Proposition II.1 has sample complexity exponentially

large in n.

So we look for an alternative � satisfying (3) for which

both the cost of evaluating W	(z), and the range of W	(z)
are “small”. Since we know that supp(f) ⊆ X , it suffices

to choose a � ∈ G0(X) (recall, G0(X) is the set of functions

that map 0 to 1 and all x ∈ X \ {0} to 0). To bound the

cost of the induced (ε, δ)-estimator we need to bound both

the cost of computing W	(z) and its range.

678679679

To compute W	(z) we need to sum �̂(S)(1μ)
|S|χS(z) over

S ∈ supp(�̂). As discussed in Section II-C, to evaluate

this sum quickly it is not enough to know that |supp(�̂)| is

small; we also need a listable support H for �̂. With this,

W	(z) can be evaluated in time |H|(T + nO(1)) where T
is an upper bound on the time needed to evaluate �̂(S) on

input S ∈ H. To upper bound the range of W	(z), note

that every term in the sum is bounded (in absolute value)

by �̂(S)(1μ)
m(H) where m(H) is an upper bound on size of

the largest set in H. Thus, the range R of this estimator is

bounded by |H| · ‖�̂‖∞(1μ)
m(H). Hence, the running time of

the estimator is poly(|H|, R, 1
ε , log(1/δ)).

The algorithm of Wigderson and Yehudayoff [14] can be

formulated in this framework: They (implicitly) show how to

(efficiently) construct a function �WY ∈ G0(X), and listable

support H for �̂ so that

• All sets in H have size at most O(log |X|).
• |H| ≤ |X|log |X|.
• ‖�̂WY‖L1

= O(|X|log |X|).
Thus the running time of the induced estimator for f(0) is

poly(|X|log |X|, 1
ε , log(1/δ)).

B. The Lovett-Zhang approach

The improved running time of Lovett and Zhang [9]

involves two steps: (i) Constructing a function �LZ that gives

a faster estimator in the case that all of the points in X have

small Hamming weight, i.e., O(log |X|). (ii) A reduction

from the case of general X to the small Hamming weight

case.

For Y ⊆ {0, 1}n, let w(Y) be the maximum Hamming

weight of any string in Y . Lovett and Zhang showed how

to construct, for any set Y , a function �LZ ∈ G0(Y) and a

listable support H for �̂LZ such that

• m(H), the size of the largest set in H, is at most w(Y).
• |H| ≤ |Y |2w(Y).

• ‖�̂LZ‖L1
= |Y |O(logw(Y)).

(This result is implied by Proposition 3.6 in their paper.)

Applying this construction with Y = X yields an estimator

for f(0). Unlike the WY estimator, the running time of

this estimator deteriorates as w(X) increases. For e.g., for

w(X) = O(log |X|) the derived estimator has running time

is |X|O(log log |X|).
Lovett and Zhang present a kind of a reduction of the gen-

eral case (w(X) ≤ n) to the case that w(X) = O(log |X|).
This reduction combined with the application of �LZ yields

their O(|X|log log |X|) algorithm for the general case 3.

We now elaborate on this. For some threshold r (which

we eventually set to Oε(log |X|)), let NEAR = NEARr(X) =
{x ∈ X : |x| ≤ r} and FAR = FARr(X) = X − NEAR.

3Actually, the Lovett-Zhang algorithm doesn’t actually follow this
scheme, because the function �LZ is not efficiently computable, but they
use its existence to argue that the maximum likelihood estimator is a good
estimator.

Consider the construction of the function �LZ with Y =
NEAR instead of Y = X , Then we have:

f(0) = 〈�LZ , f〉 −
∑

x∈FAR

�LZ(x)f(x). (4)

If the sum (error term) being subtracted off is small, then we

can still estimate f(0) by estimating 〈�LZ , f〉. It turns out

that �LZ(x) ∈ [0, 1] for all x and so the error is bounded by

|X|maxx∈FAR f(x). Unfortunately, this might be quite large.

To get around this, Lovett and Zhang effectively replaced

f by another function g for which maxx∈FAR g(x) is very

small. To do this, they constructed an explicit function q
(depending on X but otherwise not on f) and set g = q · f .

