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Abstract—A wide variety of problems in machine learning,
including exemplar clustering, document summarization, and
sensor placement, can be cast as constrained submodular max-
imization problems. A lot of recent effort has been devoted to
developing distributed algorithms for these problems. However,
these results suffer from high number of rounds, suboptimal
approximation ratios, or both. We develop a framework for
bringing existing algorithms in the sequential setting to the
distributed setting, achieving near optimal approximation ra-
tios for many settings in only a constant number of MapReduce
rounds. Our techniques also give a fast sequential algorithm for
non-monotone maximization subject to a matroid constraint.

I. INTRODUCTION

The general problem of maximizing a submodular func-

tion appears in a variety of contexts, both in theory and

practice. From a theoretical perspective, the class of sub-

modular functions is extremely rich, including examples as

varied as cut functions of graphs and digraphs, the Shannon

entropy function, weighted coverage functions, and log-

determinants. Recently, there has been a great deal of interest

in practical applications of submodular optimization, as

well. Variants of facility location, sampling, sensor selection,

clustering, influence maximization in social networks, and

welfare maximization problems are all instances of submod-

ular maximization. In practice, many of these applications

involve processing enormous datasets requiring efficient,
distributed algorithms.

In contrast, most successful approaches for submodular

maximization have been based on sequential greedy algo-

rithms, including the standard greedy algorithm [1], [2],

the continuous greedy algorithm [3], [4], and the double

greedy algorithm [5]. Indeed, such approaches attain the

best-possible, tight approximation guarantees in a variety

of settings [6], [7], [8], but unfortunately they all share

a common limitation, inherited from the standard greedy

algorithm: they are inherently sequential. This presents a

seemingly fundamental barrier to obtaining efficient, highly

parallel variants of these algorithms.

A. Our Contributions

As demonstrated by the extensive prior works on sub-

modular maximization, the community has a good under-

standing of the problem under remarkably general types

of constraints, which are handled by a small collection

of general algorithms. In contrast, the existing works in

the distributed setting are either tailored to special cases,

giving approximation factors far from optimal or requiring

a large number of distributed rounds. One cannot help but

wonder if, instead of retracing the individual advances made

in the sequential setting over the last few decades, it may

be possible to obtain a generic technique to carry over the

algorithms in the sequential setting to the parallel world.

In this work, we present a significant step toward resolving

the above question. Our main contribution is a generic
parallel algorithm that allows us to parallelize a broad class

of sequential algorithm with almost no loss in performance.

The crux of our approach is a common abstraction that

allows us to capture and parallelize both the standard

and continuous greedy algorithms, and it provides a novel

unifying perspective for these algorithmic paradigms. Our

framework leads to the first distributed algorithms that nearly

match the state of the art approximation guarantees for the

sequential setting in only a constant number of rounds. In

the following, we summarize our main contributions.

A parallel greedy algorithm. We obtain the following

general result by parallelizing the standard greedy algorithm:

Theorem V.2. Let f : 2V → R+ be a submodular function,
and I ⊆ 2V be a hereditary set system1. For any ε > 0
there is a randomized distributed O(1/ε)-round algorithm

1A set system is hereditary if for any S ∈ I, all subsets of S are also
in I.
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Table I
NEW RESULTS FOR DISTRIBUTED SUBMODULAR MAXIMIZATION.3

Monotone functions
Constraint Rounds Approx. Citation

cardinality

O( logΔ
ε

) 1− 1
e
− ε [9]

2 0.545 [10]

O( 1
ε
) 1− 1

e
− ε Theorem V.2

matroid

O( logΔ
ε

) 1
2
− ε [9]

2 1
4

[11]

O( 1
ε
) 1− 1

e
− ε Theorem VI.3

p-system
O( logΔ

ε
) 1

p+1
− ε [9]

2 1
2(p+1)

[11]

O( 1
ε
) 1

p+1
− ε Theorem V.2

Non-monotone functions

Constraint Rounds Approx. Citation

cardinality
2

1− 1
m

2+e
[10]

2 (1− 1
m
) 1
e
(1− 1

e
) Full version [12]

matroid

2 1
10

[11]

2
1− 1

m
2+e

Theorem VII.1

O( 1
ε
) 1

e
− ε Theorem VI.3

p-system
2 1

2+4(p+1)
[11]

2
3(1− 1

m
)

5p+7+ 2
p

Theorem VII.1

that can be implemented in the MapReduce framework2.
The algorithm is an (α − O(ε))-approximation with con-
stant probability for the problem maxS∈I f(S), where α is
the approximation ratio of the standard, sequential greedy
algorithm for the same problem.

Our constant number of rounds is a significant improve-

ment over the sample and prune technique of [9], which

requires a number of rounds depending logarithmically on

the value of the single best element. Remarkably, even for

the especially simple case of a cardinality constraint, no

previous work could get close to the approximation ratio of

the simple sequential greedy algorithm in a constant number

of rounds. Our framework nearly matches the approximation

ratio of greedy in all situations in a constant number of

rounds and immediately resolves this problem.

A parallel continuous greedy algorithm. We obtain new

distributed approximation results for maximization over ma-

troids, by using a heavily discretized variant of the mea-

sured continuous greedy algorithm, obtaining approximation

guarantees nearly matching those attained by the continuous

greedy in the sequential setting.

2We define the MapReduce model in Section II.
3Here Δ = maxi∈V f({i}) and m is the number of machines. In the

results of [9], in the number of rounds, Δ can be replaced by the maximum
size of a solution. All algorithms in previous works and ours are randomized
and the approximation guarantees stated hold in expectation, and they can
be strengthened to hold with high probability by repeating the algorithms
in parallel.

