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Abstract—Locally finding a solution to symmetry-breaking
tasks such as vertex-coloring, edge-coloring, maximal matching,
maximal independent set, etc., is a long-standing challenge in
distributed network computing. More recently, it has also become
a challenge in the framework of centralized local computation.
We introduce conflict coloring as a general symmetry-breaking
task that includes all the aforementioned tasks as specific in-
stantiations — conflict coloring includes all locally checkable
labeling tasks from [Naor & Stockmeyer, STOC 1993]. Conflict
coloring is characterized by two parameters l and d, where the
former measures the amount of freedom given to the nodes
for selecting their colors, and the latter measures the number
of constraints which colors of adjacent nodes are subject to.
We show that, in the standard LOCAL model for distributed
network computing, if l/d > Δ, then conflict coloring can
be solved in ˜O(

√
Δ) + log∗ n rounds in n-node graphs with

maximum degree Δ, where ˜O ignores the polylog factors in Δ.
The dependency in n is optimal, as a consequence of the Ω(log∗ n)
lower bound by [Linial, SIAM J. Comp. 1992] for (Δ + 1)-
coloring. An important special case of our result is a significant
improvement over the best known algorithm for distributed
(Δ+1)-coloring due to [Barenboim, PODC 2015], which required
˜O(Δ3/4) + log∗ n rounds. Improvements for other variants of
coloring, including (Δ+1)-list-coloring, (2Δ− 1)-edge-coloring,
coloring with forbidden color distances, etc., also follow from our
general result on conflict coloring. Likewise, in the framework
of centralized local computation algorithms (LCAs), our general
result yields an LCA which requires a smaller number of probes
than the previously best known algorithm for vertex-coloring,
and works for a wide range of coloring problems.

Index Terms—Distributed Network Computing; Symmetry
Breaking; List-coloring; (Δ + 1)-coloring; Local Computation
Algorithm.

I. INTRODUCTION

A. Context and Objective

Distributed network computing considers the computing

model in which every node of a graph is an autonomous

computing entity, and nodes exchange information by sending

messages along the edges of the graph. In this context,

symmetry breaking, which is arguably the most important

problem in distributed network computing has attracted a lot of

attention, and several local forms of symmetry breaking tasks

have been considered, including the construction of proper

graph colorings [5], [7], [25], [30], [33], [39], of maximal
independent sets (MIS) [1], [26], of maximal matchings [18],
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[20], etc., to mention just a few. The main question in this

framework is whether these tasks can be solved locally, i.e.,

by exchanging data between nodes at short distance in the

network. To tackle the locality issue, the complexity of a

distributed algorithm is measured in term of number of rounds
in the LOCAL model [35], where a round consists in syn-

chronously exchanging data along all the links of the network,

and performing individual computations at each node. That

is, a t-round algorithm is an algorithm in which every node

exchanges data with nodes at distance at most t (i.e., at most

t hops away) from it.

It is worth taking the example of coloring for understanding

the computational challenges induced by the question of

locality in distributed network computing. The main concern

of distributed coloring is solving the (Δ+1)-coloring task, in

which the nodes of a network G are free to choose any color

from the set {1, . . . ,Δ+1}, where Δ is the maximum degree

of G, as long as each node output a color that is different from

all the colors output by its neighbors.1 Several breakthroughs

were almost simultaneously obtained towards the end of the

1980’s. Awerbuch, Goldberg, Luby, and Plotkin [2] devised a

deterministic distributed (Δ + 1)-coloring algorithm running

in a subpolynomial-in-n number of rounds, which was subse-

quently improved by Panconesi and Srinivasan [33] to run in

2O(
√
logn) rounds. Despite a quarter of a century of intensive

research, this is still the best known distributed deterministic

algorithm for (Δ+ 1)-coloring in general graphs. Around the

same time, Goldberg, Plotkin and Shannon [17] and Linial [25]

designed distributed (Δ + 1)-coloring algorithms, performing

in O(Δ2 + log∗ n) rounds, where log∗ n denotes the least

number of times the log-function should be applied on n to get

a value smaller than one2. These algorithms are significantly

faster than the one in [33] for graphs with reasonably small

maximum degree (e.g., Δ = O(logc n) for arbitrarily large

constant c > 0). Interestingly, the achieved dependence in

n is optimal for constant degree graphs, as [25] also proves

that 3-coloring the n-node ring requires Ω(log∗ n) rounds, and

this lower bound also holds for randomized algorithms [30].

As a consequence, since Linial’s contributions to (Δ + 1)-
coloring, lots of effort has been devoted to decreasing the time

dependence in Δ of coloring algorithms.

1Solving k-coloring for k < Δ + 1 cannot be local, even if G is Δ-
colorable, because the decision of a node can impact nodes far away from it,
as witnessed by 2-coloring even cycles [25].