We have f(0) = g(0)/q(0) so it suffices to approximate

g(0). We no longer have g(0) =
∑

S⊆[n] �̂LZ(S)ĝ(S), since

�LZ(x) need not be 0 for x ∈ FAR. But we can bound the

difference between these quantities as follows:

|g(0)−
∑
S⊆[n]

�̂LZ(S)ĝ(S)| ≤
∑

x∈FAR

�LZ(x)g(x)

≤
∑
x∈FAR

�LZ(x)q(x)

≤ max
x∈FAR

q(x)
∑
s∈FAR

�LZ(x).(5)

The function q is chosen so that q(x) (and therefore g(x))
is very small for all x ∈ FAR, so the contribution of the

second sum can be ignored. Additionally, to estimate the first

sum, we need to efficiently estimate ĝ(S) from samples from

Tμf , which imposes additional constraints on the function

q. The precise properties of the function q are given by the

following lemma.

Lemma IV.1. For any X and r ≥ (1/μ2) · log |X|, there is
a function q having the following properties:
• For all x ∈ FAR, q(x) ≤ e−

1
2μ

2r.
• q(0) ∈ [1/2, 1]
• q(0) can be (ε, κ) approximated in time

poly(n|X| 1ε log 1
κ).

• For every S, there is a function αS(z) for z ∈ {0, 1}n
such that for z ∼ Tμf , αS(z) is an unbiased estimator
q̂ · f(S) with range at most

(
1
μ

)|S|
and is computable

in time 2|S|nO(1).

Lemma IV.1 is implicit in [9]; we prove it in Appendix A.

Using this lemma, Lovett and Zhang estimate g(0) by

estimating
∑

S �̂LZ(S)ĝ(S) as outlined above.

C. Improving �

We follow the approach outlined above, but replace �LZ by

a better function. Our first attempt uses the Möbius function

(Section II-B1), to construct a function �0 = �0,X with

listable support H0 such that:

• |H0| ≤ |X|2w(X),

• ‖�̂0‖L1
= |X|2w(X).

679680680

Using this choice in the basic approach outlined in Sec-

tion IV-A gives a polynomial time estimator in the case

w(X) = O(log n) since both |H0| and ‖�̂0‖L1
are poly-

nomial in |X|.
Using �0 with the modified approach of Lovett and Zhang,

we fix a parameter r = θε(log |X|) and construct �1
satisfying the above, but using the set NEAR in place of

X . We can then bound the error term in (5) using the above

bound on ‖�̂0‖L1 and the bound on q(x) for x ∈ FAR in

Lemma IV.1 to bound the error term in (5) from above by

|X|2re−μ2r/2.

Unfortunately, even when μ = 1, 2r overwhelms e−μ2r/2

and the term is large. In an earlier version of this paper,

we showed how to modify q to get improved bounds on

q(x) for x ∈ FAR of the form 2−β(μ)r, where β(μ) > 1
for μ > .555. Thus, for such values of μ the error term can

be made arbitrarily small, thereby getting a polynomial time

estimation algorithm for this value of μ. While one might

hope to prove this for even smaller values of μ by improving

q further, this approach seems to be incapable of working for

arbitrary μ > 0 since the functions β(μ) that are obtained

in this way tend to 0 as μ tends to 0.

So instead of changing q, we modify the function � to

reduce ‖�̂‖L1
from 2rpoly(|X|) to (1+ δ)rpoly(|X|) for an

arbitrary δ > 0. By choosing r = Oδ(log |X|) appropriately,

the error term in (5) can be made arbitrarily small. In order

for us to accomplish this, we will relax the condition � ∈
G0(NEAR) to the condition that � ∈ Gη(NEAR) for a suitably

small η. (Recall that Gη(Y) is the set of functions � such

that �(0) = 1 and |�(x)| ≤ η for all x ∈ Y − {0}.) The

next lemma states several properties that are achieved by

our construction of �.

Lemma IV.2. Let C ⊆ {0, 1}n, δ > 0 and η > 0. Let r be
an upper bound on w(C). There is a function � = �C,δ,η :
{0, 1}n → R

• � ∈ Gη(C↓),
• ‖�̂‖L1 ≤ |C|2 · (1 + 2δ)r · (2/η)δ−1·log(2δ−1),
• supp(�̂) ⊆ C↓,
• For any S ⊆ [n], the Fourier coefficient �̂(S) can be

computed in time poly(|C↓|, n).