Theorem VI.3. Let f : 2V → R+ be a submodular function,
and I ⊆ 2V be a matroid. For any ε > 0 there is a
randomized distributed O(1/ε)-round algorithm that can be
implemented in the MapReduce framework. The algorithm
is an (α − O(ε))-approximation with constant probability
for the problem maxS∈I f(S), where α is (1 − 1/e) for
monotone f and 1/e for general f .

Improved two-round algorithms and fast sequential al-
gorithms. We also give improved two-round approximations

for non-monotone submodular maximization under heredi-

tary constraints. We make use of the same “strong greedy

property” utilized in [11] but attain approximation guaran-

tees strictly better than were given there. Our algorithm is

based on a combination of the standard greedy algorithm

Greedy and an additional, arbitrary algorithm Alg. Again, we

suppose that f is a (not necessarily monotone) submodular

function and I is any hereditary constraint. In the following

theorems and throughout the paper, n := |V | is the size of

the ground set, k := maxS∈I |S| is the maximum size of a

solution, and m is the number of machines employed by the

distributed algorithm.

Theorem VII.1. Suppose that Greedy satisfies the strong
greedy property with constant γ and that Alg is a β-
approximation for the problem maxS∈I f(S). Then there
is a randomized, two-round distributed algorithm that
achieves a (1 − 1

m ) βγ
β+γ approximation in expectation for

maxS∈I f(S).

We show that by simulating the machines in this last

distributed algorithm, we also obtain a fast, sequential algo-

rithm for maximizing a non-monotone submodular function

subject to a matroid constraint. Our algorithm shows that one

can preprocess the instance in O(nε log n) time and obtain a

set X of size O(k/ε) so that it suffices to solve the problem
on X . By using a variant of the continuous greedy algorithm

on the resulting set X , we obtain the following result.

Theorem VII.2. There is a sequential, randomized ( 1
2+e −

ε)-approximation algorithm for the problem maxS∈I f(S),
where I is any matroid constraint, running in time
O(nε log n) + poly(kε ).

B. Techniques

In contrast with the previous framework by [9] which is

based on repeatedly eliminating bad elements, our frame-

work is more in line with the greedy approach of identifying

good elements. The algorithm maintains a pool of good

elements that is grown over several rounds. In each round,

the elements are partitioned randomly into groups. Each

group selects the best among its elements and the good pool

using the sequential algorithm. Finally, the best elements

from all groups are added to the good pool. The best solution

among the ones found in the execution of the algorithm
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is returned at the end. The previous works based on 2

rounds of MapReduce such as [11] can be viewed as a

single phase of our algorithm. The first phase can already

identify a constant fraction of the weight of the solution,

thus obtaining a constant factor approximation. However, it

is not clear how to obtain the best approximation factor from

such an approach. Our main insight is that, with a right

measure of progress, we can grow the solution iteratively

and obtain solutions that are arbitrarily close to those of

sequential algorithms. We show that after only O( 1ε ) rounds,
the pool of good elements already contains a good solution

with constant probability.

C. Related Work

There has been a recent push toward obtaining fast,

practical algorithms for submodular maximization problems

arising in a variety of applied settings. Research in this

direction has yielded a variety of techniques for speeding

up the continuous greedy algorithm for monotone maximiza-

tion [13], [14], as well as new approaches for non-monotone

maximization based on insights from both the continuous

greedy and double greedy algorithms [15], [16]. Of partic-

ular relevance to our results is the case of maximization

under a matroid constraint. Here, for monotone functions

the fastest current sequential algorithm gives a 1− 1/e− ε

approximation using O(
√
kn
ε5 ln2(nε ) + k2

ε ) value queries.

For non-monotone functions, Buchbinder et al. [16] give an
1+e−2

4 > 0.283-approximation in time O(kn log n + Mk),
where M is the time required to compute a perfect matching

on bipartite graph with k vertices per side. They also

give a simple, combinatorial 1/4-approximation in time

O(kn log n). In comparison, the sequential algorithm we

present here is faster by a factor of Ω(k), at the cost of

a slightly-weaker 1
2+e > 0.211-approximation.

Work on parallel and distributed algorithms for submod-

ular maximization has been comparatively limited. Early

results considered the special case of maximum k-coverage,
and attained an O(1 − 1/e − ε)-approximation [17], [18].

Later, Kumar et al. [9] considered the more general problem

of maximizing an arbitrary monotone submodular function

subject to a matroid, knapsack, or p-system constraint.

Their approach attains a 1
2+ε approximation for matroids,

and requires O( 1ε logΔ) MapReduce rounds, where Δ is

the value of the best single element. More generally, they

obtain a 1
p+1+ε approximation for p-systems in O( 1ε logΔ)

rounds. The factor of logΔ in the number of rounds is

inherent in their approach: they adapt the threshold greedy

algorithm, which sequentially picks elements in logΔ dif-

ferent thresholds. In another line of work, Mirzasoleiman et
al. [19] introduced a simple, two-round distributed greedy

algorithm for submodular maximization. While their algo-

rithm is only an O( 1
m )-approximation in the worst case, it

performs very well in practice, and attains provable constant-

factor guarantees for submodular functions exhibiting certain

additional structure. Barbosa et al. [11] recently gave a

more sophisticated analysis of this approach and showed

that, if the initial distribution of elements is performed

randomly, the algorithm indeed gives an expected, constant-

factor guarantee for a variety of problems. Finally, Mirrokni

and Zadimoghaddam [10] gave the currently-best 0.545-
approximation for the cardinality constraint case using only

2 rounds of MapReduce.

