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Abstract—We consider the problem of estimating the mean
and covariance of a distribution from i.i.d. samples in the
presence of a fraction of malicious noise. This is in contrast to
much recent work where the noise itself is assumed to be from
a distribution of known type. The agnostic problem includes
many interesting special cases, e.g., learning the parameters
of a single Gaussian (or finding the best-fit Gaussian) when
a fraction of data is adversarially corrupted, agnostically
learning mixtures, agnostic ICA, etc. We present polynomial-
time algorithms to estimate the mean and covariance with error
guarantees in terms of information-theoretic lower bounds. As
a corollary, we also obtain an agnostic algorithm for Singular
Value Decomposition.

Keywords-Mean estimation; covariance; PCA; agnostic
learning; robust statistics.

I. INTRODUCTION

The mean and covariance of a probability distribution are

its most basic parameters (if they are bounded). Many fami-

lies of distributions are defined using only these parameters.

Estimating the mean and covariance from iid samples is thus

a fundamental and classical problem in statistics. The sample

mean and sample covariance are generally the best possible

estimators (under mild conditions on the distribution such

as their existence). However, they are highly sensitive to

noise. The main goal of this paper is to estimate the

mean, covariance and related functions in spite of arbitrary

(adversarial) noise.
Methods for efficient estimation, in terms of sample

complexity and time complexity, play an important role in

many algorithms. One such class of problems is unsuper-

vised learning of generative models. Here the input data is

assumed to be iid from an unknown distribution of a known

type. The classical instantiation is Gaussian mixture models,

but many other models have been studied widely. These

include topic models, stochastic block models, Independent

Component Analysis (ICA) etc. In all these cases, the

problem is to estimate the parameters of the underlying

distribution from samples. For example, for a mixture of

k Gaussians in R
n, it is known that the sample and time

complexity are bounded by nO(k) in general [1], [2], [3]

and by poly(n, k) under natural separation assumptions [4],

[5], [6], [7], [8], [9], [10]. For ICA, samples are of the form

Ax where A is unknown and x is chosen randomly from an

unknown (non-Gaussian) product distribution; the problem

is to estimate the linear transformation A and thus unravel

the underlying product structure [11], [12], [13], [14], [15],

[16], [17], [18], [19], [20]. These, and other models (see e.g.,

[21]), have been a rich and active subject of study in recent

years and have lead to interesting algorithms and analyses.

The Achilles heel of algorithms for generative models is

the assumption that data is exactly from the model. This is

crucial for known guarantees, and relaxations of it are few

and specialized, e.g., in ICA, data could by noisy, but the

noise itself is assumed to be Gaussian. Assumptions about

rank and sparsity are made in a technique that is now called

Robust PCA [22], [23], [24]. There have been attempts

[25], [26] at achieving robustness by L1 minimization, but

they don’t give any error bounds on the output produced.

A natural, important and wide open problem is estimating

the parameters of generative models in the presence of

arbitrary, i.e., malicious noise, a setting usually referred to

as agnostic learning. The simplest version of this problem is

to estimate a single Gaussian in the presence of malicious

noise. Alternatively, this can be posed as the problem of

finding a best-fit Gaussian to data or agnostically learning

a single Gaussian. We consider the following generalization:

Problem 1 [Mean and Covariance]: Given points in
R

n that are each, with probability 1 − η from an unknown
distribution with mean μ and covariance Σ, and with
probability η completely arbitrary, estimate μ and Σ.

There is a large literature on robust statistics (see e.g.,

[27], [28], [29]), with the goal of finding estimators that

are stable under perturbations of the data. The classic

example for points on a line is that the sample median is

a robust estimator while the sample mean is not (a single

data point can change the mean arbitrarily). One measure

for robustness of an estimator is called breakdown point,

which is the minimum fraction of noise that can make

the estimator arbitrarily bad. Robust statistics have been

proposed and studied for mean and covariance estimation

in high dimension as well (see [30], [31], [32], [33], [34],

[35], [36], [37], [38], [39], [40] and the references therein).

Most commonly used methods (including M-estimators) to

estimate the covariance matrix were shown to have very

low break down points [34]. The notion of robustness we
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consider quantifies how far the estimated value is from the

true value. To the best of our knowledge, all the papers

either suffer from the difficulty that their algorithms are

computationally very expensive, namely exponential time

in the dimension, or have poor or no guarantees for the

output. Tukey’s median [31]) is an example of the former.

It is defined as the deepest point with respect to a given

set of points {x i}i. As proven in [40], this is an optimal

estimate of the mean. But there is no known polynomial time

algorithm to compute this. Another well-known proposal

(see [41]) is the geometric median:

argmin
y

∑
i

‖y − x i‖2.

This has the advantage that it can be computed via a

convex program. Unfortunately, as we observe here (see

Proposition II.1), the error of the mean estimate produced

by this method grows polynomially with the dimension (also

see [42]).

This leads to the question, what is the best approximation

one can hope for with η arbitrary (adversarial) noise. From

a purely information-theoretic point of view, it is not hard

to see that even for a single Gaussian N(μ, σ2) in one di-

mension, the best possible estimation of the mean will have

error as large as Ω(ησ), i.e., any estimate μ̃ can be forced to

have ‖μ− μ̃‖ = Ω(ησ). For a more general distribution, this

can be slightly worse, namely, Ω(η3/4σ) (see Section II-A).