D. Proof of Lemma III.1

With the aid of Lemmas IV.1 and IV.2, we will now

prove Lemma III.1. To do this, apply Lemma IV.1 with

r = (100/μ4) · log(1/μ) · log(k/ε) to get function q. We

then apply Lemma IV.2 with C = X ∩B(0, r), η = ε
20 and

δ = μ2

16 to get the resulting function �. Define u = � · q. We

will show that this u satisfies all the properties we need in

Lemma III.1. We begin by noting that the third item (i.e.

u(0) can be efficiently approximated and lies in [1/2, 1])
follows by combining that �(0) = 1 and Lemma IV.1. Next,

we give an unbiased estimator for 〈u, f〉. We know that:

〈u, f〉 = 〈� · q, f〉 = 〈�, q · f〉
=

∑
S �̂(S) · q̂f(S)

=
∑

S⊆C↓ �̂(S) · q̂f(S)
Lemma IV.1 shows that for any S, there exist an unbiased

estimator αS(z) for q̂f(S), with range at most
(
1
μ

)|S|
that is computable in time 2|S|nO(1). It then follows that∑

S⊆C↓ �̂(S) ·αS(z) is an unbiased estimator with range at

most ‖�̂‖L1
·(1

μ

)r ≤ (k/ε)Õ(1/μ4) and it can be computed in

time |C↓| · 2rnO(1) = (k/ε)Õ(1/μ4)nO(1). All that remains

is to bound |〈u, f〉 − u(0)f(0)|.
|〈u, f〉 − u(0)f(0)| = |

∑
x∈X\{0}

�(x)q(x)f(x)|

≤ |
∑

x∈NEAR\{0}
�(x)q(x)f(x)|+ |

∑
x∈FAR

�(x)q(x)f(x)|

≤ η · |
∑

x∈NEAR\{0}
f(x)|+ ‖�‖∞ · e− 1

2μ
2r|

∑
x∈FAR

f(x)|

≤ η + k2 · (1 + 2δ)r · (2/η)δ−1·log(2δ−1) · e− 1
2μ

2r

By plugging the values of r, η and δ, we have |〈u, f〉 −
u(0)f(0)| ≤ ε/10.

V. PROOF OF LEMMA IV.2

In this section, we prove Lemma IV.2 which given C ⊆
{0, 1}n and δ, η > 0 constructs a suitable function �. As

a warmup, we construct the function �0 mentioned earlier.

The function �0 is specified by the set X ⊆ {0, 1}n, which

we change to C to match the notation of Lemma IV.2. We

are given C ⊆ {0, 1}n and want to construct a function

�0 ∈ G0(C) with a listable support H0 for �̂0 such that:

• |H0| ≤ |C|2w(C).

• ‖�̂0‖L1
= |C|2w(C)

The function we construct will satisfy the stronger condi-

tion that �0 ∈ G0(C↓), which means that it is 1 at 0 and 0

on every other point of C↓.
We introduce some notation to represent the natural

correspondence between strings in {0, 1}n and subsets of

[n]. For z ∈ {0, 1}n, define ONES(z) = {i ∈ [n] : zi = 1}.
For A ⊆ {0, 1}n, let H(A) be the collection of subsets

{ONES(z) : z ∈ A}. We let H0 be the same as H(C↓).
Observe that given C, we can efficiently list all the sets of

H0 and |H0| ≤ |C|2w(C).

Note that the requirement of �̂0 being supported on

H0 = H(C↓) is the same as requiring the function �0 to

be of the form �0 =
∑

S∈C↓ βS · χS . In order to find the

coefficients {βS}S∈C↓ , we start by defining the family of

functions {1�z}z∈{0,1}n as follows:

1�z(x) = 1x�z

680681681

It is easy to verify:

1�z(x) =
∏

i:zi=1

xi =
∏

i:zi=1

1− χi(x)

2

=
1

2|z|
∑

S⊆ONES(z)

(−1)|S|χS(x)

This implies that ‖1̂�z‖L1
= 1 and supp(1̂�z) ⊆ H(z↓).