2Formally, define log(0) x = x, and log(k+1) x = log log(k) x for k ≥ 0;
Then log∗ x denotes the least integer k such that log(k) x < 1.
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Szegedy and Vishwanathan [39] show that a wide class

of locally iterative algorithms for (Δ + 1)-coloring must

perform in Ω(Δ logΔ) rounds, where an algorithm belongs

to the locally iterative class if it has the property that, at

each round, every node considers only its own current color

together with the current colors of its neighbors, and updates

its color value accordingly. This result was made more explicit

by Kuhn and Wattenhofer [24], who considered an almost

identically defined model and proposed a locally iterative

algorithm performing in O(Δ logΔ + log∗ n) rounds. Three

years later, Barenboim and Elkin [5], and Kuhn [22] inde-

pendently proposed distributed (Δ + 1)-coloring algorithms

performing in O(Δ+log∗ n) rounds (see also [8]). These latter

algorithms are not iterative. Finally, Barenboim [3] recently

presented a distributed (Δ+1)-coloring algorithm performing

in O(Δ3/4 logΔ + log∗ n) rounds.

Other forms of coloring problems have also been tackled

in the distributed network computing setting, including relax-
ations of the classical vertex coloring problem, such as: edge-

coloring, weak-coloring, defective coloring, vertex coloring

with more than (Δ + 1) colors, etc. (see, e.g., [7] for a

survey). In a number of practical scenarios, nodes aiming at

breaking symmetry are also subject to more specific individual

constraints. This is typically the case in frequency assignments

in radio networks [16], [41], in scheduling [29], and in digital

signal processing [42], to mention just a few scenarios. In

all these latter settings, each node u is not initially free to

choose any value from a color set C, but is a priori restricted

to choose only from some subset L(u) ⊆ C of colors. This

framework is not captured by classical coloring, but rather by

list-coloring. As in the case of vertex coloring, distributed list-

coloring can be approached from a locality perspective only

if the lists satisfy |L(u)| ≥ degG(u) + 1 for every node u of

a graph G having degree degG(u).
Vertex (Δ + 1)-coloring, as well as all of its previously

mentioned relaxed variants, can be solved in o(Δ)+O(log∗ n)
rounds [7]. However, the more complex task of (Δ + 1)-list-

coloring was (prior to this work) only known to be solvable

in Õ(|C|3/4) + O(log∗ n) [3] rounds, which is sublinear-in-

Δ only for |C| = o(Δ4/3). Moreover, no sublinear (in Δ)

algorithms are known for MIS or maximal matching, for which

the currently best algorithms run is O(Δ)+log∗ n rounds [5],

[7], [22]. (Again, the additional factor log∗ n is unavoidable,

and can be seen as an inherent cost of distributed symmetry

breaking [38]). In fact, there is evidence suggesting that no

sublinear algorithms exist for these problems. For instance, for

maximal matching, a time lower bound of Ω(Δ + log∗ s) is

known to hold for an anonymous variant of the LOCAL model

in which edges are equipped with locally unique identifiers

from the range {1, . . . , s} [20]. In the standard LOCAL model,

a lower bound of Ω(Δ) is known to hold for the fractional
variant of the maximal matching problem [18], while an

Ω(Δ/ logΔ + log∗ n) lower bound holds for an extension of

MIS called greedy coloring [15].

In order to better understand which tasks can be solved in

a number of rounds sublinear in Δ, we focus on the general

class of locally checkable labelings (LCL) introduced by Naor

and Stockmeyer [31], which includes all tasks mentioned so

far in this paper. Recall that a LCL is defined as a set of

bad labeled balls in graphs, where the ball of radius r ≥ 0
centered at node u in a graph G is the subgraph of G induced

by all nodes at distance at most r from u in G (excluding

edges between nodes at distance exactly r from u), and where

a label is assigned to each node. For instance, the bad balls

for coloring are the balls of radius 1 in which the center node

has the same label as one of its neighbors. Similarly, the bad

balls for MIS are the balls of radius 1 for which either the

center of the ball as well as one of its neighbors are both in

the MIS, or none of the nodes in the ball are in the MIS. Every

ball which is not bad is good. To each LCL is associated a

distributed task in which all nodes of an unlabeled graph G
must collectively compute a label at each node, such that all

balls are good. Thus, our general objective is to tackle the

following question:

What LCL tasks can be deterministically solved in
o(Δ) +O(log∗ n) rounds?

Given the state-of-the-art, we know since recently that answer

to the above question is affirmative for (Δ + 1)-coloring [3],

and there is also some very partial evidence hinting that this

may not be true for MIS-type problems [15], [18]. This also

leads us to ask what makes (Δ + 1)-coloring and MIS so

different? In the study of the randomized LOCAL model, a

separation in time complexity between (Δ + 1)-coloring and

MIS has very recently been obtained by contrasting the ran-

domized (Δ+1)-coloring algorithms of Harris, Schneider, and

Su [19] with lower bounds for MIS due to Kuhn, Moscibroda,

and Wattenhoffer [23]. However, this separation does not carry

over directly to the deterministic setting. Here, in an attempt

to advance understanding of the question for the deterministic

scenario, we put forward the framework of conflict coloring,

and show that efficient solutions to problems in the LOCAL

model can be obtained by taking advantage of their amenabil-

ity to the conflict coloring framework.