What about in R
n? Perhaps surprisingly, but without much

difficulty, one can show that the information-theoretic upper

bound matches the lower bound in any dimension, with

no dependence on the dimension. This raises a compelling

algorithmic question: what are the best estimates for the

mean and covariance that can be computed efficiently?

In this paper, we give polynomial time algorithms to

estimate the mean with error that is close to the information-

theoretically optimal estimator. The dependence on the di-

mension, of the error in the estimated mean, is only
√
log n.

To the best of our knowledge, this is the first polynomial-

time algorithm with an error dependence on dimension that

is less than
√
n, the bound achieved by the geometric

median. Moreover, as we state precisely later, our techniques

extend to very general input distributions and to estimating

higher moments.

Our algorithm is practical. A matlab implementation for

mean estimation can be found in [43]. It takes less a couple

of seconds to run on a 500-dimensional problem with 5000
samples on a personal laptop.

A. Model

We are given points x 1, ...,xm ∈ R
n sampled according

to the following rule. With 1 − η probability each x i is

independently sampled from a distribution D with mean μ
and covariance Σ, and with η probability it is picked by

an adversary. For ease of notation, we will write x i ∼ Dη

when we want to say the x i is picked according to the above

rule. The problem we are interested in is to estimate μ and

Σ given the samples. In the following, we will consider

mainly two kinds of distributions.

Gaussian: D = N(μ,Σ) is the Gaussian with mean μ and

covariance Σ.

Bounded Moments: Let D is a distribution with mean μ
and covariance Σ. We say it has bounded 2k’th moments if

there exists a constant C2k such that for every unit vector

v ,

E
(
(x − μ)Tv

)2k ≤ C2k

(
E
(
(x − μ)Tv

)2)k

(1)

= C2k(Var
[
xTv

]
)k. (2)

Here Var
[
xTv

]
=

(
vTΣv

)2
is the variance of x along v .

For mean estimation, C4 will be used, and for covariance

estimation, C8 will be needed.

B. Main Results

All the results we state hold with probability 1 −
1/ poly(n) unless otherwise mentioned. We will also assume

η is a less than a universal constant. We begin with agnostic

mean estimation.

Theorem I.1 (Gaussian mean). Let D = N(μ,Σ), μ ∈
R

n. There exists a poly(n, 1/ε)-time algorithm that takes
as input m = O

(
n(logn+log 1/ε) logn

ε2

)
independent samples

x 1, ...,xm ∼ Dη and computes μ̂ such that the error ‖μ−
μ̂‖2 is bounded as follows:

O (η + ε)σ
√
log n if Σ = σ2I

O
(
η1/2 + ε

) ‖Σ‖1/22 log1/2 n otherwise.

We note that the sample complexity is nearly linear, and

almost matches the complexity for mean estimation with no

noise.

Remark I.2. If we take m = O
(

n2(logn+log 1/η) logn
η2

)
samples, and assume that η < c/ log n for a small

enough constant c > 0, then by combining theorems I.5

and I.1, we can improve the η dependence for the non-

spherical Gaussian case in Theorem I.1 to ‖μ − μ̂‖2 =

O
(
η3/4

) ‖Σ‖1/22 log1/2 n.

Our next theorem is a similar result for much more general

distributions.

Theorem I.3 (General mean). Let D be a distribution
on R

n with mean μ, covariance Σ, and bounded fourth
moments (see Equation 1). There exists a poly(n, 1/ε)-time
algorithm that takes as input a parameter η and m =

O
(

n(logn+log 1/ε) logn
ε2

)
independent samples x 1, ...,xm ∼

Dη, and computes μ̂ such that the error ‖μ−μ̂‖2 is bounded
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as follows:

O
(
C

1/4
4 (η + ε)3/4

)
σ
√
log n if Σ = σ2I

O
(
η1/2 + C

1/4
4 (η + ε)3/4

)
‖Σ‖1/22 log1/2 n otherwise.

The bounds above are nearly the best possible (up to a

factor of O(
√
log n)) when the covariance is a multiple of

the identity.

Observation I.4 (Lower Bounds). Let D be a distribution
with mean μ ∈ R

n and covariance Σ. Any algorithm that
takes m (not necessarily O(poly(n))) samples x 1, ...,xm ∼
Dη, and computes a μ̂ should have with constant probability
the error ‖μ− μ̂‖2 is

Ω(η
√‖Σ‖2) if D = N(μ,Σ)

Ω(η3/4
√‖Σ‖2) if D has bounded fourth moments.

Theorem I.5 (Covariance Estimation). Let D be a distribu-
tion with mean μ and covariance Σ and that (a) for x ∼ D,
x and (x −μ)(x −μ)T have bounded fourth moments with
constants C4 and C4,2(see Equation 1) respectively. (b) D is
an (unknown) affine transformation of a 4-wise independent
distribution. Then, there is an algorithm that takes as input
m = O

(
n2(logn+log 1/ε) logn

ε2

)
samples x 1, ...xm ∼ Dη and

η and computes in poly(n, 1/ε)-time a covariance estimate
Σ̂ such that

‖Σ̂−Σ‖F = O
(
η1/2 + C

1/4
4,2 (η + ε)3/4

)
C

1/2
4 ‖Σ‖2 log1/2 n

where ‖ · ‖F denotes the Frobenius norm.