II. THE MODEL

We adopt the most stringent MapReduce-style model

among [20], [21], [22], [23], the Massively Parallel Commu-

nication (MPC) model from [22] as specified by [23]. Let N
be the size of the input. In this model, there are M machines

each with space S. The total memory of the system is

M ·S = O(N), which is at most a constant factor more than

the input size. Computation proceeds in synchronous rounds.

In each round, each machine can perform local computation

and at the end, it can send at most a total of O(S) words

to other machines. These O(S) words could form a single

message of size S, S messages of size 1, or any other

combination whose sum is at most O(S). Following [20], we

restrict both M,S < N1−Ω(1). The typical main complexity

measure is the number of rounds.

Note that not all previous works on MapReduce-style

algorithms for submodular maximization satisfy the strict

requirements of the MPC model. For instance, as stated, the

previous work by Kumar et al. [9] uses Θ(N logN) total

memory and thus it does not fit in this model (though it

might be possible to modify their algorithms to satisfy this).

We assume that the size of the solution is at most N1−2c

for some constant 0 < c < 1/2. Thus, an entire solution can

be stored on a single machine in the model. This assumption

is also used in previous work such as [10].

III. PRELIMINARIES

Due to space constraints, we defer some of the proofs to

the full version of the paper [12].

A function f : 2V → R+ is submodular if and only if

f(A∪{e})−f(A) ≥ f(B∪{e})−f(B) for all A ⊆ B and

e �∈ B. If f(A∪{e})−f(A) ≥ 0 for all A and e �∈ A we say

that f is monotone. Here we consider the general problem

max{f(S) : S ⊆ V, S ∈ I}, where I is any hereditary

constraint (i.e., a downward-closed family of subsets of V ).

Throughout the paper, n := |V | is the size of the ground

set, k := maxS∈I |S| is the maximum size of a solution, and

m is the number of machines employed by the distributed

algorithm.

We shall consider both monotone and non-monotone

submodular functions. However, the following simple obser-

vation shows that even non-monotone submodular functions

are monotone when restricted to the optimal solution of a

problem of the sort we consider.
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Lemma III.1. Let f be a submodular function and OPT =
argmaxS∈I f(S) for some hereditary constraint I. Then,
f(A ∩OPT) ≤ f(B ∩OPT) for all A ⊆ B.

In this paper, we work with two standard continuous

extensions of submodular functions, the multilinear exten-

sion and the Lovász extension. The multilinear extension
of f is the function F : [0, 1]V → R+ such that F (x) =
E[f(R(x))], where R(x) is a random subset of V in which

each element e appears independently with probability xe.

The Lovász extension of f is the function f− : [0, 1]V →
R+ such that f−(x) = Eθ∈U(0,1)[f({e : xe ≥ θ})],
where U(0, 1) is the uniform distribution on [0,1]. For any

submodular function f , the Lovász extension f− satisfies:

f−(1S) = f(S) for all S ⊆ V ; f− is convex; and the

restricted scale invariance property f−(c ·x) ≥ c ·f−(x) for

any c ∈ [0, 1]. We shall make use of the following lemmas.

Lemma III.2 ([11], Lemma 1). Let S be a random set with
E[1S ] = c · p (for c ∈ [0, 1]). Then, E[f(S)] ≥ c · f−(p).
Lemma III.3. Let f : 2V → R+ be a submodular function
that is monotone when restricted to X ⊆ V . Further, let
T, S ⊆ X , and let R be a random subset of T in which every
element occurs with probability at least p. Then, E[f(R ∪
S)] ≥ p · f(T ∪ S) + (1− p)f(S).

Proof: Recall that f− is the Lovász extension of f .
Since f− is convex,

E[f(R ∪ S)] = E[f−(1R∪S)]
≥ f−(E[1R∪S ]) = f−(E[1R\S ] + 1S).

Since every element of T occurs in R with probability

at least p, we have E[1R\S ] ≥ p · 1T\S . Then, since f is

monotone with respect to X ⊇ S ∪ T , we must have:

f−(E[1R\S ] + 1S) ≥ f−(p · 1T\S + 1S).

Finally, from the definition of f−, we have

f−(p · 1T\S + 1S) = p · f(T ∪ S) + (1− p)f(S).

IV. GENERIC PARALLEL ALGORITHM FOR

SUBMODULAR MAXIMIZATION

In this section, we give a generic approach for par-

allelizing any sequential algorithm Alg for the problem

maxS⊆V : S∈I f(S), where f : 2V → R+ is a submodular

function and I ⊆ 2V is a hereditary constraint.

As a starting point, we need a common abstract descrip-

tion of existing sequential algorithms. Towards that end,

we turn to the standard Greedy and Continuous Greedy

algorithms for inspiration. The Greedy algorithm directly

constructs a solution, whereas the Continuous Greedy al-

gorithm first constructs a fractional solution x which is

then rounded to get an integral solution. In the common

abstraction, we will need both the integral solution and
the support of the fractional solution x. To account for

this, we will have the algorithm Alg return a pair of sets,

(AlgSol(V ),AlgRel(V )), where AlgSol(V ) ∈ I is a feasible

solution for the problem and AlgRel(V ) is a set providing

additional information. When using the standard Greedy

algorithm for Alg, AlgSol(V ) and AlgRel(V ) will both be

equal to the Greedy solution. When using the Continuous

Greedy algorithm for Alg, AlgSol(V ) will be the integral

solution and AlgRel(V ) will be the support of the fractional

solution constructed by the Continuous Greedy algorithm.

More importantly, we will need an abstraction that cap-

tures the greedy behavior of these algorithms. We encapsu-

late the crucial properties of greedy-like algorithms in the

following definition. We believe that this framework is one

of the most valuable and insightful contributions of this

work, and it provides a general abstraction for a broader

class of algorithms.