B. Our Results

a) The setting: We define the general conflict coloring
task, which can be instantiated so as to correspond to any

given LCL task. Roughly, conflict coloring is defined by a

list of candidate colors given to each node (in the same

spirit as list-coloring), and a list of conflicts between colors

associated to each edge (following a convention used, e.g.,

when formulating unique games, CSP-s with binary conflict

relations, etc.). For edge {u, v}, a conflict is a pair of the

form (cu, cv), indicating that a coloring where u has color

cu and v has color cv is illegal. Intuitively, given a LCL,

the corresponding instance of conflict coloring is obtained by

giving the list of all good balls centered at u to every node u,

and two balls given to adjacent nodes are in conflict whenever

they are not consistent. Every LCL task is therefore a possible

instantiation of conflict coloring (a given LCL task may have
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more than one conflict coloring representation). Note however

that the power of conflict coloring extends beyond such a

formulation of LCL tasks: depending on the instance, two

colors in conflict along an edge e do not, in general, need

to be in conflict along another edge e′ �= e.

We will speak of a conflict coloring with lists of length l
and conflict degree d, or more compactly of (l, d)-conflict-

coloring, when all color lists given to the nodes are of length

at least l, and for every edge e and color c, the number of

colors conflicting with color c on edge e does not exceed d.

Intuitively, the larger the value of l, the easier the problem is,

as every node has a choice among a large number of outputs.

Conversely, the larger d is, the harder the problem becomes

as some nodes have to deal with many conflicts with at least

one of their neighbors.

b) Distributed algorithm: Our main result is the design

of a generic distributed algorithm which solves the conflict

coloring task whenever l/d > Δ in graphs with maximum

degree Δ. In the classical LOCAL model for distributed net-

work computing, our algorithm performs in Õ(
√
Δ) + log∗ n

rounds in n-node graphs, where the Õ notation disregards

polylogarithmic factors in Δ.

The implications of our result are the following. There

exists a trivial representation of (Δ+1)-coloring as a conflict

coloring task with l/d ≥ Δ+1. Therefore, our algorithm can

be used to solve (Δ+1)-coloring in Õ(
√
Δ)+log∗ n rounds,

which outperforms the currently fastest known (Δ + 1)-
coloring algorithm by Barenboim [3] performing in Õ(Δ3/4)+
log∗ n rounds. In fact, for most classical variants of coloring,

including (2Δ−1)-edge-coloring, (Δ+1)-list-coloring, color-

ing with forbidden color-distance sets [36] given a sufficiently

large palette, etc., our algorithm solves all these tasks in

Õ(
√
Δ)+log∗ n rounds, also improving the best results known

for each of them. For small values of Δ, our (deterministic)

algorithm for conflict coloring is even faster than the best

known randomized algorithms for (Δ + 1)-coloring [19].

Interestingly, the bound l/d > Δ is essentially the best

bound for which there exists a generic algorithm solving

conflict coloring locally. Indeed, for every l and d such that

l/d ≤ Δ, there exists an instance of conflict coloring for

which no solutions can be sequentially computed by a greedy

algorithm selecting the nodes in arbitrary order. That is, the

output of a node can impact the possible legal outputs of

far away nodes in the network (like for Δ-coloring [25]). In

particular, we are not aware of any instantiations of conflict

coloring for MIS or maximal matching satisfying l/d > Δ,

which prevents us from solving these problems with a generic

algorithm for conflict coloring. It might well be the case

that there are no instantiation of conflict coloring for these

problems satisfying l/d > Δ, which might be another hint that

there are no algorithms running in o(Δ) + O(log∗ n) rounds

for these tasks.

c) The techniques: From a technical point of view, the

design of our algorithm required the development of a new

technique, called a simplification mechanism. This mechanism

aims at iteratively reducing the difficulty of a given problem

until it becomes simple enough to be trivially solved. More

specifically, let P0 be the problem we are aiming at solving.

Our mechanism constructs a sequence P1, . . . , Pt of problems

with the following three properties: (1) Pk+1 is “easier” to

solve than Pk, and can be constructed from Pk in O(1) rounds,

(2) Pt is simple enough to be solved individually at each

node, without any communication, and (3) given a solution to

Pk+1, there is a O(1)-round algorithm computing a solution

to Pk. Conflict coloring is perfectly suited to an application

of the aforementioned simplification mechanism. Indeed, the

set of colors in P0 are those in the lists given to the nodes in

G. Constructing Pk+1 from Pk increases the size of the lists

(which is good), but the number of conflicts between colors

also increases (which is bad). However, the increase rate of

the number of conflicts will be shown to be lower than the

increase rate of the size of the lists, which will eventually

ensure that Pt is easily solvable thanks to large lists, but a

relatively small number of conflicts.

In conflict coloring, the main difficulty lies in obtaining a

O(log∗ n)-round algorithm for solving an instance with ratio

l/d ≥ 10�Δ2 lnΔ, given a graph with maximum degree Δ and

edge orientation with maximum outdegree �Δ. Subsequently,

the conflict coloring problem then turns out to be directly

amenable to an application of the arbdefective coloring ap-

proach (cf. [6], [7]), without having to resort to constructions

of polynomials of the type used in [3] during the recombi-

nation phase. This is because the class of conflict coloring

problems solved by our algorithm includes precoloring exten-
sion (i.e., completing a partially given coloring of a graph),

which can be handled directly through a modification of color

lists available to vertices. By a careful (adaptive) choice of

parameters of the arbdefective coloring, the complexity of our

algorithm is reduced to Õ(
√
Δ) + log∗ n rounds.