If D = N(μ,Σ), then it satisfies the hypothesis of the

above theorem. More generally, it holds for any 8-wise

independent distribution with bounded eighth moments and

whose fourth moment along any direction is at least (1+ c)
times the square of the second moment for some c > 0. We

also note that if the distribution is isotropic, then covariance

estimation is essentially a 1-d problem and we get a better

bound.

Theorem I.6 (Agnostic 2-norm). Suppose D is a distribu-
tion which satisfies the following concentration inequality:
there exists a constant γ such that for every unit vector v

Pr
(∣∣(x − μ)Tv

∣∣ > t
√
vTΣv

)
≤ e−tγ .

Then, there is an algorithm that runs in poly(n, 1/η) time
that takes as input η and m = O

(
n3(logn/η)2 logn

η2

)
inde-

pendent samples x 1, ...,xm ∼ Dη , and computes λ̂max such
that

(1−O(η)) ‖Σ‖2 ≤ λ̂max ≤
(
1 +O(η log2/γ n/η)

)
‖Σ‖2.

In independent work, [44] gave a similar algorithm, which

they call a Gaussian filtering method, for agnostic mean

estimation assuming a spherical covariance matrix; while

their guarantees are specifically for Gaussians, the error term

in their guarantee grows only with log(1/η) rather than

log n. They also give a completely different algorithm based

on the Ellipsoid method, for a simple family of distributions

including Gaussian and Bernoulli.

As a corollary of Theorem I.5, we get a guarantee for

agnostic SVD.

Theorem I.7 (Agnostic SVD). Let D is a distribution that
satisfies the hypothesis of Theorem I.5. Let Σk be the best
rank k approximation to Σ in ‖ · ‖F norm. There exists a
polynomial time algorithm that takes as input η and m =
poly(n) samples from Dη. It produces a rank k matrix Σ̂k

such that∥∥∥Σ− Σ̂k

∥∥∥
F
≤ ‖Σ−Σk‖F +O

(√
η log n

)
‖Σ‖2.

Given the wide applicability of SVD to data, we expect

the above theorem will have many applications. As an

illustration, we derive a guarantee for agnostic Independent

Component Analysis (ICA). In standard ICA, input data

points x are generated as As with a fixed unknown n × n
full-rank matrix A and s generated from an unknown

product distribution with non-Gaussian components. The

problem is to estimate the matrix A (the “basis”) from

a polynomial number of samples in polytime. There is

a large literature of algorithms for this problem and its

extensions [11], [12], [13], [14], [15], [16], [17], [18], [19].

However, all these algorithms rely on no noise or the noise

being random (typically Gaussian) and require estimating

singular values to within 1/ poly(n) accuracy, and therefore

unable to handle adversarial noise. On the other hand, the

algorithm from [20], which gives a sample complexity of

Õ(n), only requires estimating singular values to within

1/ poly(log n). Our algorithm for agnostic SVD together

with the Recursive Fourier PCA algorithm of [20] results

in an efficient algorithm for agnostic ICA, tolerating noise

η = O(1/ logc n) for a fixed constant c. To the best of our

knowledge, this is the first polynomial-time algorithm that

can handle more than an inverse poly(n) amount of noise.

Theorem I.8 (Agnostic Standard ICA). Let x ∈ R
n be

given by a noisy ICA model x = As with probability
1 − η and be arbitrary with probability η, where A ∈
R

n×n has condition number κ, the components of s are
independent, ‖s‖ ≤ K

√
n almost surely, and for each i,

Esi = 0,Es2i = 1, |E|si|4 − 3| ≥ Δ and maxi E|si|5 ≤M .
Then for any ε < Δ3/(108M2 log3 n), 1/(κ4 log n) and
η < ε/2, there is an algorithm that, with high probability,
finds vectors {b1, . . . , bn} such that there exist signs ξi = ±1
satisfying

∥∥A(i) − ξibi
∥∥ ≤ ε‖A‖2 for each column A(i) of

A, using poly(n,K,Δ,M, κ, 1
ε ) samples. The running time

is bounded by the time to compute Õ(n) SVDs on real
symmetric matrices of size n× n.

Our results can also be used to estimate the mean and

covariance of noisy Bernoulli product distributions, i.e.
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distributions in which each coordinate i is 1 with probability

pi and 0 with probability 1− pi. In one dimension, C4 for

a Bernoulli distribution is
(1−p)2

p + p2

1−p . For a Bernoulli

product distribution, C4 will be within a constant of

maxi

{
(1−pi)

2

pi
+

p2
i

1−pi

}
. Then Theorem I.3 can be applied

to get an estimate μ̂ for the mean. For instance, if ∀i, pi = p
and p ≥ 1

2 , then ‖μ − μ̂‖2 = O
(√

η(1 +
√
ηp)p log n

)
. If

C4 is constant, then by Theorem I.5, we can get an estimate

for the covariance. Detailed proofs of all the theorems

can be found in the full version of the paper available at

http://arxiv.org/abs/1604.06968.

II. MAIN IDEAS AND ALGORITHMS

Here we discuss the key ideas of the algorithms. The

algorithm AGNOSTICMEAN (Algorithm 3) alternates be-

tween an outlier removal step and projection onto the top

n/2 principal components; these steps are repeated. It is

inspired by the work of Brubaker [45] who gave an agnostic

algorithm for learning a mixture of well-separated spherical

Gaussians.

