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Abstract—We study high-dimensional distribution
learning in an agnostic setting where an adversary is
allowed to arbitrarily corrupt an epsilon fraction of the
samples. Such questions have a rich history spanning
statistics, machine learning and theoretical computer sci-
ence. Even in the most basic settings, the only known
approaches are either computationally inefficient or lose
dimension dependent factors in their error guarantees.
This raises the following question: Is high-dimensional ag-
nostic distribution learning even possible, algorithmically?

In this work, we obtain the first computationally effi-
cient algorithms for agnostically learning several funda-
mental classes of high-dimensional distributions: (1) a sin-
gle Gaussian, (2) a product distribution on the hypercube,
(3) mixtures of two product distributions (under a natural
balancedness condition), and (4) mixtures of k Gaussians
with identical spherical covariances. All our algorithms
achieve error that is independent of the dimension, and
in many cases depends nearly-linearly on the fraction of
adversarially corrupted samples. Moreover, we develop a
general recipe for detecting and correcting corruptions in
high-dimensions, that may be applicable to many other
problems.

Keywords-unsupervised learning, statistical learning,
density estimation robust algorithm

I. INTRODUCTION

A. Background

A central goal of machine learning is to design

efficient algorithms for fitting a model to a collection of

observations. In recent years, there has been consider-

able progress on a variety of problems in this domain,

including algorithms with provable guarantees for learn-

ing mixture models [1], [2], [3], [4], [5], phylogenetic

trees [6], [7], HMMs [8], topic models [9], [10], and

independent component analysis [11]. These algorithms

crucially rely on the assumption that the observations

were actually generated by a model in the family.

However, this simplifying assumption is not meant to be

exactly true, and it is an important direction to explore

what happens when it holds only in an approximate

sense. In this work, we study the following family of

questions:

Question I.1. Let D be a family of distributions on
R

d. Suppose we are given samples generated from the
following process: First, m samples are drawn from
some unknown distribution P in D. Then, an adversary
is allowed to arbitrarily corrupt an ε-fraction of the
samples. Can we efficiently find a distribution P ′ in D
that is f(ε, d)-close, in total variation distance, to P?

This is a natural formalization of the problem of

designing robust and efficient algorithms for distribu-

tion estimation. We refer to it as (proper) agnostic
distribution learning and we refer to the samples as

being ε-corrupted. This family of problems has its roots

in many fields, including statistics, machine learning,

and theoretical computer science. Within computational

learning theory, it is related to the agnostic learning

model of Haussler [12] and Kearns et al. [13], where

the goal is to learn a labeling function whose agreement

with some underlying target function is close to the best

possible, among all functions in some given class. In

the even more challenging malicious noise model [14],

[15], an adversary is allowed to corrupt both the labels

and the samples. A major difference with our setting is

that these models apply to supervised learning problems,

while here we will work in an unsupervised setting.

Within statistics and machine learning, inference

problems like Question I.1 are often termed “estimation

under model misspecification”. The usual prescription

is to use the maximum likelihood estimator [16], [17],

which is unfortunately hard to compute in general. Even
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ignoring computational considerations, the maximum

likelihood estimator is only guaranteed to converge to

the distribution P ′ in D that is closest (in Kullback-

Leibler divergence) to the distribution from which the

observations are generated. This is problematic because

such a distribution is not necessarily close to P at all.

A branch of statistics – called robust statistics [18],

[19] – aims to tackle questions like the one above.

The usual formalization is in terms of breakdown point,

which (informally) is the fraction of observations that an

adversary would need to control to be able to completely

corrupt an estimator. In low-dimensions, this leads to the

prescription that one should use the empirical median

instead of the empirical mean to robustly estimate the

mean of a distribution, and interquartile range for robust

estimates of the variance. In high-dimensions, the Tukey

depth [20] is a high-dimensional analogue of the median

that, although provably robust, is hard to compute [21].

Similar hardness results have been shown [22], [23] for

essentially all known estimators in robust statistics.

Is high-dimensional agnostic distribution learning
even possible, algorithmically? The difficulty is that

corruptions are often hard to detect in high dimensions,

and could bias the natural estimator by dimension-

dependent factors. In this work, we study agnostic dis-

tribution learning for a number of fundamental classes

of distributions: (1) a single Gaussian, (2) a product dis-

tribution on the hypercube, (3) mixtures of two product

distributions (under a natural balancedness condition),

and (4) mixtures of k Gaussians with identical spherical

covariances. Prior to our work, all known efficient

algorithms (e.g. [24], [25]) for these classes required the

error guarantee, f(ε, d), to depend polynomially in the

dimension d. Hence, previous efficient estimators could

only tolerate at most a 1/ poly(d) fraction of errors. In

this work, we obtain the first efficient algorithms for the

aforementioned problems, where f(ε, d) is completely
independent of d and depends polynomially (often,

nearly linearly) in the fraction ε of corrupted samples.