We assume that the algorithm Alg satisfies the following

properties.

1) (α-Approximation) For every input N ⊆ V , AlgSol(N)
is an α-approximate solution to maxS⊆N : S∈I f(S).

2) (Consistency) Let A and B be two disjoint subsets of

V . Suppose that, for each element e ∈ B, we have

AlgRel(A∪{e}) = AlgRel(A). Then AlgSol(A∪B) =
AlgSol(A).

Armed with this definition, we can now describe our

approach for parallelizing an abstract sequential algorithm

Alg with almost no loss in the approximation guarantee.

Parallel algorithm ParallelAlg based on Alg. As before, let

α be the approximation guarantee of the sequential algorithm

Alg. Let s := maxN⊆V |AlgSol(N) ∪ AlgRel(N)| be the

maximum size of the sets returned by Alg. Let ε > 0 be the

desired accuracy, i.e., we will aim that ParallelAlg achieves

an (α− ε) approximation.

The algorithm uses g := Θ(1/(αε)) groups of machines

with m machines in each group (and thus the total number

of machines is gm). The number m of machines can be

chosen arbitrarily and it will determine the amount of space

needed on each machine, since the dataset is divided roughly

equally among each of the m machines in each group. An

optimal setting is gm := O(
√
n/s).

The algorithms performs Θ(1/ε) runs. Throughout the

process, we maintain two quantities: an incumbent solution
Sbest, which is the best solution produced on any single

machine so far in the process, and a pool of elements C ⊆ V
(we assume that the incumbent solution is stored on one

designated machine).

Each run of the algorithm proceeds as follows. Amongst

each group of m machines, we partition V uniformly at

random; each element e chooses an index i ∈ [m] uniformly

and independently at random and is assigned to the ith
machine in the group. We do this separately for each group
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of machines, i.e., each element appears on exactly one

machine in each group. For an individual machine i ∈ [gm],
let Xi,r denote the set of elements that are assigned to i
in run r by this procedure. Additionally, we place on each

machine the same pool of elements Cr−1, constructed at the

end of run r − 1.
Once the elements have been distributed as described

above, on each machine i, we run the algorithm Alg on the

input Xi,r ∪Cr−1 on the machine to obtain (AlgSol(Xi,r ∪
Cr−1),AlgRel(Xi,r ∪ Cr−1)). We update the incumbent

solution Sbest to be the better of the current solution Sbest

and the solutions AlgSol(Xi,r ∪ Cr−1) constructed on each

of the machines; this is achieved by having each machine

send AlgSol(Xi,r ∪ Cr−1) to some designated machine

maintaining Sbest, and this machine will update Sbest in

the next round. We update the pool by setting Cr :=
Cr−1

⋃
i AlgRel(Xi,r ∪ Cr−1); this is achieved by having

each machine send AlgRel(Xi,r ∪ Cr−1) to every other

machine, and thus ensuring that the pool Cr is available

on each machine during the next round.

At the end of the Θ(1/ε) runs, the algorithm returns the

incumbent solution Sbest. This completes the description of

our algorithm.

Avoiding duplicating the dataset. The algorithm above

partitions the dataset over Θ(1/ε) groups of machines and

thus it duplicates the dataset Θ(1/ε) times (this problem

also applies to previous work [10]). This is done in order to

achieve the best theoretical guarantee on the number of runs,

but in practice it is undesirable to duplicate the data. Instead,

we can use a single group of m machines and perform the

computation of a single run sequentially over Θ(1/ε) sub-

run, where each sub-run performs the computation of one of

the group of machines. This will lead to an algorithm that

performs Θ(1/ε2) runs using m machines and it does not

duplicate the dataset.

The analysis. We devote the rest of this section to the

analysis of the algorithm ParallelAlg. We start by noting

that, if we choose g and m so that gm = O(
√
n/s), the

algorithm uses the following resources and thus it satisfies

the requirements of the model in Section II.

Lemma IV.1. ParallelAlg can be implemented in the parallel
model in Section II using the following resources.
• The number of rounds is O(1/ε).
• The number of machines is O(

√
n/s).

• The amount of space used on each machine is
O(
√
ns/(εα)) with high probability.

• In each round, the total amount of communication from
a machine to all other machines is O(

√
ns/(εα)) with

high probability. The total amount of communication
over all machines in a given round is O(n/(εα)).

Proof: We will choose gm :=
√

n/s as our number of

machines. Using this choice, we can provide the guarantees

stated in the lemma.

Note that we can combine the update step of the in-

cumbent solution and the pool of a given run with the

next run’s distribution of elements into a single round of

communication. Specifically, each machine computes a new

random assignment for each element of its sample Xi,r,

assigns all of its new pool elements to all machines, and

sends its solution to the designated machine. Thus each run

corresponds to a round of communication. In each round,

a machine communicates its sample Xi,r, which has size

O(n/m) = O(
√
ns/(εα)) with high probability, and the

sets AlgSol(Xi,r ∪ Cr−1) and AlgRel(Xi,r ∪ Cr−1) that

have size O(s) to all other machines. Thus the total amount

that a machine communicates is O(
√
ns/(εα) + s · gm) =

O(
√
ns/(εα)) with high probability, and the total amount

that all machines communicate is O(n + n/m · gm) =
O(n/(εα)).

In every round, the space used on a given machine is the

size of its sample Xi,r, which is O(n/m) = O(
√
ns/(εα))

with high probability; the size of the incumbent solution,

which is O(s); and the size of the pool, which is O(gm ·
s/ε) = O(

√
ns/ε). Therefore the total amount of space used

on each machine is O(
√
ns/(εα)) with high probability.