For illustration, let us assume for now that the underlying

distribution is D = N(μ, σ2I ). We are given a set S of

m = poly(n) points from Dη , and S = SG ∪ SN be

the points sampled from the Gaussian and the adversary

respectively. Let us also assume that |SN | = η|S|. We will

use the notation μT for mean of the points in a set T , and

ΣT for covariance of the points in T . We then have

ΣS = (1−η)σ2I+ηΣSN
+η(1−η)(μS−μN )(μS−μN )T .

(3)

If the dimension is n = 1, then we can show that the median

of S is an estimate for μ correct up to an additive error

of O(ησ). Even if we just knew the direction of the mean
shift μS − μ = η(μG − μN ), then we can estimate μ by

first projecting the sample S on the line along μ− μS and

then finding the median. This would give an estimator μ̂
satisfying ‖μ̂− μ‖2 = O(ησ). So we can focus on finding

the direction of μS − μ. One would guess that the top

principal component of the covariance matrix of S would

be a good candidate. But it is easy for the adversary to

choose SN to make this completely useless. Since the noise

points SN can be anything, just two points from SN placed

far away on either side of the mean μ along a particular line

passing through μ are sufficient to make the variance in that

direction blow up arbitrarily. But we can limit this effect

to some extent by an outlier removal step. By a standard

concentration inequality for Gaussians, we know that the

points in SG lie in a ball of radius O(σ
√
n) around the

mean. So, if we can just find a point inside or close to the

convex hull of the Gaussian and throw away all the points

that lie outside a ball of radius Cσ
√
n around this point,

we preserve all the points in SG. This will also contain the

effect of noise points on the variance since now they are

restricted to be within O(σ
√
n) distance of μ. We will see

later that we can use coordinate-wise median as the center

of the ball. By computing the variance by projecting onto

any direction, we can figure out σ2 up to a 1±O(η) factor.

From now on, we assume that all points in S lie within a

ball of radius O(σ
√
n) centered at μ.

But even after this restriction, the top principal component

may not contain any information about the mean shift

direction. By just placing (say) η/10 noise points along the

e1 direction at ±σ√n, and all the remaining noise points

perpendicular to this at a single point at a smaller distance,

we can make e1 the top principal component. But e1 is

perpendicular to the mean shift direction.

The idea to get around this is that even if the top principal

component of ΣS may not be along the mean-shift direction,

the span (call it V ) of top n/2 principal components of ΣS

will contain a big projection of the mean-shift vector. This is

because, if a big component of the the mean-shift vector was

in the span (say W ) of bottom n/2 principal components of

ΣS , by Equation 3 this would mean that there is a vector in

W with a large Rayleigh quotient. This implies that the top

n/2 eigenvalues of ΣS are all big. Since ΣS = (1−η)σ2I+
A, where A = ηΣSN

+η(1−η)(μS−μN )(μS−μN )T , this

is possible only if Tr(A) is large. But since the distance of

each point in S from μ is O(σ
√
n), the trace of A cannot be

too large. Therefore, in the space W , we can just compute

the sample mean PWμS and it will be close to PWμ. We

still have to find the mean in the space V . But we do this

by recursing the above procedure in V . At the end we will

be left with a one-dimensional space, and then we can just

find the median. This recursive projection onto the top n/2
principal components is done in Algorithm 3 .

This generalizes to the non-spherical Gaussians with a

few modifications. We use a different outlier removal step.

In the non-spherical case, it is not trivial to compute ‖Σ‖2
to be used as the radius of the ball. We give an algorithm

for this later on. To limit the effect of noise, we use a

damping function. Instead of discarding points outside a

certain radius, we damp every point by a weight so that

further away points get lower weights. This is done in

OUTLIERDAMPING (Algorithm 1). We get the guarantees

of Theorem I.1 by running AGNOSTICMEAN (Algorithm 3)

with the outlier removal routine being OUTLIERDAMPING.

We then turn to more general distributions which have

bounded fourth moments. We need bounded fourth moments

to ensure that the mean and covariance matrix of the

distribution D do not change much even after conditioning

by an event that occurs with probability 1 − η. One dif-

ficulty for general distributions is that the outlier damping

doesn’t work. So for distributions D with bounded fourth

moments, we have another outlier removal routine called

OUTLIERTRUNCATION(·, η). In this routine, we first find

a point analogous to the coordinate-wise median for the

Gaussians, and then consider a ball big enough to contain

1 − η fraction of S. We throw away all the points outside

667668668



this ball. We get the guarantees of Theorem I.3 by running

AGNOSTICMEAN (Algorithm 3) with the outlier removal

routine being OUTLIERTRUNCATION (Algorithm 2).

We now have an algorithm to estimate the mean of

very general (with bounded fourth moments) distributions.

To estimate the covariance matrix, we observed that the

covariance matrix of a distribution D is given by ED(x −
μ)(x−μ)T . If we knew what μ was, then covariance can be

computed by estimating the mean of the second moments.

To compute the mean of the second moments, we can treat

(x − μ)(x − μ)T as a vector in n2 dimensions and run

the algorithm for mean estimation. Also, we can estimate μ
by the same algorithm. Therefore, we get Theorem I.5 by

running COVARIANCEESTIMATION (Algorithm 4).