Our work is just a first step in this direction, and there

are many exciting questions left to explore.

B. Our Techniques

All of our algorithms are based on a common recipe.

The first question to address is the following: Even if

we were given a candidate hypothesis P ′, how could we

test if it is ε-close in total variation distance to P ? The

usual way to certify closeness is to exhibit a coupling

between P and P ′ that marginally samples from both

distributions, where the samples produced from each

agree with probability 1 − ε. However, we have no

control over the process by which samples are generated

from P , in order to produce such a coupling. And

even then, the way that an adversary decides to corrupt

samples can introduce complex statistical dependencies.

We circumvent this issue by working with an ap-

propriate notion of parameter distance, which we use

as a proxy for the total variation distance between

two distributions in the class D. Various notions of

parameter distance underly several efficient algorithms

for distribution learning in the following sense. If θ and

θ′ are two sets of parameters that define distributions

Pθ and Pθ′ in a given class D, a learning algorithm

often relies on establishing the following type of rela-

tion1 between dTV(Pθ, Pθ′) and the parameter distance

dp(θ, θ
′):

poly(dp(θ, θ
′), 1/d) ≤ dTV(Pθ, Pθ′) ≤ poly(dp(θ, θ

′), d) .
(1)

Unfortunately, in our agnostic setting, we cannot afford

for (1) to depend on the dimension d at all. Any such

dependence would appear in the error guarantee of our

algorithm. Instead, the starting point of our algorithms

is a notion of parameter distance that satisfies

poly(dp(θ, θ
′)) ≤ dTV(Pθ, Pθ′) ≤ poly(dp(θ, θ

′)) (2)

which allows us to reformulate our goal of designing

robust estimators, with distribution-independent error

guarantees, as the goal of robustly estimating θ accord-

ing to dp. In several settings, the choice of the parameter

distance is rather straightforward. It is often the case that

some variant of the �2-distance between the parameters

works2.

Given our notion of parameter distance satisfying (2),

our main ingredient is an efficient method for robustly

estimating the parameters. We provide two algorithmic

approaches which are based on similar principles. Our

first approach is faster, requiring only approximate

eigenvalue computations. Our second approach relies on

convex programming and achieves much better sample

complexity, in some cases matching the information-

theoretic limit. Notably, either approach can be used

to give all of our concrete learning applications with

nearly identical error guarantees. In what follows, we

specialize to the problem of robustly learning the mean

μ of a Gaussian whose covariance is promised to be

the identity, which we will use to illustrate how both

approaches operate. We emphasize that what is needed

1For example, the work of Kalai et al. [2] can be reformulated as
showing that for any pair of mixtures of two Gaussians (with suitably
bounded parameters), the following quantities are polynomially re-
lated: (1) discrepancy in their low-order moments, (2) their parameter
distance, and (3) their total variation distance. This ensures that any
candidate set of parameters that produce almost identical moments
must itself result in a distribution that is close in total variation
distance.

2This discussion already points to why it may be challenging to
design agnostic algorithms for mixtures of arbitrary Gaussians or
arbitrary product distributions: It is not clear what notion of parameter
distance is polynomially related to the total variation distance between
two such mixtures, without any dependence on d.
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to learn the parameters in more general settings requires

many additional ideas.

Our first algorithmic approach is an iterative greedy

method that, in each iteration, filters out some of the

corrupted samples. Given a set of samples S′ that

contains a set S of uncorrupted samples, an iteration

of our algorithm either returns the sample mean of S′

or finds a filter that allows us to efficiently compute a

set S′′ ⊂ S′ that is much closer to S. Note the sample

mean μ̂ =
∑N

i=1(1/N)Xi (even after we remove points

that are obviously outliers) can be Ω(ε
√
d)-far from the

true mean in �2-distance. The filter approach shows that

either the sample mean is already a good estimate for μ
or else there is an elementary spectral test that rejects

some of the corrupted points and almost none of the

uncorrupted ones. The crucial observation is that if a

small number of corrupted points are responsible for a

large change in the sample mean, it must be the case

that many of the error points are very far from the mean

in some particular direction. Thus, we obtain our filter

by computing the top absolute eigenvalue of a modified

sample covariance matrix.

Our second algorithmic approach relies on convex

programming. Here, instead of rejecting corrupted sam-

ples, we compute appropriate weights wi for the samples

Xi, so that the weighted empirical average μ̂w =∑N
i=1 wiXi is close to μ. We work with the convex

set:

Cδ =

{
wi : 0 ≤ wi ≤ 1

(1− ε)N
,

N∑
i=1

wi = 1,∥∥∥∥ N∑
i=1

wi(Xi − μ)(Xi − μ)T − I

∥∥∥∥
2

≤ δ

}
.