Disregarding polylogarithmic-in-Δ factors, the
√
Δ-running

time of our algorithm appears to be the limit of the precoloring

extension technique, unless radically new algorithms are found

to construct colorings in O(log∗ n) rounds using significantly

fewer colors than Õ(Δ2). This latter problem has resisted all

attempts for more than 20 years, since the publication of [25].

d) Additional results: Our result has also impact on

centralized local computation [12], [27], [28], [32], [37]. In

this model, the local computation algorithm (LCA) is executed

by a single computing unit which has access to the whole

input graph, and needs to answer queries about a solution to

the considered problem (e.g., “is node u in the MIS?”). For

answering queries, the LCA probes the input graph, learning

in each probe about some node u and its neighborhood.

The answers to the queries provided by the LCA must be

consistent, that is, there must exist an implicit global solution

that fits with the answers of the LCA. The complexity of such

an algorithm is the number of probes that the LCA performs

per query. Using our algorithm for conflict coloring, we show

that there is a deterministic oblivious LCA for solving (Δ+1)-
list-coloring (and thus also (Δ + 1)-coloring) using only

ΔO(
√
Δ log5/2 Δ) log∗ n probes, improving the bound in [12].
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C. Other Related Work

In addition to the aforementioned deterministic algorithms

for (Δ + 1)-coloring, it is worth mentioning the randomized
algorithms for MIS in [1], [26], which both perform in

O(log n) rounds, with high probability. Both algorithms can be

transformed into randomized (Δ+1)-coloring algorithms with

the same round-complexity (e.g., using the reduction in [25]).

A “direct” randomized algorithm for (Δ + 1)-coloring with

the same performances as these latter algorithms can be found

in [7]. As a function of Δ and n, the best known randomized

algorithms for (Δ + 1)-coloring, as well as for (Δ + 1)-list-

coloring, perform in O(
√
logΔ) + 2O(

√
log logn) rounds with

high probability [19]. This result, combined with a previous

lower bound on MIS of Ω(logΔ/ log logΔ) rounds [23],

which also holds for randomized algorithms, implies a sep-

aration between the (Δ + 1)-coloring and MIS problems in

the randomized case. On the positive side, MIS can be solved

in O(log2 Δ)+2O(
√
log logn) rounds with high probability [9].

We remark that the randomized and deterministic flavors of the

LOCAL model are significantly different, and in fact admit an

exponential time separation, which has been recently shown

for specific case of the problem of coloring a tree with Δ
colors [10]. Whether a similar separation between randomized

and deterministic complexity holds for MIS and the general

(Δ + 1)-coloring problem is one of the main open questions

of the field.

The list-coloring problem was introduced independently by

Vizing [40], and Erdös, et al. [11]. It is defined as follows. Let

G be a graph, let C be a set of colors, and let L : V → 2C . If

there exists a function f : V → C such that f(v) ∈ L(v) for

every v ∈ V (G), and f(u) �= f(v) for every {u, v} ∈ E(G),
then G is said to be L-list-colorable. A graph is k-choosable,

or k-list-colorable, if it has a list-coloring no matter how one

assigns a list of k colors to each node. The choosability num-
ber ch(G) of a graph G is the least number k such that G is

k-choosable. Clearly, ch(G) ≥ χ(G), where χ(G) denotes the

chromatic number of G. Computing the choosability number

is actually believed to be harder than computing the chromatic

number, because deciding the former is ΠP
2 -complete, while

deciding the latter is NP-complete. In a distributed setting,

(Δ + 1)-list-coloring is solvable in O(Δ + log∗ n) rounds by

reduction to vertex-coloring. It was also recently proved to be

solvable in time dependent on the size of the set of allowed

colors, in Õ(|C|3/4) +O(log∗ n) rounds [3].

It is also worth specifically mentioning the weak-coloring
problem, which asks for a coloring of the nodes such that

every non isolated node has at least one neighbor colored

differently from it. It was proved in [31] that, in bounded-

degree graphs with odd degrees, 2-weak-coloring can be

solved in a constant number of rounds. This is one of the

rare non-trivial distributed symmetry-breaking tasks that are

known to be solvable in a constant number of rounds (in

general, it is undecidable whether a solution to a locally

checkable task can be constructed in constant time [31]).

In graphs with constant maximum degree, for all locally

checkable tasks, as well as their probabilistic extension [14],

any randomized construction algorithm running in a constant

number of rounds can be derandomized into a deterministic

algorithm running in the same number of rounds [13], [31].

However, this derandomization result does not necessarily

hold for randomized algorithms running in a non-constant
numbers of rounds. For example, it is not known whether there

exists a deterministic (Δ+1)-coloring algorithm running in a

polylogarithmic number of rounds, or in other words, it is not

known whether randomization helps for distributed (Δ + 1)-
coloring.

Many other types of coloring have been considered in the

literature, including using a larger number of colors, coloring

the edges instead of the nodes, defective coloring, etc., and

some of these tasks have been tackled in specific classes of

graphs (planar, bounded arboricity, etc.). We refer to [7] for

an excellent survey, also describing the various techniques of

reductions between coloring, MIS, maximal matching, etc.