Thus, a linear combination of functions (1�z)z∈C↓ will have

Fourier support in H(C↓). We will construct �0 as a linear

combination of (1�z)z∈C↓ . By considering the restriction of

the function �0 to C↓ we can use the Möbius transform to

find the linear combination.

For a function f ∈ F , let fR denote the function obtained

by restricting the domain to C↓. The condition �0 ∈ G0(C↓)
is the same as �R0 = 1R

0 . Observe that in the poset C↓ we

have 1R
�z =

∑
y�z 1

R
y for all z ∈ C↓. By Proposition II.2

and Corollary II.4 we have:

1R
y =

∑
y�z∈C↓

(−1)|z\y|1R
�z for all z ∈ C↓

This result can also be verified directly without Proposi-

tion II.2 and Corollary II.4.

For y ∈ C↓, define the function �y =∑
y�z∈C↓(−1)|z\y|1�z . We claim that the function

�0 = �0 satisfies the requirements. To see this, note that

�Ry = 1R
y (but in general �y may disagree with 1y out of

C↓). Thus, �0 ∈ G0(C↓). Further,

‖�̂0‖L1 ≤
∑
z∈C↓

‖1̂�z‖L1 ≤
∑
z∈C↓

1 ≤ |C↓| ≤ |C| · 2w(C).

We now turn to the proof of Lemma IV.2. We are given

C ⊆ {0, 1}n and δ, η > 0, and an upper bound r on w(C).
We want to construct a function � satisfying the conclusions

of the lemma.

As mentioned in Section IV-C, the reason why �0 is not

good enough for us is because the Fourier L1 norm grows

too fast. To circumvent this, we start with a modified family

of functions �δ,y =
∑

y�z∈C↓(−1)|z\y| · δ|z| · 1�z . Note

that �δ,y generalizes the function �y (which is obtained by

setting δ = 1). We will construct � as a linear combination of

{�y}y∈C↓ . First we prove some properties of (�δ,y : y ∈ C↓).

Proposition V.1. For any δ > 0, y ∈ C↓, the function
�δ,y =

∑
y�z∈C↓(−1)|z\y| · δ|z| · 1�z satisfies the following

properties:

• For x ∈ C↓, �δ,y(x) = 1x�y · (1− δ)|x|−|y| · δ|y|.
• supp(�̂δ,y) ⊆ C↓.
• ‖�̂δ,y‖L1 ≤ |C| · (1 + δ)w(C)−|y| · δ|y|

Proof: First we can rewrite �δ,y as �δ,y =

δ|y|
∑

y�z∈C↓(−δ)|z\y| · 1�z . For any x ∈ C↓,

�δ,y(x) = δ|y|
∑

y�z∈C↓
(−δ)|z\y| · 1�z(x)

= δ|y|
∑

y�z�x

(−δ)|z\y| = 1x�y · (1− δ)|x|−|y| · δ|y|

Since supp(1̂�z) ⊆ C↓, we deduce that supp(�̂δ,y) ⊆ C↓.
For the last requirement,

‖�̂δ,y‖L1
≤ δ|y|

∑
y�z∈C↓

|(−δ)|z\y|| · ‖1�z‖L1

≤ δ|y|
∑

y�z∈C↓
δ|z\y|

≤ δ|y|
∑
t∈C

∑
y�z�t

δ|z\y|

≤ |C| · δ|y| · (1 + δ)w(C)−|y|

Note that we have relaxed the requirement on �, namely

� ∈ Gη(C) for some appropriately small η as opposed to

�0 which was in G0(C). Recall that we will construct � as

a linear combination of form �δ,y for y ∈ C↓. We now

impose the additional requirement that the coefficient of

�δ,y depends only on |y|. This will help us in search of

the said coefficients. With this, let � =
∑

y∈C↓ v|y| · �δ,y ,

where v = (v0, ..., vw(C)) is the vector of coefficients. By

Proposition V.1 for any x ∈ C↓:

�(x) =
∑
y�x

v|y|·δ|y|(1−δ)|x|−|y| =
|x|∑
t=0

vt·
(|x|

t

)
δt(1−δ)|x|−t

Since the value of � only depends on the weight of x, we can

define a function �̃ on nonnegative integers so that �(x) =
�̃(|x|). Now we have �̃(m) =

∑m
t=0 vt ·

(
m
t

) · δt · (1− δ)m−t

for 0 ≤ m ≤ w(C), and the condition � ∈ Gη(C↓) is thus

equivalent to �̃(0) = 1 and |�̃(i)| ≤ η for i > 0. Note that

these are linear constraints on the entries of the vector v.