We prove that any set of weights in Cδ yields a good

estimate μ̂w =
∑N

i=1 wiXi in the obvious way. The

catch is that the set Cδ is defined based on μ, which
is unknown. Nevertheless, it turns out that we can use

the same types of spectral arguments that underly the

filtering approach to design an approximate separation

oracle for Cδ . Combined with standard results in con-

vex optimization, this yields an algorithm for robustly

estimating μ.

The third and final ingredient are some new con-

centration bounds. In both of the approaches above,

at best we are hoping that we can remove all of

the corrupted points and be left with only the uncor-

rupted ones, and then use standard estimators (e.g.,

the empirical average) on them. However, an adversary

could have removed an ε-fraction of the samples in a

way that biases the empirical average of the remaining

uncorrupted samples. What we need are concentration

bounds that show for sufficiently large N , for samples

X1, X2, . . . , XN from a Gaussian with mean μ and

identity covariance, that every (1− ε)N set of samples

produces a good estimate for μ. In some cases, we

can derive such concentration bounds by appealing to

known concentration inequalities and taking a union

bound. However, in other cases (e.g., concentration

bounds for degree two polynomials of Gaussian random

variables) the existing concentration bounds are not

strong enough, and we need other arguments to prove

that every set of (1 − ε)N samples produces a good

estimate. Also in Section VIII we explain why some

other natural strategies for robust distribution learning

obtain poor guarantees in high-dimensions.

C. Our Results

We give the first efficient algorithms for agnosti-

cally learning several important distribution classes with

dimension-independent error guarantees. Our first main

result is for a single arbitrary Gaussian with mean

μ and covariance Σ, which we denote by N (μ,Σ).
In the previous subsection, we described our convex

programming approach for learning the mean vector

when the covariance is promised to be the identity. A

technically more involved version of the technique can

handle the case of zero mean and unknown covariance.

More specifically, consider the following convex set,

where Σ is the unknown covariance matrix:

Cδ =

{
wi : 0 ≤ wi ≤ 1

(1− ε)N
,

N∑
i=1

wi = 1,∥∥∥∥Σ−1/2

(
N∑
i=1

wiXiX
T
i

)
Σ−1/2 − I

∥∥∥∥
F

≤ δ

}
.

We design an approximate separation oracle for this un-

known convex set, by analyzing the spectral properties

of the fourth moment tensor of a Gaussian. Combining

these two intermediate results, we obtain our first main

result (below). Throughout this paper, we will abuse

notation and write N ≥ Ω̃(f(d, ε, τ)) when referring

to our sample complexity, to signify that our algorithm

works if N ≥ Cf(d, ε, τ)polylog(f(d, ε, τ)) for a large

enough universal constant C.

Theorem I.2. Let μ,Σ be arbitrary and unknown, and
let ε, τ > 0. There is a polynomial time algorithm
which given ε, τ, and an ε-corrupted set of N samples
from N (μ,Σ) with N ≥ Ω̃

(
d3 log2(1/τ)

ε2

)
, produces

μ̂ and Σ̂ so that with probability 1 − τ we have
dTV(N (μ,Σ),N (μ̂, Σ̂)) ≤ O(ε log3/2(1/ε)).

We can alternatively establish Theorem I.2 with a

slightly worse sample complexity via our filtering tech-

nique. We defer the details to the full version.

Our second agnostic learning result is for a product

distribution on the hypercube – arguably the most

fundamental discrete high-dimensional distribution. We

solve this problem using our filter technique, though our

convex programming approach would also yield similar
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results. We start by analyzing the balanced case, when

no coordinate is very close to being deterministic. This

special case is interesting in its own right and captures

the essential ideas of our more involved analysis for the

general case. The reason is that, for two balanced prod-

uct distributions, the �2-distance between their means

is equivalent to their total variation distance (up to

a constant factor). This leads to a clean and elegant

presentation of our spectral arguments. For an arbitrary

product distribution, we handle the coordinates that are

essentially deterministic separately. Moreover, we use

the χ2-distance between the means as the parameter

distance and, as a consequence, we need to apply

the appropriate corrections to the covariance matrix.

Formally, we prove:

Theorem I.3. Let Π be an unknown binary product
distribution, and let ε, τ > 0. There is a polynomial time
algorithm which given ε, τ, and an ε-corrupted set of
N samples from Π with N ≥ Ω

(
d6 log(1/τ)

ε3

)
, produces

a binary product distribution Π̃ so that with probability
1− τ , we have dTV(Π, Π̃) ≤ O(

√
ε log(1/ε)).