Regarding the centralized local model, essentially the same

problems as for the distributed LOCAL model have been

studied, such as, e.g., maximal independent set [37], and Max-

imum Matching [27], for which algorithms were devised. A

recent paper [12] studies the relationship between the LOCAL

model and the centralized local computation model, including

ways to adapt algorithms from the LOCAL model to the

centralized local setting. The resulting LCAs are deterministic

and oblivious (they do not require to store information between

queries), and, above all, they require a smaller number of

probes than previously known algorithms. In particular, the

method from [12] yields a centralized Δ2-coloring LCA run-

ning in O(poly(Δ)·log∗ n) probes per query, and a centralized

(Δ+ 1)-coloring LCA running in ΔO(Δ2) · log∗ n probes per

query.

II. MODEL, PROBLEM SETTING, AND PRELIMINARIES

A. The LOCAL Model

We consider the usual framework for the analysis of locality

in network computing, namely the LOCAL model [35]. In this

model, a network is modeled as a connected and simple n-

node graph (i.e., no loops, and no multiple edges). Each node

v of a network is given an identity, denoted by id(v). This

identity is a positive integer that is assumed to be encoded

on O(log n) bits, and the identities of the nodes in the same

network are pairwise distinct. In addition, every node v may

also be given an input inp(v) ∈ {0, 1}∗.
For the sake of defining conflict coloring, we assume that

the edges incident to a degree-δ node are identified by pairwise

distinct labels in {1, . . . , δ}, called port numbers. No consis-

tency between the port numbers at different nodes is assumed

(in particular, an edge may have two different port numbers

at its two extremities). Again, these port numbers are solely

used for describing the input to every node in the context of

conflict coloring, and provide no additional computing power

to the LOCAL model (since nodes have identities).

In any execution of an algorithm A in the LOCAL model,

all nodes start at the same time. Initially, every node is only
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aware of its identity, and its input. As is usual in the framework

of network computing, and for simplifying the description of

the algorithm, we also assume that each node initially knows

a polynomial upper bound on the total number n of nodes.

(See [21] for techniques enabling to get rid of this assumption).

Then all nodes perform a sequence of synchronous rounds.

At each round, every node sends a message to its neighbors,

receives the messages of its neighbors, and performs some

individual computation. Which messages to send, and what

computation to perform depend on the algorithm A. The

complexity of algorithm A in n-node graphs is the maximum,

taken over all n-node graphs G, of the number of rounds

performed by A in G until all nodes terminate.

Note that, whenever t is known a priori, an algorithm A
performing in t rounds can be simulated by an algorithm B
performing in two phases: First, in a network G, every node

v collects all data from nodes at hop distance at most t from

v (i.e., their identities, their inputs, as well as the structure

of the connections between these nodes); Second, every node

simulates the execution of A in BG(v, t), where BG(v, t) is

the ball of radius t around node v in graph G, that is, BG(v, t)
is the subgraph of G induced by all nodes at distance at most

t from v, excluding the edges between the nodes at distance

exactly t from v. Hence, the LOCAL model enables to measure

the locality of a problem.

An algorithm satisfying the property that the output of

every node is the same for all possible identity assignments

to the nodes of the network is called identity-oblivious, or ID-
oblivious for short.

a) Notation: We denote by degG(v) the degree of a

node v in a graph G, that is the number of neighbors of

v in G, or, alternatively, the number of edges incident to

v in G (recall that G is a simple graph). We denote by

ΔG = maxv∈V (G) degG(v) the maximum degree of the nodes

in G. The set of neighbors of node v in graph G is denoted

by NG(v). Given an orientation of the edges of G, the set

of out-neighbors of v (nodes connected to v by edges having

their tail at v) is denoted by �NG(v), and the maximum node

outdegree is denoted by �ΔG. When the graph G is clear from

the context, the index G will be omitted from notation.

B. Conflict Coloring

Conflict coloring is defined as follows. Let C be a finite

set, whose elements are called colors. In graph G, each node

u ∈ V (G) is given as input

• a list L(u) of colors in C, and

• for every port number i ∈ {1, . . . , degG(u)}, a list

Ci(u) =
(
(c1, c

′
1), . . . , (ck, c

′
k)
)

of conflicts, where cj ∈
L(u) and c′j ∈ C for every j = 1, . . . , k.

To be well defined, the instance must satisfy the constraint

that if (c, c′) ∈ Ci(u) and u′ is the neighbor of u reachable

from u via port i, then (c′, c) ∈ Cj(u
′), where j is the port

number of edge {u, u′} at u′. Each node u in G must output a

color out(u) ∈ L(u) such that, for every edge {u, v} with port

number i at u, we have (out(u), out(v)) /∈ Ci(u). That is, two

adjacent nodes cannot be colored with a pair of colors that is

indicated as a conflict for that edge. A given conflict coloring

instance has conflict degree d if, for all colors c, there are at

most d pairs of the form (c, ·) in any of the lists Ci(u). The

conflict degree d represents the maximum number of possible

conflicts of one colors with other colors of one given neighbor.

For instance, (Δ + 1)-coloring is the instance of conflict

coloring with L(u) = {1, . . . ,Δ+1}, and all conflict lists are

of the form (c, c) for all c ∈ {1, . . . ,Δ+1}. Expressing MIS

as an instance of conflict coloring is not as straightforward.