Algorithm AGNOSTICOPERATORNORM (Algorithm 5)

estimates the 2-norm ‖Σ‖2 for general distributions. For

illustration, suppose D = N(μ,Σ), and we are given

m = poly(n) samples x 1, ...,xm ∼ Dη, and the mean μ.

We consider the covariance-like matrix

Σ(S,μ) =
1

m

∑
i

(x i − μ)(x i − μ)T .

Since 1−η fraction of the points in S are from the Gaussian,

we have Σ(S,μ) 
 (1−η)Σ. Therefore, the top eigenvalue

σ2 of Σ(S,μ) is at least (1 − η)‖Σ‖2. Let v be the top

eigenvector of Σ(S,μ). If the Gaussian variance along v
(which can be computed up to 1±η factor) is much less than

σ2, this should be because there are a lot of noise points in S
whose projections onto v are big compared to the projection

of Gaussian points in S. We remove points in S that have

big projection and then iterate the entire procedure. We later

show that this procedure terminates in poly(n) steps and

when it terminates the top eigenvalue of Σ(S,μ) is close to

that of Σ.
Theorem I.7 follows easily from Theorem I.5. Let Σ̂k be

the top-k eigenspace of Σ̂ from Theorem I.5. We then have∥∥∥Σ− Σ̂k

∥∥∥
F

(a)

≤
∥∥∥Σ− Σ̂

∥∥∥
F
+

∥∥∥Σ̂− Σ̂k

∥∥∥
F

(b)

≤
∥∥∥Σ− Σ̂

∥∥∥
F
+

∥∥∥Σ̂−Σk

∥∥∥
F

(c)

≤ 2
∥∥∥Σ− Σ̂

∥∥∥
F
+ ‖Σ−Σk‖F

(d)

≤ ‖Σ−Σk‖F +O
(√

η log n
)
‖Σ‖2.

(a), (c) follow from triangle inequality, (b) follows from the

fact that Σ̂k is the best rank-k approximation and (d) from

the guarantees of Theorem I.5.

Finally we outline the application to agnostic ICA. The

algorithm from [20]. Proceeds by first estimating the mean

and covariance, in order to make the underlying distribution

isotropic. Here we estimate the covariance matrix Σ by

Σ̂ and use it to determine a new isotropic transformation

Σ̂
− 1

2 . Since our agnostic SVD algorithm gives a guarantee

of ‖Σ − Σ̃‖F ≤ O(
√
ν log n)‖Σ‖2, the isotropic transfor-

mation results in a guarantee of

‖Σ̂−
1
2ΣΣ̂

− 1
2−I‖2 ≤ O(

√
η log n)

‖Σ‖2
‖Σ−1‖2

= O(
√
η log nκ2).

Next the algorithm estimates a weighted covariance matrix

W with the weight of a point x proportional to cos(uTx )
for u chosen from a Gaussian distribution; it computes

the SVD of W . For this we use our algorithm again

(the weights are applied individually to each sample). The

main guarantee is that the eigenvectors of this weighted

covariance approximate the columns of A. This relies on the

maximum eigenvalue gap of W being large, and it has to

be approximated to within additive error ε = O(1/(log n)3).
Theorem I.7 implies that the additional error in eigenvalues

is bounded by O(
√
η log n)‖Σ‖2, and therefore it suffices

to have
√
η log n < c/(log n)3 for a sufficiently small

constant c that depends only on the cumulant and moment

bound assumptions (i.e., Δ,M ). Thus, if suffices to have

η < ε/2 ≤ c(log n)−7.

A. Lower Bounds: Observation I.4

In this section we will show the lower bounds stated in

Observation I.4. For Gaussian distributions, this is a special

case of a theorem proved in [40]. We reproduce the relevant

part here for completeness. We will show that there are

distributions D1 = N(μ1, σ
2I ),D2 = N(μ2, σ

2I ) and

distributions Q1, Q2 such that ‖μ1 − μ2‖2 = Ω(ησ) and

Dη = (1− η)D1 + ηQ1 = (1− η)D2 + ηQ2. (4)

So, given Dη , no algorithm can distinguish between D1,D2.

Let φ1 be p.d.f of D1 and φ2 be the p.d.f of D2. Let μ1,μ2

be such that the total variation distance between D1,D2 is

1

2

∫
|φ1 − φ2|dx =

η

1− η
.

By a standard inequality for the total variation distance of

Gaussian distributions, this implies that ‖μ1−μ2‖2 ≥ 2ησ
1−η .

Let Q1 be the distribution with p.d.f 1−η
η (φ2 − φ1)1φ2≥φ1

and Q2 be the distribution with p.d.f 1−η
η (φ1 − φ2)1φ1≥φ2

.

It is now easy to verify that Equation 4 is satisfied. This

proves item one of Observation I.4.

For the distributions with bounded fourth moments, con-

sider the following two one-dimensional distributions. D1

is supported on two points {−σ, σ} with the corresponding

probabilities {1/2, 1/2}. D2 is supported on three points

{−σ, σ, σ/η1/4} with probabilities {(1−η)/2, (1−η)/2, η}
respectively. Let η ≤ 1/4. It is easy to check that both D1

and D2 have bounded fourth moments with the constant

C4 = 8. Furthermore, D2 can be obtained from D1 by

adding η fraction of noise points. So no algorithm can

distinguish between the two distributions. Since their means

differ by η3/4σ, no algorithm can get an estimate better than

this.
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We will now show that the geometric median:

argmin
y

∑
i

‖x i − y‖2

has a
√
n dependence on the dimension. We show this in

the Gaussian case even if we have access to the whole

distribution, but with η fraction of noise points placed all

at a single point far away from most of the Gaussian points.