For the sake of simplicity in the presentation, we did

not make an effort to optimize the sample complexity of

our robust estimators. We also remark that for the case

of balanced binary product distributions, our algorithm

achieves an error of O(ε
√
log(1/ε)).

Interestingly enough, the above two distribution

classes are trivial to learn in the noiseless case, but

in the agnostic setting the learning problem turns out

to be surprisingly challenging. Using additional ideas,

we are able to generalize our agnostic learning algo-

rithms to mixtures of the above classes under some

natural conditions. We note that learning mixtures of the

above families is rather non-trivial even in the noiseless

case. First, we study 2-mixtures of c-balanced products,

which stipulates that the coordinates of the mean vector

of each component are in the range (c, 1−c). We prove:

Theorem I.4 (informal). Let Π be an unknown mixture
of two c-balanced binary product distribution, and let
ε, τ > 0. There is a polynomial time algorithm which
given ε, τ, and an ε-corrupted set of N samples from
Π with N ≥ Ω

(
d4 log(1/τ)

ε13/6

)
, produces a mixture of two

binary product distributions Π̃ so that with probability
1− τ , we have dTV(Π, Π̃) ≤ Oc(ε

1/6).

This generalizes the algorithm of Freund and Man-

sour [33] to the agnostic setting. An interesting open

question is to improve the ε-dependence in the above

bound to (nearly) linear, or to remove the assumption

of balancedness and obtain an agnostic algorithm for

mixtures of two arbitrary product distributions.

Finally, we give an agnostic learning algorithm for

mixtures of spherical Gaussians.

Theorem I.5. Let M be a mixture of k Gaussians with
spherical covariances, and let ε, τ > 0 and k be a
constant. There is a polynomial time (for constant k)
algorithm which given ε, τ , and an ε-corrupted set of N
samples from M with N ≥ poly(k, d, 1/ε, log(1/τ)),
outputs an M′ so that with probability 1− τ , we have
dTV(M,M′) ≤ Õ(poly(k) · √ε).

Our agnostic algorithms for (mixtures of) balanced

product distributions and for (mixtures of) spherical

Gaussians are conceptually related, since in both cases

the goal is to robustly learn the means of each compo-

nent with respect to �2-distance.

In total, these results give new robust and compu-

tationally efficient estimators for several well-studied

distribution learning problems that can tolerate a con-

stant fraction of errors independent of the dimension.

This points to an interesting new direction of making

robust statistics algorithmic. The general recipe we have

developed here gives us reason to be optimistic about

many other problems in this domain.

D. Discussion and Related Work

Our results fit in the framework of density estimation,

a classical problem in statistics with a rich history and

extensive literature (see e.g., [27], [28], [29], [30], [31]).

During the past couple of decades, a body of work in

theoretical computer science has been studying these

questions from a computational complexity perspective;

see e.g., [32], [33], [34], [35], [36], [2], [3], [37], [38],

[39], [40], [41], [42], [43]. Efficient agnostic learning

algorithms have been given for various one-dimensional

distribution classes, but very little is known in the high-

dimensional setting that we study here.

Question I.1 also resembles learning in the presence

of malicious errors [14], [15]. There, an algorithm is

given samples from a distribution along with their labels

according to an unknown target function. The adversary

is allowed to corrupt an ε-fraction of both the samples

and their labels. A sequence of works studied this

problem for the class of halfspaces [44], [45], [46] in the

setting where the underlying distribution is a Gaussian,

culminating in the work of Awasthi et al. [47], who

gave an efficient algorithm that finds a halfspace with

agreement O(ε). Our work and theirs are not directly

comparable, since we work in an unsupervised setting.

Moreover, their algorithms need to assume that the

underlying Gaussian distribution is in isotropic position.

In fact, our results are complementary to theirs: One

could use our algorithms (on the unlabeled examples)

to learn an affine transformation that puts the under-

lying Gaussian distribution in approximately isotropic
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position, even in the presence of malicious errors, so

that one can then directly apply the [47] algorithm.

Another connection is to the work on robust principal

component analysis (PCA). PCA is a transformation that

(among other things) is often justified as being able to

find the affine transformation Y = Σ−1/2(X − μ) that

would place a collection of Gaussian random variables

in isotropic position. One can think of our results on

agnostically learning a Gaussian as a type of robust PCA

that tolerates gross corruptions, where entire samples

are corrupted. This is different than other variants of the

problem where random sets of coordinates of the points

are corrupted [48], or where the uncorrupted points were

assumed to lie in a low-dimensional subspace to begin

with [49], [50]. Finally, Brubaker [51] studied the prob-

lem of clustering samples from a well-separated mixture

of Gaussians in the presence of adversarial noise. The

goal of [51] was to separate the Gaussian components

from each other, while the adversarial points are allowed

to end up in any of clusters. Our work is orthogonal

to [51], since even if such a clustering is given, the

problem still remains to estimate the parameters of each

component.