One way of doing this is the following. Assign lists of the form

L(u) = {0, 1} × {1, . . . ,Δ} to every node u. A color is thus

a pair of integer values, where a color in the form of a pair

(1, i), for any i ∈ {1, . . . ,Δ}, is interpreted as “u ∈ MIS”,

and a color (0, i) is likewise interpreted as “u /∈ MIS, but the

neighbor of u reachable via port i belongs to the MIS”. We

set a conflict along the edge from vertex v, following the i-th
port to a neighboring vertex u, for all color pairs of the form

(1, j) at v and (1, k) at u, for all j, k ∈ {1, . . . ,Δ}, as well

as for all color pairs of the form (0, i) at v and (0, j) at u, for

all j ∈ {1, . . . ,Δ}.
In fact, any LCL task can be expressed as an instance of

conflict coloring. To see why, let us revisit MIS, and let us

define MIS as an instance of conflict coloring in a brute force

manner. One assigns L(u) = {S1, . . . , S2δ} to every node u
of degree δ, where S1 is the (δ + 1)-node star with center

labeled 1 and all leaves labeled 0, and, for j > 1, Sj is a

(δ+1)-node star with center labeled 0,
(
δ
x

)
leaves labeled 1 for

some x ∈ {1, . . . , δ}, and all other leaves labeled 0. Conflicts

in Ci(u) are between incompatible stars Sj at u and S′k at u′

where the latter is the neighboring node of u reachable from u
via port i. More generally, any LCL task can be expressed as

an instance of conflict coloring by assigning to every node u
a list of colors consisting of all good balls centered at u, and

conflicts are between inconsistent balls between neighboring

nodes.

For the sake of describing our algorithm, we define the

conflict graph F associated to an instance of conflict coloring

on G = (V,E). The conflict graph F is the simple undirected

graph with vertex set

V (F ) = {(v, c) : v ∈ V (G), c ∈ L(v)},
and edge set

E(F ) = {{(u, c), (u′, c′)} : (c, c′) ∈ Ci(u)}.
where i is the port number of edge {u, u′} ∈ E(G) at node u.

In other words, to every edge e = {u, u′} ∈ E(G) corresponds

a bipartite graph with partitions L(u) and L(u′), and there is

an edge between a color c ∈ L(u) and a color c′ ∈ L(u′) if

and only if these two colors are in conflict for edge e. For

a conflict coloring in a graph of maximum degree Δ, and

conflict degree d, the conflict graph has degree at most dΔ.

Let us note that, in conflict coloring, there is an interplay

between the size, l, of the lists of available colors at each node

(the larger the better as far as solving the task is concerned),

and the conflict degree, d, of the colors along each edge (the

smaller the better). We define (l, d)-conflict coloring as conflict
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coloring with all lists of size l, and the conflict degree at

most d. In the rest of the paper, we shall show that if the

ratio between these two quantities is large enough, namely

l/d > Δ, then (l, d)-conflict coloring in solvable in a sublinear

(in Δ) number of rounds. For instance, (Δ + 1)-list-coloring

corresponds to l = Δ + 1, and d = 1, hence the ratio l/d
is sufficient to be covered by our approach. By contrast, for

the previously described representation of MIS as conflict

coloring, we have l = 2Δ and d = Δ, hence l/d = 2.3

C. Organization and Proof Outline

In Sections III and IV we provide the techniques and

algorithms for solving (l, d)-conflict coloring for l/d > Δ.

Section III lays out the main ingredient, namely, a routine for

conflict coloring in O(log∗ n) rounds when l/d ≥ 10Δ2 lnΔ
in a graph of maximum degree Δ, or more generally when

l/d ≥ 10�Δ2 lnΔ and an orientation of the edges of the

graph with outdegree �Δ is given. This is achieved by an

application of our instance simplification technique, since the

existence of color lists in the problem description precludes

the application of simpler color reduction mechanisms (e.g.,

of the sort used by Linial [25] for Δ2-vertex coloring).

In Section IV we then solve any conflict coloring problem

with l/d > Δ by applying the routines from Section III

on specific vertex-disjoint oriented subgraphs of G. These

subgraphs are carefully constructed using the technique of

arbdefective coloring [3], in such a way as to have sufficiently

small outdegree β for the condition l/d ≥ 10β2 lnΔ to hold

within them. Finally, in Section V we discuss implications of

our conflict coloring routines for centralized LCAs, both in

the case of l/d ≥ 10Δ2 lnΔ and l/d > Δ.

III. INSTANCE SIMPLIFICATION

Our simplification mechanism, which allows us to generate

progressively easier conflict coloring problems on a graph G,

is now captured by the following key lemma. We will apply it

to “simplify” a (l, d)-conflict-coloring problem P = P0, such

that l/d ≥ 10�Δ2 lnΔ, into one with a larger ratio l/d.

Lemma III.1. Let G be a graph with maximum degree Δ
and a given edge orientation of outdegree at most �Δ. Let Pi

be an instance of a (li, di)-conflict-coloring problem on graph
G. Then, for some integers li+1, di+1, there exists an instance
Pi+1 of (li+1, di+1)-conflict-coloring on graph G, such that:

1) There exists an ID-oblivious single-round local dis-
tributed algorithm which, given the input of each node
in Pi, outputs for each node its input in Pi+1.

2) There exists an ID-oblivious single-round local dis-
tributed algorithm which, given any valid output of each
node in Pi+1, outputs for each node a valid output for
Pi.