Thus it remains to analyze the quality of the solution

constructed by the algorithm. In the remainder of this sec-

tion, we show that, if Alg satisfies the α-approximation and

consistency properties defined above, the parallel algorithm

ParallelAlg achieves an (α − O(ε)) approximation. For

simplicity, in this section we assume that Alg is determin-

istic; the extended analysis, in which Alg is randomized, is

deferred to the full version of the paper [12].

We start by introducing some notation. Let V(1/m)
denote the distribution over random subsets of V where each

element is included independently with probability 1/m. Let

OPT be an optimal solution. Recall that Xi,r ∼ V(1/m) is

the random sample placed on machine i at the beginning of

run r and Cr−1 is the pool of elements at the beginning of

run r. The following theorem is the crux of our analysis.

Theorem IV.2. Consider a run r ≥ 1 of the algorithm. Let
Ĉr−1 ⊆ V . Then one of the following must hold:

(1) EX1,r [f(AlgSol(Cr−1 ∪ X1,r)) | Cr−1 = Ĉr−1] ≥
(1− ε)2α · f(OPT), or

(2) E[f(Cr ∩OPT) | Cr−1 = Ĉr−1]− f(Ĉr−1 ∩OPT) ≥
ε
2 · f(OPT).

Intuitively, Theorem IV.2 shows that, in expectation, if

we have not found a good solution on some machine after

O(1/ε) runs, then the current pool C, available to every

machine, must satisfy f(C ∩ OPT) = f(OPT), and so

each machine in the next run will in fact return a solution

of quality at least αf(OPT). The following theorem, whose

proof we give in the appendix, makes this formal.
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Theorem IV.3. ParallelAlg achieves an (1− ε)3α approxi-
mation with constant probability.

We devote the rest of this section to the proof of Theo-

rem IV.2. Consider a run r of the algorithm. Let Ĉr−1 ⊆ V .

In the following, we condition on the event that Cr−1 =
Ĉr−1.

For each element e ∈ V , let pr(e) = PrX∼V(1/m)[e ∈
AlgRel(Ĉr−1∪X∪{e})] if e ∈ OPT\Ĉr−1, and 0 otherwise.

As shown in the following lemma, the probability pr(e)
gives us a handle on the probability that e is in the union

of the relevant sets.

Lemma IV.4. For each element e ∈ OPT \ Ĉr−1,

Pr[e ∈ ∪1≤i≤gmAlgRel(Ĉr−1 ∪Xi,r)] = 1− (1− pr(e))
g,

where g is the number of groups into which the machines
are partitioned.

Proof sketch: For each group Gj , we can show that

e is not in the union of the relevant sets for that group

with probability 1 − pr(e). Since different groups have

independent partitions, e is not in the union of the relevant

sets for all machines with probability (1− pr(e))
g , and the

lemma follows. �
Returning to the proof of Theorem IV.2, we define a parti-

tion (Pr, Qr) of OPT\ Ĉr−1 as follows: Pr = {e ∈ OPT\
Ĉr−1 : pr(e) < ε} and Qr = {e ∈ OPT\Ĉr−1 : pr(e) ≥ ε}.

The following subsets of Pr and Qr are key to our

analysis (recall that Xi,r is the random sample placed on

machine i at the beginning of the run r): P ′r = {e ∈
Pr : e /∈ AlgRel(Ĉr−1 ∪X1,r ∪{e})} and Q′r = Qr ∩ (∪gm

i=1

AlgRel(Ĉr−1 ∪Xi,r)).
Note that each element e ∈ Pr is in P ′r with probability

1 − pr(e) ≥ 1 − ε. Further, by Lemma IV.4, each element

e ∈ Qr is in Q′r with probability 1−(1−pr(e))
g ≥ 1− 1

e ≥
1
2 .

It follows from the definition of P ′r and the consistency

property of Alg that

AlgSol(Ĉr−1 ∪X1,r) = AlgSol(Ĉr−1 ∪X1,r ∪ P ′r).

Let OPTr−1 = Ĉr−1 ∩ OPT be the part of OPT in this

iteration’s pool. Then, since Alg is an α approximation and

P ′r ∪OPTr−1 ⊆ OPT is a feasible solution, we have

f(AlgSol(Ĉr−1 ∪X1,r)) ≥ α · f(P ′r ∪OPTr−1).

Taking expectations on both sides, we have:

E[f(AlgSol(Ĉr−1 ∪X1,r))]

≥ α ·E[f(P ′r ∪OPTr−1)]

≥ (1− ε)α · f(Pr ∪OPTr−1), (1)

where the final inequality follows from Lemma III.3, since

f is monotone when restricted to OPT ⊇ Pr ∪ OPTr−1,

and P ′r contains every element of Pr with probability at least

(1− ε).
Note that Q′r ⊆ (OPT ∩ Cr) \ OPTr−1. As before,

f is monotone when restricted to OPT. Additionally, Q′r
contains every element of Qr with probability at least 1/2.
Thus,

E[f(Cr ∩OPT) | Cr−1 = Ĉr−1]

≥ E[f(Q′r ∪OPTr−1)]

≥ 1

2
· f(Qr ∪OPTr−1) +

1

2
· f(OPTr−1),

where the final inequality follows from Lemma III.3. Re-

arranging this inequality using the condition Cr−1 = Ĉr−1

and the definition OPTr−1 = Ĉr−1 ∩OPT we obtain:

E[f(Cr ∩OPT)− f(Cr−1 ∩OPT) | Cr−1 = Ĉr−1]

≥ 1

2
(f(Qr ∪OPTr−1)− f(OPTr−1))

≥ 1

2
(f(Pr ∪Qr ∪OPTr−1)− f(Pr ∪OPTr−1))

=
1

2
(f(OPT)− f(Pr ∪OPTr−1)) , (2)

where the second inequality follows from submodularity.