E. Comparison with [52]

In concurrent and independent work, Lai, Rao and

Vempala [52] also study high-dimensional agnostic

learning. Their results work for more general types

of distributions, but our guarantees are stronger when

learning a Gaussian. Our results are similar when the

mean is unknown and the covariance is promised to be

the identity. But when the covariance is also unknown,

their algorithm estimates the mean and covariance to

within error O(
√

ε‖Σ‖2 log d) and O(
√
ε log d‖Σ‖2),

measured in �2 norm and Frobenius norm respectively.

However, such guarantees do not directly imply bounds

on the total variation distance (which is our main focus),

because one needs to estimate the parameters with

respect to Mahalanobis distance. In contrast, by virtue

of being close in total variation distance, our estimates

for the mean and covariance are within Õ(ε
√‖Σ‖2) and

Õ(ε‖Σ‖2) of the true values, again measured in �2 norm

and Frobenius norm respectively. An interesting open

question is to bridge these two works – what are the

most general families of distributions for which one can

obtain nearly optimal agnostic learning guarantees?

II. PRELIMINARIES

In this section, we will introduce some basic ter-

minology that we will use throughout. Recall that

our adversary is allowed to observe N samples

X1, X2, . . . XN and then corrupt an ε-fraction of them

arbitrarily.

Definition II.1. Let G ⊆ [N ] denote the indices of the
uncorrupted samples, and we let E ⊆ [N ] denote the
indices of the corrupted samples.

An important algorithmic object for us will be the

following set, which is designed to capture the notion

of selecting a set of (1−ε)N samples from N samples:

Definition II.2. For any 1
2 > ε > 0 and any integer N ,

let

SN,ε =

{
wi :

N∑
i=1

wi = 1, 0 ≤ wi ≤ 1

(1− ε)N
, ∀i
}

.

Given w ∈ SN,ε we will use the following notation

wg =
∑
i∈G

wi and wb =
∑
i∈E

wi

to denote the total weight on good and bad points

respectively. The following fact is immediate from

|E| ≤ εN and the properties of SN,ε.

Fact II.3. If w ∈ SN,ε and |E| ≤ εN , then wb ≤ 2ε
1−ε .

Moreover, the renormalized weights w′ on good points
given by w′i =

wi

wg
for all i ∈ G, and w′i = 0 otherwise,

satisfy w′ ∈ SN,4ε, provided that ε ≤ 1/6.

III. A GAUSSIAN WITH UNKNOWN MEAN

In this section, we consider the problem of approx-

imating μ given N samples from N (μ, I) in the full

adversary model. Recall that our algorithm is based on

the following convex set.

Cδ = {w ∈ SN,ε :∥∥∥∥ N∑
i=1

wi(Xi − μ)(Xi − μ)T − I

∥∥∥∥
2

≤ δ

}
.

It is not hard to show that Cδ is non-empty for reason-

able values of δ (and we will show this later). Moreover

we will show that for any set of weights w in Cδ ,

the empirical average μ̂ =
∑N

i=1 wiXi will be a good

estimate for μ. The challenge is that since μ itself

is unknown, there is not an obvious way to design a

separation oracle for Cδ even though it is convex. Our

algorithm will run in two basic steps. First, it will run a

very naive outlier detection to remove any points which

are more than O(
√
d) away from the good points. These

points are sufficiently far away that a very basic test

can detect them. Then, with the remaining points, it

will use the approximate separation oracle given below

to approximately optimize with respect to Cδ . It will

then take the outputted set of weights and output the

empirical mean with these weights. We will explain

these steps in detail below.
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Our results will hold under the following determinis-

tic conditions:∥∥∥∥∑
i∈G

wi(Xi − μ)(Xi − μ)T − wgI

∥∥∥∥
2

≤ δ1,

for all w ∈ SN,4ε, and (3)∥∥∥∥∑
i∈G

wi(Xi − μ)

∥∥∥∥
2

≤ δ2,

for all w ∈ SN,4ε . (4)

The first step in our analysis is elementary, and we apply

a naive pruning strategy (based on considering pairwise

distances among the points) to ensure that for all the re-

maining points we have ‖Xi−μ‖ ≤ O
(√

d log(N/τ)
)

.

From this point on, we will assume that this has already

been done and we defer the description of the algorithm

and its analysis to the full version. In the full version,

we give concentration bounds that show that each of

these conditions holds with probability at least 1 − τ

for δ1, δ2 = O(ε
√

log 1/ε) and N = O
(

d+log(1/τ)
min(δ1,δ2)2

)
.