3A simple argument illustrating that l/d = 2 is essentially the best
ratio which can be achieved when using natural conflict-coloring-based
representations of MIS is given in the full version of the paper.

3) The following condition is fulfilled for any ε > 0, when
�Δ is larger than a sufficiently large constant:

li+1

di+1
>

1

Δ
exp

(
1

(e2 + ε)�Δ2

li
di

)
.

We construct instance Pi+1 = (Li+1, Fi+1) over color set

Ci+1 from instance Pi = (Li, Fi) over color set Ci as follows.

We define the color set Ci+1 as the collection of all the

subsets of size ki = 	 li
e2di

�Δ

 of Ci. For each node v, we

will now appropriately define its color list Li+1(v) ⊆
(
Li(v)
ki

)
by selecting into Li+1(v) a constant proportion of all ki-
element-subsets of Li(v). The adopted value of parameter ki
is the result of a certain tradeoff: increasing ki further would

indeed increase the list length li+1, but would also result in an

explosion of the number of conflicts di+1 (the ratio li+1/di+1

needs to be controlled in view of Clause 3). The details of the

construction of lists Li+1 are deferred until later in the proof.

Next, let τi = 	ki
�Δ

 − 1 be a threshold parameter, which

we will use to define the edge set of the conflict graph Fi+1.

For a pair of neighboring nodes {u, v} ∈ E, we denote by

Su
i (v, cv) the set of all colors at vertex u in conflict with color

cv at vertex v in problem Pi. We now define the following

symmetric conflict relation (∼) on V × Ci+1 for the problem

Pi+1:

(u,Cu) ∼ (v, Cv)⇔
{ ∣∣Cu ∩

⋃
cv∈Cv

Su
i (v, cv)

∣∣ > τi
or

∣∣Cv ∩
⋃

cu∈Cu
Sv
i (u, cu)

∣∣ > τi

When looking a the left-hand-side of the above relation,

it is convenient to think of Cu and Cv as candidates for

color values, which are being considered for inclusion in the

lists Li+1(u) and Li+1(v) of nodes u and v, respectively,

in problem Pi+1. When looking at the right-hand side, we

treat Cu and Cv as sets of colors with respect to problem Pi.

Subsequently, when defining the color lists in problem Pi+1,

we will eliminate those configurations of candidates which

generate too many conflicts in node neighborhoods in problem

Pi.

The above relation, when restricted to permissible vertex

colors, defines conflict edges for Fi+1: given colors Cu ∈
Li+1(u) and Cv ∈ Li+1(v) (where we recall that Cu ⊆ Li(u)
and Cv ⊆ Li(v)), we put:

{(u,Cu), (v, Cv)} ∈ E(Fi+1) ⇐⇒ (u,Cu) ∼ (v, Cv). (1)

For this definition of the edge set of Fi+1, we immediately

show how to convert any valid solution to Pi+1 into a solution

for Pi in a single communication round. Indeed, observe that if

a node v knows its output outi+1(v) for Pi+1 and the outputs

of all its out-neighbors in the considered orientation, then it

can obtain a valid color in Pi by returning an arbitrary element

of the set outi+1(v) which does not conflict with any of the

colors belonging to the corresponding sets of its out-neighbors:

outi(v) ∈ outi+1(v) \
⋃

u∈ �NG(v)

⋃
cu∈outi+1(u)

Sv
i (u, cu). (2)
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Since, by assumption, the considered solution to Pi+1 was

correct, we have (u, outi+1(u)) �∼ (v, outi+1(v)). It follows

from the definition of relation (∼) that in the right-hand-side

of expression (2), each element of the union over u ∈ �NG(v)
eliminates at most τi elements from the set outi+1(v). More-

over, since we have |outi+1(v)| = ki ≥ �Δτi + 1, the set

from which we are choosing outi(v) is always non-empty.

Finally, the construction of (2) is such that color outi(v)
cannot conflict with any other color assigned to any of its

neighbors in the obtained solution to Pi. Thus the obtained

solution to Pi is conflict-free with respect to every edge of G,

which completes the proof of Clause 2 of the Lemma.
In the rest of the construction, we focus on a careful

construction of color lists Li+1(v) ⊆
(
Li(v)
ki

)
, so as to ensure

the local constructibility of the input instance to Pi+1 in a

single round (Clause 1) and a sufficiently large ratio li+1/di+1

(Clause 3). The value of di+1 will be fixed as:

di+1 := 8Δ

(
kidi
τi

)(
li

ki − τi

)
.

We will proceed with the construction of lists Li+1 by

including all ki-element subsets of Li(v) in Li+1(v), and then

we eliminate some colors from Li+1(v) which would generate

too many conflicts in Pi+1 with any of the possible colors for

neighbors u ∈ NG(v). Formally, for all v ∈ V , we set:

Di,v(u) :=

{
Cv : |{Cu : (u,Cu) ∼ (v, Cv)}| > di+1

2

}
(3)

Li+1(v) :=

(
Li(v)

ki

)
\

⋃
u∈NG(v)

Di,v(u) (4)

The above setting guarantees that the conflict degree bound of

di+1 is indeed satisfied by problem Pi+1. We now show that

the condition |Li+1(v)| ≥ 1
2

(
li
ki

)
is met for all vertices. To

lower bound the size of Li+1(v), we will prove that for each

neighbor u of a node v, at most 1
2Δ

(
li
ki

)
subsets are removed

from Li+1(v) when considering conflicts between u and v.