Also, applying Proposition V.1, the Fourier L1 norm can

be bounded by:

‖�̂‖L1
≤

∑
y∈C↓

|v|y|| · ‖�̂δ,y‖L1

≤ ‖v‖∞
∑
y∈C↓

|C| · δ|y| · (1 + δ)w(C)−|y|

≤ ‖v‖∞|C|
w(C)∑
j=0

δj(1 + δ)w(C)−j |{y ∈ C↓ : |y| = j}|

≤ ‖v‖∞|C|
w(C)∑
j=0

δj(1 + δ)w(C)−j · |C|
(
w(C)

j

)

= ‖v‖∞|C|2(1 + 2δ)w(C).

Thus, we seek to find a vector v = (v0, . . . , vw(C)) such

that ‖v‖∞ is as small as possible while satisfying the linear

681682682

constraints dictated by the requirement �̃(0) = 1 and |�̃(i)| ≤
η for i > 0. To do this, recall that w(C) ≤ r and define the

matrix Aδ,r ∈ R(r+1)×(r+1) as

Aδ,r(i, j) =

(
i

j

)
· δj · (1− δ)i−j .

Then we have �̃(m) = (Aδ,r · vT)m. Now the task of

constructing � is equivalent to finding a vector v with L∞
norm as small as possible such that (Aδ,r(i, j) · vT)0 = 1
and |(Aδ,r(i, j) · vT)m| ≤ η for m > 0.

We note that this problem is equivalent to problem of

finding a “robust local inverse” for the matrix Aδ,r, which

has been studied in [6], [11]. The following theorem is an

easy corollary of the main result of [11]. We provide the

reduction in the full version.

Theorem V.1. (Moitra-Saks [11]) For any η > 0, there
exists v ∈ Rr+1 such that ‖Aδ,r · v − e0‖∞ ≤ η, ‖v‖∞ ≤
(2/η)(1/δ)·log(2/δ) and the zeroth coordinate of Aδ,r · v is 1.
Here e0 ∈ Rr+1 denotes the unit vector with 1 at the zeroth
coordinate. Further, v can be computed in time poly(r).

Applying this theorem directly, we have � ∈ Gη(C↓) and

‖�̂‖L1
≤ |C|2 · (1 + 2δ)r · (2/η)δ−1·log(2δ−1). That finishes

the proof.

VI. PROOF OF THEOREM I.2

Without loss of generality, assume ‖f‖1 = 1. We may

further assume f(0) > 0 and it maximizes |f(x)|, thus

f(0) > 1/k. Define f+ = f · 1>0 and f− = −f · 1<0,

thus f = f+ − f−. Normalizing these two terms we have,

f = ‖f+‖1 · f+

‖f+‖1 − ‖f
−‖1 · f−

‖f−‖1 .

If ‖f−‖1 = 0 then we just omit the second term.

Here g+ = f+

‖f+‖1 and g− = f−

‖f−‖1 can be viewed as

distributions supported on supp(f). Applying Lemma III.1

with parameter ε = 1/k and X = supp(f), we get functions

u and α : {0, 1}n → R satisfying u(0) ∈ [1/2, 1] and

|α(z)| ≤ kÕ(1/μ4), such that

|〈u, g+〉 − u(0)g+(0)| ≤ 1

10k
,

|〈u, g−〉 − u(0)g−(0)| ≤ 1

10k

(6)

〈u, g+〉 = Ez∼Tμg+ [α(z)],

〈u, g−〉 = Ez∼Tμg− [α(z)].
(7)

We will show that

1/2k ≤ 〈u, f〉 ≤ kÕ(1/μ4) · ‖Tμf‖1. (8)

For the first part of equation (8), since f = ‖f+‖1 · g+ −
‖f−‖1 · g−, the two inequalities in (6) directly imply

|〈u, f〉 − u(0)f(0)| ≤ 1

10k
(‖f+‖1 + ‖f−‖1) = 1

10k

Thus 〈u, f〉 ≥ u(0)f(0)− 1
10k ≥ 1

2k . For the second part of

equation (8), the two equations in (7) imply

〈u, f〉 = ‖f+‖1 ·Ez∼Tμg+α(z)− ‖f−‖1 ·Ez∼Tμg−α(z)

=
∑

z∈{0,1}n
α(z) ·

(
‖f+‖1 · Tμ

(
f+

‖f+‖1

)
(z)

)

−
∑

z∈{0,1}n
α(z) ·

(
‖f−‖1 · Tμ

(
f−

‖f−‖1

)
(z)

)
.