Proposition II.1 (Geometric Median). Let D = N(0,Σ)
be a distribution with diagonal covariance matrix Σ whose
variance along the coordinate direction e1 is zero, and equal
to 1 in all the other coordinate directions. Assume there is
an η fraction of noise at a distance a = n along e1. Let

t0 = argmin
t
(1−η)Ex∼D

(√
t2 + x2

2 + ...+ x2
n

)
+η(a−t).

(5)

Then, t = Ω(η
√
n).

Proof: We have that at the minimizer t0, the derivative

with respect to t is zero. Therefore, we should have

Ex∼D
t0√

t20 + x2
2 + ...+ x2

n

=
η

1− η
.

Consider f(t) = Ex∼D t√
t2+x2

2+...+x2
n

. It is clear from

Equation 5 that t0 > 0. We claim that if t = αη
√
n for

a small enough constant α, then f(t) ≤ η
1−η . Suppose

t1 = αη
√
n. Since x ∼ D, ‖x‖22 ≥ n/2 with exponential

probability. Therefore,

f(t1) ≤ Ex∼D
t1√

t21 + n/2

≤ t1
√
2π√

t21 + n/2
≤ αη

√
2π.

The claim, and hence the proof follows.

B. Algorithms

Our algorithms are based on outlier removal and SVD.

To simplify the proofs, we use new samples for each step of

the algorithm. The total sample complexity is given in the

theorems.

1) Outlier Removal: For outlier removal, we use one of

the following two simple routines. The first, which we call

OutlierDamping, returns a vector of positive weights, one

for each sample point.

Algorithm 1: OUTLIERDAMPING(S)

Input: S ⊂ R
n with |S| = m

Output: S ⊂ R
n,w = (w1, ..., wm) ∈ R

m

1) if n = 1:

Return (S,−1).

2) Let aaa be the coordinate-wise median of S. Let

s2 = C Tr(Σ). Estimate Tr(Σ) by estimating

1d variance along n orthogonal directions, see

Section II-D.

3) Set wi = exp
(
−‖x i−aaa‖22

s2

)
for every x i ∈ S.

4) Return (S,w).

The second procedure for outlier removal returns a subset

of points. It will be convenient to view this as a 0/1
weighting of the point set. We call this procedure Out-
lierTruncation.

Algorithm 2: OUTLIERTRUNCATION(S, η)

Input: S ⊂ R
n, η ∈ [0, 1]

Output: S̃ ⊂ S,w = 1 ∈ R
m

1) if n = 1:

Let [t1, t2] be the smallest interval containing (1−
η − ε)(1 − η) fraction of the points, S̃ ← S ∩
[t1, t2]. Return (S̃, 1).

2) for i = 1...n

a) Let Pei

(
S̃
)

be the projection of S̃ along

i’th coordinate direction. Let [t1, t2] be the

smallest interval containing (1−η−ε)(1−η)
fraction of the points.

b) Let ai = mean{Pei

(
S̃
)
← S ∩ [t1, t2].}

3) Let aaa = (a1, ..., an)
4) Let B(r,aaa) = ball of minimum radius r centered

at aaa that contains (1 − η − ε)(1 − η) fraction of

S.

5) S̃ ← S ∩B(r,aaa). Return (S̃,1).

2) Main Algorithm: We are now ready to state the main

algorithm for agnostic mean estimation. It uses one of

the above outlier removal procedures and assumes that the

output of the procedure is a weighting.

Algorithm 3: AGNOSTICMEAN(S)

Input: S ⊂ R
n, and a routine OUTLIERREMOVAL(·).

Output: μ̂ ∈ R
n.

1) Let (S̃,w) = OUTLIERREMOVAL(S) .

2) if n = 1:

a) if w = −1, Return median(S̃). //Gaussian

case

b) else Return mean(S̃). //General case

3) Let Σ
˜S,w be the weighted covariance matrix of

S̃ with weights w , and V be the span of the top
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n/2 principal components of Σ
˜S,w , and W be its

complement.

4) Set S1 := PV (S) where PV is the projection

operation on to V .

5) Let μ̂V := AGNOSTICMEAN(S1) and μ̂W :=
mean(PW S̃).

6) Let μ̂ ∈ R
n be such that PV μ̂ = μ̂V and

PW μ̂ = μ̂W .
7) Return μ̂.

3) Estimation of the Covariance Matrix and Operator
Norm: The algorithm for estimating the covariance matrix

calls AGNOSTICMEAN on xxT .

Algorithm 4: COVARIANCEESTIMATION(S)

Input: S ⊂ R
n, η ∈ R

Output: n× n matrix Σ̂

1) x ′i =
x i−x i+m/2√

2
for i ∈ {1, ..., |S|/2}

2) Let S(2) = {x ′ix ′i| i = 1, ...,m/2}
3) Run the mean estimation algorithm on S(2),

where elements of S(2) are viewed as vectors in

R
n2

. Let the output be Σ̂.

4) Return Σ̂.

The algorithm for estimating ‖Σ‖2, is based on iteratively

truncating the samples along the direction of top variance.