Now, if f(Pr ∪ (Ĉr−1 ∩OPT)) ≥ (1− ε) · f(OPT) then

this fact together with (1) imply that the first property in the

statement of Theorem IV.2 must hold. Otherwise, f(OPT)−
f(Pr∪(Ĉr−1∩OPT)) ≥ ε ·f(OPT); this fact together with

(2) implies that the second property must hold.

This completes the description of our generic approach.

In the following sections, we instantiate the algorithm Alg
with the standard Greedy algorithm and a heavily discretized

Continuous Greedy algorithm, and obtain our main results

stated in the introduction.

V. A PARALLEL GREEDY ALGORITHM

In this section, we combine the generic approach from

Section IV with the standard greedy algorithm, and give our

results for monotone maximization stated in Theorem V.2.

We let Alg be the standard Greedy algorithm. We let

AlgRel(N) = AlgSol(N) = Greedy(N). It was shown

in previous work that the Greedy algorithm satisfies the

consistency property.

Lemma V.1 ([11], Lemma 2). Let A ⊆ V and B ⊆ V be
two disjoint subsets of V . Suppose that, for each element
e ∈ B, we have Greedy(A ∪ {e}) = Greedy(A). Then
Greedy(A ∪B) = Greedy(A).

Informally, this simply means that if Greedy rejects some

element e when presented with input A ∪ {e}, then adding

other similarly rejected elements to A ∪ {e} cannot cause

e to be accepted. This allows us to immediately apply the

result from Section IV and obtain the following result.
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DCGreedy: Discretized continuous greedy

Input: N ⊆ V

1: x(0)← 0
2: if t← 1 to 1/ε then
3: y(t)← GreedyStep(N,x(t))
4: x(t)← x(t− 1) + y(t)

5: S ← SwapRounding(x(1/ε), I)
6: Let T be the support of x(1/ε)
7: return (S, T )

Figure 1. Discretized continuous greedy algorithm.

GreedyStep: Greedy Update Step

Input: N ⊆ V , x ∈ [0, 1]N

1: W ← ∅, y← 0
2: repeat
3: D ← {e ∈ N \W : W ∪ {e} ∈ I}
4: for all e ∈ D do
5: we ← E[f(R(x+y)∪{e})−f(R(x+y))]

6: Let e∗ = argmaxe∈D we

7: if D = ∅ or we∗ < 0 then
8: return y
9: else ye∗ ← ye∗ + ε(1− xe∗)

10: W ←W ∪ {e∗}
11: until D = ∅ or we∗ < 0

Figure 2. Greedy Update Step. On line 5, for a vector z ∈ [0, 1]N , we
use R(z) to denote a random subset of N that contains each element e
independently with probability ze. The weights on line 5 cannot be com-
puted exactly in polynomial time, but they can be efficiently approximated
using random samples.

Theorem V.2. Let f : 2V → R+ be a submodular function,
and I ⊆ 2V be a hereditary set system. For any ε > 0
there is a randomized distributed O(1/ε)-round algorithm
that can be implemented in the model described in Sec-
tion II. The algorithm is an (α−O(ε))-approximation with
constant probability for the problem maxS∈I f(S), where α
is the approximation ratio of the standard, sequential greedy
algorithm for the same problem.

VI. A PARALLEL CONTINUOUS GREEDY ALGORITHM

For monotone maximization subject to a matroid con-

straint, Theorem V.2 guarantees only a (1/2−ε) approxima-

tion, due to the limitations of the standard greedy algorithm.

We obtain a nearly optimal (1−1/e−ε) approximation by in-

stantiating the framework in Section IV with the DCGreedy
algorithm shown in Figure 1. The DCGreedy algorithm is

a heavily discretized version of the measured continuous

greedy approach of [4], and it first constructs an approx-

imate fractional solution to the problem maxx∈P (I) F (x)
of maximizing the multilinear extension F of f subject to

the constraint that x is in the matroid polytope P (I), and
then rounds the fractional solution without loss using pipage

rounding or swap rounding [24], [25].

In this section, we combine the generic approach from

Section IV with the DCGreedy algorithm. We use DCGreedy
as Alg; the relevant set AlgRel(N) is the set of elements in

the support of the fractional solution x(1/ε), and AlgSol(N)
is the integral solution obtained by rounding x(1/ε).

Note that it is necessary to ensure that the fractional

solution has small support so that the size of AlgRel(N) is

small. We achieve this by heavily discretizing the continuous

greedy algorithm, thereby limiting the number of support

updates performed in lines 3 and 4 of DCGreedy. Unfortu-

nately, performing this discretization naively introduces an

error in the approximation that is too large. Thus, we make

use of a key idea from [13], which can be applied in the

case of a matroid constraint. This allows us to show the

following lemma whose proof is deferred to the full version

of the paper [12].

Lemma VI.1. The DCGreedy algorithm achieves an (1 −
1/e − O(ε)) approximation for monotone functions and an
(1/e−O(ε)) approximation for non-monotone functions.

The lemma above provides us with the desired approxima-

tion guarantees for DCGreedy, and thus it remains to show

the consistency property. Before doing so, we must address

how the weights are computed on line 5 of the GreedyStep
algorithm (see Figure 2). Computing the weights exactly

requires exponential time, but they can be approximated

in polynomial time using random samples. In this version

of the paper, we assume that the weights are computed
exactly, since this will keep the algorithm deterministic. In

the full version of the paper, we remove this assumption

and we analyze the resulting randomized algorithm using

an extension of our framework.