Using the fact that

Tμf = ‖f+‖1 · Tμ

(
f+

‖f+‖1

)
− ‖f−‖1 · Tμ

(
f−

‖f−‖1

)
,

we have,

〈u, f〉 =
∑

z∈{0,1}n
α(z) · Tμf(z)

≤ ‖Tμf‖1 · max
z∈{0,1}n

α(z)

≤ kÕ(1/μ4) · ‖Tμf‖1
These two results imply ‖Tμf‖1 ≥ k−Õ(1/μ4), which

finishes the proof.

ACKNOWLEDGMENTS

A. D. is grateful to Rocco Servedio for many illuminating

conversations about this problem.

Part of the work was done when A. D. was a postdoc at

DIMACS, Rutgers. A. D. is supported by a start-up grant

from Northwestern University. M. S. and S. T. are supported

by NSF CCF-1218711 and by Simons Foundation award

332622.

REFERENCES

[1] Lucia Batman, Russell Impagliazzo, Cody Murray, and Ra-
mamohan Paturi. Finding heavy hitters from lossy or noisy
data. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, pages 347–362.
Springer, 2013.

[2] William Beckner. Inequalities in Fourier analysis. Annals of
Mathematics, pages 159–182, 1975.

[3] Aline Bonami. Étude des coefficients de fourier des fonctions
de lp(g). In Annales de l’institut Fourier, volume 20, pages
335–402, 1970.

[4] Christer Borell. Positivity improving operators and hypercon-
tractivity. Mathematische Zeitschrift, 180(3):225–234, 1982.

[5] Anindya De, Michael Saks, and Sijian Tang. Noisy population
recovery in polynomial time (if the noise is not too high),
2015.

[6] Zeev Dvir, Anup Rao, Avi Wigderson, and Amir Yehudayoff.
Restriction access. In Proceedings of the 3rd Innovations
in Theoretical Computer Science Conference, pages 19–33.
ACM, 2012.

682683683

[7] W. Feller. An introduction to probability theory and its
applications. John Wiley & Sons, 1968.

[8] Leonard Gross. Logarithmic sobolev inequalities. American
Journal of Mathematics, 97(4):1061–1083, 1975.

[9] Shachar Lovett and Jiapeng Zhang. Improved noisy pop-
ulation recovery, and reverse bonami-beckner inequality for
sparse functions. In Proceedings of the Forty-Seventh Annual
ACM on Symposium on Theory of Computing, pages 137–142.
ACM, 2015.

[10] Shachar Lovett and Jiapeng Zhang. Noisy population re-
covery from unknown noise. Technical report, Electronic
Colloquium on Computational Complexity, 2016.

[11] Ankur Moitra and Michael Saks. A polynomial time algo-
rithm for lossy population recovery. In Foundations of Com-
puter Science (FOCS), 2013 IEEE 54th Annual Symposium
on, pages 110–116. IEEE, 2013.

[12] Ryan O’Donnell. Analysis of Boolean functions. Cambridge
University Press, 2014.

[13] Richard Stanley. Enumerative Combinatorics. Cambridge
University Press, 1997.

[14] Avi Wigderson and Amir Yehudayoff. Population recovery
and partial identification. In Foundations of Computer Science
(FOCS), 2012 IEEE 53rd Annual Symposium on, pages 390–
399. IEEE, 2012.

APPENDIX

A. Proof of Lemma IV.1

Recall that FAR = FARr = {x ∈ X : |x| > r}. Define the

set E = {y ∈ {0, 1}n : dH(0, y) ≤ dH(xi, y) for all xi ∈
FAR} and q = Tμ1E . Next, we show that q satisfies the

requirements. First we state the following lemma, which is

essentially identical to Lemma 3.2 in [9], that proves the

first three properties we need. The proof is deferred to the

full version.