Instead, we focus on how to design an approximate

separation oracle for Cδ which is our main result in the

section. We will also require the following elementary

bound:

Fact III.1. Let μ1, μ2 ∈ R
d be arbitrary. Then

dTV (N (μ1, I),N (μ2, I)) ≤ 1
2‖μ2 − μ1‖2.

Our first step is to show that any set of weights that

does not yield a good estimate for μ cannot be in the

set Cδ:

Lemma III.2. Suppose that (3)-(4) holds. Let δ =
max(δ1, δ2). Let w ∈ SN,ε and set μ̂ =

∑N
i=1 wiXi

and Δ = μ − μ̂. Further, suppose that ‖Δ‖2 ≥ Ω(δ).
Then∥∥∥∥ N∑
i=1

wi(Xi − μ)(Xi − μ)T − I

∥∥∥∥
2

≥ Ω

(‖Δ‖2
ε

)
.

We defer the proof to the full version. As an imme-

diate corollary, we find that any set of weights in Cδ
immediately yields a good estimate for μ:

Corollary III.3. Suppose that (3) and (4) hold. Let w ∈
Cδ for δ = O(ε log 1/ε). Then

‖Δ‖2 ≤ O(ε
√

log 1/ε) .

Our main result in this section is an approximate

separation oracle for Cδ with δ = O(ε log 1/ε).

Theorem III.4. Fix ε > 0, and let δ = O(ε log 1/ε).
Suppose that (3) and (4) hold. Let w∗ denote the weights
which are uniform on the uncorrupted points. Then,
there is a constant c and an algorithm so that:

1) (Completeness) If w = w∗, then it outputs “YES”.

2) (Soundness) If w 
∈ Ccδ , the algorithm outputs a
hyperplane � : RN → R so that �(w) ≥ 0 but
�(w∗) < 0.

These two facts imply that the ellipsoid method with this
separation oracle will terminate in poly(d, 1/ε) steps,
and moreover with high probability output a w′ so that
‖w − w′‖∞ < ε/(N

√
d log(N/τ)), for some w ∈ Ccδ .

Moreover, it will do so in polynomially many iterations.

The separation oracle is given in Algorithm 1.

Algorithm 1 Separation oracle sub-procedure for ag-

nostically learning the mean.

1: function SEPORACLEUNKNOWNMEAN(w)

2: Let μ̂ =
∑N

i=1 wiXi.

3: For i = 1, . . . , N , define Yi = Xi − μ̂.

4: Let λ be the eigenvalue of largest magnitude of

M =
∑N

i=1 wiYiY
T
i − I .

5: Let v be its associated eigenvector.

6: if |λ| < c
2δ then

7: return “YES”.

8: else if λ > c
2δ then

9: return the hyperplane

�(w) =

(
N∑
i=1

wi〈Yi, v〉2 − 1

)
− λ.

10: else
11: return the hyperplane

�(w) = λ−
(

N∑
i=1

wi〈Yi, v〉2 − 1

)
.

Next, we prove correctness for our approximate sep-

aration oracle:

Proof of Theorem III.4: Again, let Δ = μ− μ̂. By

expanding out the formula for M , we get:

N∑
i=1

wiYiY
T
i − I

=
N∑
i=1

wi(Xi − μ)(Xi − μ)T − I −ΔΔT .

Let us now prove completeness.

Claim III.5. Suppose w = w∗. Then ‖M‖2 < c
2δ.

Proof: Recall that w∗ are the weights that are

uniform on the uncorrupted points. Because |E| ≤ 2εN ,

we have that w∗ ∈ SN,ε. We can now use (3) to

conclude that w∗ ∈ Cδ1 . Now, by Corollary III.3 we
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have that ‖Δ‖2 ≤ O(ε
√

log 1/ε). Thus,∥∥∥∥ N∑
i=1

w∗i (Xi − μ)(Xi − μ)T − I −ΔΔT

∥∥∥∥
2

≤
∥∥∥∥ N∑
i=1

w∗i (Xi − μ)(Xi − μ)T − I

∥∥∥∥
2

+ ‖ΔΔT ‖2

<
cδ

2
.

We now turn our attention to soundness.

Claim III.6. Suppose that w 
∈ Ccδ . Then |λ| > c
2δ.

Proof: By the triangle inequality, we have∥∥∥∥ N∑
i=1

wi(Xi − μ)(Xi − μ)T − I −ΔΔT

∥∥∥∥
2

≥
∥∥∥∥ N∑
i=1

wi(Xi − μ)(Xi − μ)T − I

∥∥∥∥
2

− ∥∥ΔΔT
∥∥
2
.