Lemma VI.2. Let A and B be two disjoint subsets
of V . Suppose that, for each element e ∈ B, we
have DCGreedyRel(A ∪ {e}) = DCGreedyRel(A). Then
DCGreedySol(A ∪B) = DCGreedySol(A).

Proof: We will show that the GreedyStep algorithm

picks the same set W on input (A,x) and (A ∪ B,x),
which implies the lemma. Suppose for contradiction that

the algorithm makes different choices on input (A,x) and

(A ∪ B,x). Consider the first iteration where the two runs

differ, and let e be the element added to W in that iteration

on input (A ∪ B,x). Note that e /∈ A and thus we have

e ∈ B. But then e will be added to W on input (A∪{e} ,x).
Thus e ∈ DCGreedyRel(A∪{e}), which contradicts the fact

that e ∈ B.

Thus we can apply the result from Section IV and obtain

the following result.

Theorem VI.3. Let f : 2V → R+ be a submodular
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function, and I ⊆ 2V be a matroid. For any ε > 0 there
is a randomized distributed O(1/ε)-round algorithm that
can be implemented in the model described in Section II.
The algorithm is an (α − O(ε))-approximation with con-
stant probability for the problem maxS∈I f(S), where α is
(1− 1/e) for monotone f and 1/e for general f .

VII. FASTER ALGORITHMS

In this section, we build on the techniques from the

previous sections to give a distributed algorithm for non-

monotone maximization that requires only two rounds,

rather than O(1/ε) rounds, and achieves an improved ap-

proximation guarantee over the two-round algorithm pro-

posed in [11]. In the case of non-monotone maximization

over a matroid, we show that our techniques can be used to

obtain a new, fast sequential algorithm as well.

A. Two-Round Algorithms For Non-Monotone Maximization

We first give an improved two-round algorithm for non-

monotone maximization subject to a any hereditary con-

straint. The algorithm is similar to that of [11] for mono-
tone maximization; perhaps surprisingly, we show that this

approach achieves a good approximation even for non-

monotone functions. We randomly partition the elements

onto the m machines, and run Greedy on the elements Vi

on machine i to pick a set Si. We place the sets Si on a

single machine and we run any algorithm Alg on B :=
⋃

i Si

to find a solution T . We return the best solution amongst

S1, . . . , Sm, T .

We analyze the algorithm for any hereditary constraint

I for which the Greedy algorithm satisfies the following

property (for some γ), which we refer to as the strong greedy

property:

∀S ∈ I : f(Greedy(V )) ≥ γ · f(Greedy(V ) ∪ S) (GP)

By the standard Greedy analysis, we have γ = 1/2 for

a matroid constraint and γ = 1/(p + 1) for a p-system
constraint.

Theorem VII.1. Suppose that Greedy satisfies the strong
greedy property with constant γ and let Alg be any β-
approximation for the problem maxS∈I f(S). Then there
is a randomized, two-round distributed algorithm that
achieves a (1 − 1

m ) βγ
β+γ approximation in expectation for

maxS∈I f(S).

Proof: For each element e, we let probability pe =
PrX∼V(1/m)[e ∈ Greedy(X ∪ {e})], if e ∈ OPT, and 0
otherwise. Then, let p ∈ [0, 1]V denote the vector whose

entries are given by the probabilities pe.
We first analyze the expected value of the Greedy solution

S1. Let

O = {e ∈ OPT: e /∈ Greedy(V1 ∪ {e})} .

By Lemma V.1, Greedy(V1 ∪ O) = Greedy(V1) = S1, and

by (GP), f(S1) ≥ γ · f(S1 ∪O). Therefore

E[f(S1)] ≥ γ ·E[f(S1 ∪O)]

= γ ·E[f−(1S1∪O)]
≥ γ · f−(E[1S1∪O])
= γ · f−(E[1S1

] + (1OPT − p)). (3)

On line three, we have used the fact that f− is convex and

on line four we have used the fact that E[1S1∪O] = E[1S1
]+

(1OPT − p).
Now consider the solution T . Since Alg is a β-

approximation, we have

E[f(T )] ≥ β ·E[f(B ∩OPT)]

= β ·E[f−(1B∩OPT)]

≥ β · f−(E[1B∩OPT])

= β · f−(p). (4)

Similarly to above, we have used the convexity of f− and

the fact that E[1B∩OPT] = p.
By combining (3) and (4), and using convexity of f−, we

obtain

1

γ
E[f(S1)] +

1

β
E[f(T )]

≥ f−(E[1S1 ] + (1OPT − p)) + f−(p)

≥ 2 · f−
(
E[1S1

] + 1OPT

2

)
.

Since S1 ⊆ V1 and V1 is a 1/m sample of V , we

have E[1S1
] ≤ 1

m · 1V . Therefore, using the def-

inition of f− and the non-negativity of f , we ob-

tain 2 · f−
(

E[1S1
]+1OPT

2

)
≥ (

1− 1
m

)
f(OPT). Thus

max{E[f(S1)],E[f(T )]} ≥ (
1− 1

m

)
βγ
β+γ · f(OPT).

Examples of results. We conclude this section with some

examples of approximation guarantees that we can obtain

using Theorem VII.1. For a matroid constraint, we have

γ = 1/2 and, if we use the measured Continuous Greedy

algorithm for Alg, we have β = 1/e; thus we obtain a(
1− 1

m

)
1

2+e approximation. We remark that, for a cardinal-

ity constraint, one can strengthen the proof of Theorem VII.1

slightly and obtain a
(
1− 1

m

)
1
e

(
1− 1

e

)
approximation; we

defer the details to the full version of the paper [12].