Lemma A.1. For any X and r ≥ (1/μ2) · log |X|, define
set FAR and E as above, we have:
• (Tμ1E)(0) ≥ 1/2.
• For xi ∈ Far, (Tμ1E)(xi) ≤ e−

1
2 ·μ2·|xi|.

Clearly, the function 1E(·) can be computed in time
poly(n, |X|). Further, (Tμ1E)(0) can be computed to ad-
ditive error ε in time poly(n, |X|, 1/ε) · log(1/κ).

For the last requirement of Lemma IV.1, we fist show how

to build an unbiased estimator for q̂ · f(S) using random

sample z ∼ Tμf . Since (q · f)(x) = f(x) · (Tμ1E)(x), we

get that for any S ⊆ {0, 1}n.

q̂ · f(S) = 〈(XSf), (Tμ1E)〉 = 〈(TμXSf),1E〉.
We now make two observations. The first is that for any

S ⊆ [n], Tμ,S is a self-adjoint operator. The second is that

if S, S′ ⊆ [n] are disjoint sets, then the operators XS′ and

Tμ,S commute. Decomposing Tμ = Tμ,STμ,S , we have

TμXSf = Tμ,STμ,SXSf = Tμ,SXSTμ,Sf = Tμ,SXST
−1
μ,STμf.

Thus, we get

q̂ · f(S) = 〈Tμ,SXST
−1
μ,STμf,1E〉

= Ez∼Tμf 〈Tμ,SXST
−1
μ,S1z,1E〉 (9)

Defining αS(z) = 〈Tμ,SXST
−1
μ,S1z,1E〉, we can see that

αS(z) is an unbiased estimator for q̂ · f(S). Now we are

going to show that αS(z) has the properties we need.

Lemma A.2. For any S ⊆ {0, 1}n, αS(z) can be computed
in time 2|S|nO(1).

Proof: To see this, define Az,S = {y : yS = zS}.
Observe that

supp(Tμ,SXST
−1
μ,S1z) ⊆ Az,S and |Az,S | = 2|S|.

Further, Tμ,SXST
−1
μ,S1z can be computed on any point in

Az,S in time 2O(|S|). Using the fact that 1E(·) can be

efficiently evaluated, we conclude that 〈Tμ,SXST
−1
μ,S1z,1E〉

can be evaluated in time 2|S|nO(1).

Lemma A.3. For any S ⊆ {0, 1}n, |αS(z)| ≤ (1/μ)|S|.

Proof: First we recall the following facts from [9]

(Claim 3.5 in [9]).

Claim. ‖Tμ,i‖1→1 = 1 and ‖T−1
μ,i ‖1→1 = 1/μ.

Proof of the Claim: The bound ‖Tμ,if‖1 ≤ ‖f‖1 is

immediate, and is tight for f = 1. To derive the bound

on T−1
μ,i , let x0, x1 be such that (x0)i = 0, (x1)i = 1 and

(x0)j = (x1)j for all j �= i. If (f(x0), f(x1)) = (a, b) then

T−1
μ,1f = (1/2μ) · ((1 + μ)a − (1 − μ)b,−(1 − μ)a + (1 +

μ)b). Then |(T−1
μ,i f)(x0)|+|(T−1

μ,i f)(x1)| ≤ (1/μ)(|f(x0)|+
|f(x1)|). The claim follows by summing over all choices for

x0, x1, and noting that the bound is tight for f(x) = (−1)xi .

The above immediately implies

‖Tμ,S‖1→1 ≤ 1, ‖T−1
μ,S‖1→1 ≤ (1/μ)|S|. (10)

Using ‖XS‖1→1 ≤ 1, we know ‖Tμ,SXST
−1
μ,S‖1→1 ≤

(1/μ)|S|. This implies:

|αS(z)| = |〈Tμ,SXST
−1
μ,S1z,1E〉| ≤ ‖Tμ,SXST

−1
μ,S1z‖1

≤ ‖Tμ,SXST
−1
μ,S‖1→1 ≤ (1/μ)|S|.

Combining Lemma A.1, Lemma A.2 and Lemma A.3 we

get the result.

683684684