Let us now split into two cases. If ‖Δ‖2 ≤
√
cδ/10,

then the first term above is at least cδ by definition and

we can conclude that |λ| > cδ/2. On the other hand, if

‖Δ‖2 ≥
√
cδ/10, by Lemma III.2, we have that∥∥∥∥ N∑

i=1

wi(Xi − μ)(Xi − μ)T − I −ΔΔT

∥∥∥∥
2

≥ Ω

(‖Δ‖22
ε

)
− ‖Δ‖22 = Ω

(‖Δ‖22
ε

)
(5)

which for sufficiently small ε also yields |λ| > cδ/2.

Now by construction �(w) ≥ 0. The last step is to

establish the following claim:

Claim III.7. �(w∗) < 0.

The proof involves a case analysis on Δ, and follows

by elementary manipulations. We defer the proof to the

full version.

IV. MIXTURES OF SPHERICAL GAUSSIANS

In the full version of our paper, we give algorithms

for learning mixtures of k spherical Gaussians. For ease

of exposition, in this extended abstract we focus on

the case where all component covariances are identical

to the identity. The main idea is that the techniques

developed in [53] for learning such mixtures only re-

quire us to learn a sufficiently good estimate of the

true covariance, which is given by I +
∑k

j=1 αj(μj −
μ)(μj − μ)T , where μ = EX∼F [X], where αj and μj

are the mixing weights and means of each component.

In contrast to our approach above, we do not know the

covariance of the mixture. However we still have the

useful property that after subtracting off I the resulting

covariance (without any corruptions) is low rank. Thus,

in the definition of Cδ , instead of insisting that the

error has low spectral norm, we insist the sum of the

top k eigenvalues of the error cannot be too large. By

similar but somewhat more involved calculations as in

the unknown mean case, this allows us to either cluster

the components, or recover an estimate of the covariance

up to spectral error Õ(ε). We can then directly appeal

to the techniques in [53] which allows us to learn the

k-GMM up to error Õ(
√
ε).

V. A GAUSSIAN WITH UNKNOWN COVARIANCE

In this section we study the problem of agnostically

learning a Gaussian with zero mean and unknown

covariance Σ. Our result for agnostically learning a

single Gaussian, where both the mean and covariance

are unknown then follows in a straightforward manner

by combining the algorithm in this section and the one

in Section III, but we defer the details to the full version

of our paper. We require the following bound:

Fact V.1. Let Σ1,Σ2 � 0. Then

dTV(N (0,Σ1),N (0,Σ2))

≤ O
(
‖Σ−1/2

1 Σ2Σ
−1/2
1 − I‖F

)
.

Recall, our algorithm is based on the following con-

vex set:

Cδ = {w ∈ SN,ε :∥∥∥∥∥Σ−1/2

(
m∑
i=1

wiXiX
T
i

)
Σ−1/2 − I

∥∥∥∥∥
F

≤ δ

}
.

Again, we design an approximate separation oracle for

this set. We do so by exploiting the fact that if w 
∈ Ccδ ,

the corrupted points must contribute disproportionately

in some way that we can detect, spectrally. We use

second order statistics of the covariance — namely the

fourth moment tensor. We establish a number of new

concentration bounds for the empirical fourth moment

tensor in order to analyze our algorithm, which may

be of independent interest. Apart from this, the main

technical difficulty is that we do not know the exact

form of the fourth moment tensor because it depends on

Σ. It turns out that considering a restricted eigenvalue

problem on a carefully designed subspace, we can

show that the contribution of the corrupted points is

the dominant term. We are then able to compute an

estimate Σ̂ with ‖Σ−1/2Σ̂Σ−1/2 − I‖F ≤ Õ(ε) which

by Fact V.1 gives an estimate which is Õ(ε)-close in

total variation distance. We defer the details to the full

version of our paper.

VI. BINARY PRODUCT DISTRIBUTIONS

In this section, we study the problem of agnosti-

cally learning a binary product distribution. Such a

distribution is entirely determined by its coordinate-

wise mean, which we denote by the vector p, and
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our first goal is to estimate p within �2-distance Õ(ε).
We can borrow many of the ideas that we sketched

in earlier applications of the filtering approach. Recall

that the approach for robustly learning the mean of an

identity covariance Gaussian was to compute the top

absolute eigenvalue of a modified empirical covariance

matrix. Our modification was crucially based on the

promise that the covariance of the Gaussian is the

identity. Here, it turns out that what we should do to

modify the empirical covariance matrix is subtract off a

diagonal matrix whose entries are p2i . These values seem

challenging to directly estimate. Instead, we directly

zero out the diagonal entries of the empirical covariance

matrix. Then the filtering approach proceeds as before,

and allows us to estimate p within �2-distance Õ(ε), as

we wanted.