For a p-system constraint, we have γ = 1
p+1 . We can

use the algorithm of Gupta et al. [26] for Alg that achieves

an approximation β = 3/
(
2p+ 4 + 2

p

)
when combined

with the algorithm of [5] for unconstrained non-monotone

maximization. Thus we obtain a 3
(
1− 1

m

)
/
(
5p+ 7 + 2

p

)
approximation.

B. A Fast Sequential Algorithm for Matroid Constraints

We now show how our approach can be used to obtain

a fast sequential algorithm for non-monotone maximization
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DThreshGreedy: Descending Thresholds Greedy

Input: N ⊆ V

1: S ← ∅, d← maxe∈N f({e})
2: for w = d; w ≥ ε

nd; w ← w(1− ε) do
3: for all e ∈ N do
4: if S ∪{e} ∈ I and f(S ∪{e})− f(S) ≥ w

then
5: return S ← S ∪ {e}
6: return S

Figure 3. Descending Thresholds Greedy algorithm [9], [13].

subject to a matroid constraint. The analysis given in The-

orem VII.1 only relies on the following two properties of

the Greedy algorithm: it satisfies (GP) and Lemma V.1.

Thus we can replace the Greedy algorithm by any algorithm

satisfying these two properties. In particular, the Descending

Thresholds Greedy (shown in Figure 3) of [9], [13] satisfies

these conditions with γ = 1/2− ε.

Our algorithm proceeds as follows. We randomly partition

the elements into m := 1/ε samples V1, V2, . . . , Vm. On

each sample, we run the Descending Thresholds Greedy

algorithm on Vi to obtain a solution Si. Let A :=
argmaxi∈[m] f(Si) and B :=

⋃
i Si. Then, |B|≤ k/ε, where

k is the rank of the matroid. We run any β-approximation

algorithm Alg on B to find a solution B′, and we return the

better of A and B′. We obtain the following result.

Theorem VII.2. There is a sequential, randomized ( 1
2+e −

ε)-approximation algorithm for the problem maxS∈I f(S),
where I is any matroid constraint, running in time
O(nε log n) + poly(kε ).

Proof: The running time of the Descending Thresholds

Greedy algorithm on a ground set of size s is O( sε log(
s
ε )).

Each random sample has size O(εn) with high probability,

and thus the total time needed to construct B is O(nε log n)
with high probability. It follows from the analysis in The-

orem VII.1 that the best of the two solutions A and a β-
approximation to maxS⊆B:S∈I f(S) is a 1

2+ 1
β

− ε approxi-

mation. We can then use any 1/e-approximation algorithm

as Alg.
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APPENDIX

Theorem IV.3. ParallelAlg achieves an (1− ε)3α approxi-
mation with constant probability.

Proof: Let R = c/ε be the total number of runs, and

C = (C0, C1, . . . , CR). Let Ir(Cr−1) ∈ {0, 1} be equal to

1 if and only if

EX1,r [f(AlgSol(Cr−1 ∪X1,r))] ≥ (1− ε)2α · f(OPT).

Let

Φr(C) = Ir(Cr−1) +
2(f(Cr ∩OPT)− f(Cr−1 ∩OPT))

εf(OPT)

Φ(C) =
R∑

r=1

Φr(Cr−1) ≤
R∑

r=1

Ir(Cr−1) +
2f(CR ∩OPT)

εf(OPT)

≤
R∑

r=1

Ir(Cr−1) +
2

ε

Taking expectation over the random choices of C, we have

EC [Φ(C)] ≤
R∑

r=1

E[Ir(Cr−1)] +
2

ε

On the other hand, by Theorem IV.2, E[Φr(Cr−1)] ≥ 1 and

therefore E[Φ(C)] ≥ R. Thus

2

ε
+

R∑
r=1

E[Ir(Cr−1)] ≥ Φ(C) ≥ R.

Since R > 6/ε, we have

R∑
r=1

E[Ir(Ĉr−1)] ≥ 2R

3
.

Therefore, with probability at least 2/3, there exists a run r
such that Ir(Cr−1) = 1. Fix the randomness up to the first

such run, i.e., condition on a fixed Cr−1 = Ĉr−1 such that

Ir(Ĉr−1) = 1 and Cr, . . . , CR remain random. Assume for

contradiction that with probability at least 1 − εα(1 − ε)2

over the choices of X1,r,

f(AlgSol(Cr−1 ∪X1,r)) < (1− ε)3α · f(OPT).

Then we have

E[f(AlgSol(Cr−1 ∪X1,r))]

< (εα(1− ε)2 + (1− εα(1− ε)2)(1− ε)3α)f(OPT)

=
(
ε+ (1− εα(1− ε)2)(1− ε)

)
(1− ε)2αf(OPT)

< (1− ε)2αf(OPT),

contradicting our assumption on Cr−1. Thus, with probabil-

ity at least εα(1− ε)2, we have

f(AlgSol(Cr−1 ∪X1,r)) ≥ (1− ε)3α · f(OPT).

Notice that the above argument applies not only to machine

1 in run r but also the first machine in each of the g
groups in the same run r and their random samples Xi,r

are independent. Thus, since g ≥ c/(εα) for a sufficiently

large constant c, with probability at least 5/6, we have

maxi f(AlgSol(Cr−1 ∪ Xi,r)) ≥ (1 − ε)3α · f(OPT).
Overall, the algorithm succeeds with probability at least

2/3 · 5/6 = 5/9.
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