Algorithm 5: AGNOSTICOPERATORNORM(S)

Input: S ⊂ R
n, η ∈ [0, 1], γ ∈ R

Output: σ2 ∈ R>0.

1) Let S̃ = SAFEOUTLIERTRUNCATION(S, η, γ).
2) Do the following O(n log2/γ n

η ) times

3) Let Σ0(S̃) :=
1

|˜S|
∑

i∈˜S xxT .

4) Find v , the top eigenvector of Σ0(S̃), and its

corresponding eigenvalue σ2.

5) Estimate up to 1 ± cη factor the variance of D
along v and denote it by σ̂2

v .

6) if σ2 ≤ (1 + c3η log
2/γ n

η )σ̂
2
v

Return σ2.

7) Remove all points x ∈ S̃ such that |xTv | >
c2σ̂v log1/γ n

η

2 .

8) Go to Step (3).

Algorithm 6: SAFEOUTLIERTRUNCATION(S, η, γ)

Input: S ⊂ R
n, η ∈ [0, 1], γ ∈ R

Output: S̃ ⊂ S

1) Let t =
∑n

i=1 σ̂
2
ei be the sum of estimated

variances of D in n orthogonal directions.

2) Let B(c
√
t log1/γ n

η ,0) be the ball of radius

c
√
t log1/γ n

η centered at 0.

3) S̃ ← S ∩B(c
√
t log1/γ n

η ,0). Return S̃.

C. Sample Complexity

At various points in the analysis, to bound the sample

complexity we will have to show that the estimates computed

from samples are close to their expectations. We will use the

following two results. Firstly, as an immediate corollary of

matrix Bernstien for rectangular matrices (see Theorem 1.6
in [46]), we get the following concentration result for the

sample mean and sample covariance.

Lemma II.2. Consider a distribution in R
n with covariance

matrix Σ and supported in some Euclidean ball whose
radius we denote is

√
R‖Σ‖, for some R ∈ R. Let

ε ∈ (0, 1). Then the following holds with probability at least
1− 1/ poly(n): If N ≥ R logn

ε2 then

‖μ̂− μ‖ ≤ ε
√
‖Σ‖

and
‖Σ̂−Σ‖ ≤ ε‖Σ‖.

Here μ̂ and Σ̂ are sample mean and sample covariance
matrix.

Secondly, the functions we estimate will be integrals of

low-degree polynomials (degree d at most 4) restricted to

intervals and/or balls. These functions viewed as binary

concepts have small VC-dimension, O(nd) where n is the

dimension of space and d is the degree of the polynomial.

We use this to bound the error of estimating integrals via

samples, and we can make the error smaller than any inverse

polynomial using a poly(n) size sample.

Proposition II.3. Let F be a class of real-valued functions
from R

n to [−R,R]. Let CF be the corresponding class
of binary concepts, i.e., for each f ∈ F , we consider the
concepts ht(x) = 1 if f(x) ≥ t and zero otherwise. Suppose
the VC-dimension of CF is d. Then, for any f ∈ F , and
any distribution D over R

n, an iid sample S of size |S| ≥
8
ε2 (d log(1/ε) + log(1/δ)), with probability at least 1 − δ
satisfies ∣∣∣∣∣Ex∼D(f(x))− 1

|S|
∑
x∈S

f(x)

∣∣∣∣∣ ≤ 2εR.

Proof: By the VC theorem, for any concept in CF , the

bound on the size of the sample ensures that with probability
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at least 1− δ and any t,∣∣∣∣Pr(f(x) ≥ t)− |{x ∈ S : f(x) ≥ t}|
|S|

∣∣∣∣ ≤ ε.

Noting that Ex∼D(f(x)) =
∫ R

−R
Pr(f(x) ≥ t) dt, we get

the claimed bound.

D. 1d Estimation

In this section, we give a brief descriptions of the al-

gorithm that we can use to find mean and the variance in

one dimension. We will first consider the case when D =
N(μ, σ2). Suppose we are given samples S = {x1, ..., xm}
from Dη , and furthermore that η < 1/2.1 (a constant strictly

less than 1/2 suffices). We can then estimate the mean by the

median xmedian of S. We can prove the following statement

Lemma II.4. Let D = N(0, σ2) be a one dimensional
Gaussian distribution. If m = O

(
logn
ε2

)
, and we are

given x1, ..., xm ∼ Dη . With probability 1− 1/ poly(n) the
following hold.
Mean: The median xmed = mediani{xi} satisfies
|xmedian| = O(η + ε)σ with probability 1− 1/ poly(n).
Variance: There is an algorithm that computes in polyno-
mial time σ̂2 such that

∣∣σ̂2 − σ2
∣∣ = O(η + ε)σ2.

The proof follows from Hoeffding’s inequality and the fact

that Φ−1(1/2 + η + ε) = O(η + ε)σ when η + ε < 1/2.05.

Here Φ is the c.d.f. of a standard normal variable. We use

a very similar idea to estimate the variance in this case. We

look at a another quantile of S in addition to the median

and the estimate is obtained by using both the quantiles.

In the case when D just has bounded fourth moments,

median cannot be used as an estimate. In fact, there are

distributions (Bernoulli) for which median does poorly even

when there is no noise. Therefore, we need a different

method in this case. Suppose |S| = Ω
(

logn+log 1/ε
ε2

)
.