In the case when p has no coordinates that are too

biased towards either zero or one, our estimate is already

Õ(ε) close in total variation distance. However, when p
has some very biased coordinates, this need not be the

case. Each coordinate that is biased needs to be learned

multiplicatively correctly. Nevertheless, we can use our

estimate for p that is close in �2-distance as a starting

point for handling binary product distributions that have

imbalanced coordinates. Instead, we control the total

variation distance via the χ2-distance between the mean

vectors. Let P and Q be two product distributions whose

means are p and q respectively. Using the relationship

between total variation distance and χ2-distance, it

follows that

dTV(P,Q)2 ≤ 4
∑
i

(pi − qi)
2

qi(1− qi)
.

So, if our estimate q is already close in �2-distance to p,

we can interpret the right hand side above as giving a

renormalization of how we should measure the distance

between p and q so that being close (in χ2-distance)

implies that our estimate is close in total variation

distance. We can then set up a corrected eigenvalue

problem using our initial estimate q as follows. Let

χ2(v)q =
∑

i v
2
i qi(1− qi). Then, we compute

max
χ2(v)q=1

vTΣv ,

where Σ is the modified empirical covariance. In the

full version of our paper, we show that this yields an

estimate that is Õ(
√
ε) close in total variation distance.

VII. MIXTURES OF TWO BALANCED PRODUCT

DISTRIBUTIONS

In this section, we study the problem of agnostically

learning a mixture of two balanced binary product

distributions. Let p and q be the coordinate-wise means

of the two product distributions. Let u = p
2 − q

2 . Then,

when there is no noise, the empirical covariance matrix

is Σ = uuT +D, where D is a diagonal matrix whose

entries are pi+qi
2 − (pi−qi)

2

4 . Thus, it can already have a

large eigenvalue. Now in the presence of corruptions it

turns out that we can construct a filter when the second
absolute eigenvalue is also large. But even if only the

top absolute eigenvalue is large, we know that both p
and q are close to the line μ + cv, where μ is the

empirical mean and v is the top eigenvector. And by

performing a grid search over c, we will find a good

candidate hypothesis.

Unfortunately, bounds on the top absolute eigenvalue

do not translate as well into bounds on the total variation

distance of our estimate to the true distribution, as

they did in all previous cases (e.g., if the top absolute

eigenvalue is small in the case of learning the mean

of a Gaussian with identity covariance, we can just

use the empirical mean, etc). In fact, an eigenvalue

λ could just mean that p and q differ by
√
λ along

the direction v. However, we can proceed by zeroing

out the diagonals. If uuT has any large value along

the diagonal, this operation can itself produce large

eigenvalues. So, this strategy only works when ‖u‖∞
is appropriately bounded. Moreover, there is a strategy

to deal with large entries in u by guessing a coordinate

whose value is large and conditioning on it, and once

again setting up a modified eigenvalue problem. We

defer the details to the full version of our paper. Our

overall algorithm then follows from balancing all of

these different cases.

VIII. SOME NATURAL APPROACHES, AND WHY

THEY FAIL

In fact, the problem of agnostically learning a distri-

bution in high-dimensions is so natural that in many

of the settings, one would immediately wonder why

simpler approaches do not work. Here we detail some

other plausible approaches, and what causes them to

lose dimension-dependent factors (if they have any

guarantees at all!). For the discussion that follows, we

note that by Fact III.1 in order to achieve an estimate

that is O(ε)-close in total variation distance (for a

Gaussian when μ is unknown and Σ = I) we require

‖μ̂− μ‖ = O(ε).
Learn Each Dimension Separately: Suppose we

want to learn the mean of a Gaussian with covariance

Σ. We could try to learn each coordinate of the mean

separately, but since an ε-fraction of the samples are

corrupted, our estimate can be off by ε in each coordi-

nate and would be off by ε
√
d in high dimensions.

Maximum Likelihood Estimator: The MLE is hard

to compute, but even ignoring computational consid-

erations it does not produce a robust estimate in the

sense of Question I.1. It is well known [16], [17] that

the MLE converges to the distribution P ′ ∈ D that is
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closest in KL-divergence to the distribution from which

our samples were generated (i.e. after the adversary has

added corruptions). However if an adversary places an

ε-fraction of the points at some very large distance, then

the estimate for the mean would need to move consider-

ably in that direction. By placing the corruptions further

and further away, the MLE can be an arbitrarily bad

estimate.

Geometric Median: As we discussed, the Tukey

depth [20] is one high-dimensional analogue of the

median, but is hard to compute [21]. Another valid way

to define the median in high dimensions is to set it to

be the v that minimizes
∑m

i=1 ‖Xi − v‖2. In the full

version of our paper, we show that this can also yield

an estimate that is off by as much as ε
√
d from the true

mean.
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