We consider the interval of minimum length that contains

(1−η−ε)(1−η) fraction of the sample points. Our estimator

μ̂ for the mean then is sample mean of all the points that

lie in this interval. To estimate the variance we compute the

sample variance of points in this interval. We can show the

following guarantee for mean estimation

Lemma II.5. If x ∼ D has bounded fourth moments with
constant C4, and (x − μ)2 has bounded fourth moments
with constant C4,2. Let S be samples from Dη such that
|S| = Ω

(
logn+log 1/ε

ε2

)
. With probability 1 − 1/ poly(n)

the following hold.
Mean: The mean estimator as defined above satisfies
|μ̂− μ| = O

(
C

1/4
4 (η + ε)3/4

)
σ.

Variance: Variance estimator σ̂2 as defined above satisfies∣∣σ̂2 − σ2
∣∣ = O

(
C

1/4
4,2 (η + ε)3/4C

1/2
4 σ

)
.

E. Proof of the Main Theorem

Here we give an outline of the proof of the main theorem.

Since the high level structure for both the normal distribution

and distribution with bounded fourth moments are same, we

will focus on the normal case. We therefore assume D =
N(μ,Σ) in this section. Let s2 := 1

ε1
Tr(Σ) and ε2 :=

‖aaa‖22
η2s2 . We can estimate Tr(Σ) by estimating (1 dimensional)

variances along n orthogonal directions, see Section II-D.

Note that we can arrange 0 < ε1, ε2 < 1 to be small enough

constants. Let aaa be the coordinate-wise median, we can show

‖aaa‖22 ≤ Cη2 Tr(Σ) with probability 1 − 1/ poly(n). We

weight every point x by wx = exp(−‖x−aaa‖2s2 ). Let S =
{x 1, ...,xm},x i ∼ Dη be the sample we get. Let S =
SG ∪ SN be the Gaussian and the noise points repectively,

with |SN | = ηm. For a set T ⊂ R
n, let

μT,w :=
1

m

∑
i∈T

wx i
x i and

ΣT,w :=
1

|T |
∑
i∈T

wi(x i − μT,w )(x i − μT,w )
T

We use the above notation for T = SG and T = SN . By

an abuse of notation, when T = G, we mean the population

version of the above quantities:

μG,w := Exwxx and ΣG,w := Exwx (x − μG,w )(x i − μG,w )
T .

Note that

μS,w = (1− η)μSG,w + ημSN ,w .

We consider the matrix ΣS,w

ΣS,w =
1

m

∑
i

wx i
(x i − μS,w )(x i − μS,w )

T

= (1− η)ΣSG,w + ηΣSN ,w

+ η(1− η)(μSN ,w − μSG,w )(μSN ,w − μSG,w )
T .

We first show that the covariance matrix doesn’t change

much because of outlier damping. For symmetric matrices

A and B , by A � B we mean that B − A is a positive

semidefinite matrix.

Lemma II.6. We have(
e−η2ε2

1 + ε1
− η2ε2e

2ε1

)
Σ � ΣG,w � eε1Σ

and ‖μG,w − μ‖ = O
(
η
√‖Σ‖) .

It is important to note that when Σ = σ2I is a multiple

of identity, then ΣG,w will also be a multiple of I . By

Lemma II.2, if we take m = O(n logn
ε2 ) samples, we will

have

(1− ε)ΣG,w � ΣSG,w � (1 + ε)ΣG,w . (6)
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The next step is to give guarantees for one level of the

projection (one iteration of Algorithm 3). Suppose, we have

αΣ � ΣSG,w � βΣ

for some α, β > 0. By an argument similar to the one

sketched in Section II, we can prove

Lemma II.7. We will use the notation as defined above.
Let W be the bottom n/2 principal components of the
covariance matrix ΣS,w . We have

‖ηPW δμ‖2 ≤ 2η ((β + Cη)‖Σ‖2 − α‖Σ‖min) ,

where ‖Σ‖min denotes the least eigenvalue of Σ and δμ :=
μSN ,w − μSG,w .

By an inductive application of Lemma II.7, we get the

following theorem giving a bound on ‖μ̂‖.
Theorem II.8. On input S and the routine
OUTLIERDAMPING(·), AGNOSTICMEAN outputs μ̂
satisfying

‖μ̂−μ‖2 ≤ O
(
(βη + η2 + ε2)‖Σ‖2 − αη‖Σ‖min

)
(1+log n).

Lemma II.6 combined with Equation 6 and Theorem II.8

proves Theorem I.1. We get a better dependence on η when

Σ = σ2I because we can take α = β in this case. This

would lead to the cancellation of the leading term in the

bound in Theorem II.8 as ‖Σ‖2 = ‖Σ‖min.

OPEN QUESTIONS

An immediate open question is whether the our analysis

of the mean estimation algorithm is tight and the
√
log n is

avoidable. For special distributions including Gaussians, [44]

give an algorithm with higher sample complexity and error

η
√

log 1
η rather than η

√
log n or

√
η log n as in Theorem I.1.

An open question is to give an O(η) approximation. For the

more general distributions considered here, the dependence

on η must grow as at least η3/4; it is open to find an

algorithm that achieves O(η3/4) error (our guarantee for the

general setting has error O(
√
η log n)). Other open problems

include agnostic learning of a mixture of two arbitrary

Gaussians and agnostic sparse recovery.
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