Claim III.1. For any v ∈ V and u ∈ NG(v), we have:

|Di,v(u)| ≤ 1

2Δ

(
li
ki

)
Proof. Consider the bipartite graph with vertex partition

Av ∪ Au, where Av = {(v, Cv) : Cv ∈ (
Li(v)
ki

)} and

Au = {(u,Cu) : Cu ∈ (
Li(u)
ki

)}, and a set of edges E∼
defined by the conflict relation (u,Cu) ∼ (v, Cv) on its nodes.

Our goal is to bound the number of vertices in partition Av

having degree at least
di+1

2 with respect to E∼ . We will

first bound the number of edges in E∼ as follows. For a

fixed set Cu ∈ (
Li(u)
ki

)
, we bound the number x1 of sets

Cv ∈
(
Li(v)
ki

)
satisfying the first of the conditions which appear

in the definition of relation (∼):∣∣∣∣∣Cu ∩
⋃

cv∈Cv

Su
i (v, cv)

∣∣∣∣∣ > τi. (5)

Taking into account that Pi is an instance of conflict coloring

with conflict degree at most di, for any color cv at v we have

Su
i (v, cv), and so |⋃cv∈Cv

Su
i (v, cv)| ≤

∑
cv∈Cv

di = kidi. It

follows that x1 can be bounded by the following expression:

x1 ≤
(
kidi
τi

)(
li

ki − τi

)
=

1

8Δ
di+1.

Thus, overall, the number of edges of E∼ satisfying Eq. (5)

is at most x1|Au| ≤ 1
8Δdi+1

(
li
ki

)
. By a symmetric argument,

the number of edges contributed by the other condition in the

definition of relation (∼) (i.e.,
∣∣Cv ∩

⋃
cu∈Cu

Sv
i (u, cu)

∣∣ >

τi), is also 1
8Δdi+1

(
li
ki

)
. Overall, we have:

|E∼| ≤ 1

4Δ
di+1

(
li
ki

)
.

The average degree δ∼ of a node in Av with respect to E∼
is thus bounded by δ∼ ≤ 1

4Δdi+1. Since only at most
|Av|
2Δ =

1
2Δ

(
li
ki

)
nodes in Av can have a degree higher than 2Δδ∼ ≤

di+1

2 , the claim follows.

As a direct corollary of the above claim and of the defi-

nition of Li+1(v) in (3), we have obtained the sought bound

|Li+1(v)| ≥ 1
2

(
li
ki

)
. Formally, to guarantee that Pi+1 is an

instance of a (li+1, di+1)-conflict-coloring problem with lists

of size precisely equal to:

li+1 :=
1

2

(
li
ki

)
,

in the case when the size of some Li+1(v) still exceeds li+1,

node v removes arbitrarily some elements of Li+1(v) so that

its size becomes exactly li+1. Bearing in mind the description

of color lists Li+1 according to Eq. (3) and the edges of

the conflict graph Fi+1 according to Eq. (1), a single-round

distributed algorithm for computing an instance of Pi+1 based

on an instance of Pi follows directly from the construction.

This completes the proof of Clause 1 of the Lemma.

Finally, we complete the proof by showing that Clause 3
is also satisfied by taking into account the known properties

of li+1, di+1, ki, and τi. For all omitted proofs, we refer the

reader to the full version of the paper.

The following lemma provides a criterion which allows

us to determine the necessary number of iterations of the

proposed simplification mechanism. It states that we can

solve a (l, d)-conflict-coloring problem directly, without any

further communication, given that the ratio l/d is sufficiently

large, subject to some additional assumptions constraining the

structure of the input instance. This is achieved through a

greedy assignment of colors for the sufficiently simplified

problem instance.

Lemma III.2. Consider an instance of the (l, d)-conflict
coloring problem on a graph G with maximum degree Δ,
such that the list of colors available to all nodes is {1, . . . , l}.
Suppose the following information available to all nodes:
• Each node v ∈ V receives its input inp(v) for the

corresponding (l, d)-conflict coloring instance P for v,
accompanied by an integer label λ(v) ∈ {1, . . . , s},
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such that λ(V ) is a s-vertex-coloring of the graph (i.e.,
λ(u) �= λ(v) for all {u, v} ∈ E(G)),

• A promise is given to all nodes v ∈ V that inp(v) ∈ I ,
where I is a set known to all nodes.

If l
d > Δs|I|, then a solution to P can be found in a local

manner without communication (in 0 rounds).

We can now combine the claims of Lemma III.1 and

Lemma III.2 to show that any conflict coloring problem P0,

given a sufficiently large initial ratio l0/d0, will after a small

number of rounds be simplified by iterated application of

Lemma III.1 into a conflict coloring problem Pt, which is

solvable without communication in view of Lemma III.2. This

leads us to the main technical lemma of this Section.

Lemma III.3. For a graph G with maximum degree Δ, a
given orientation of edges with maximum outdegree �Δ, and a
s-coloring of the vertex set, any instance of the (l, d)-conflict
coloring problem with l

d ≥ 10�Δ2 lnΔ can be solved with
a local distributed algorithm in O(log∗ s + log∗Δ + log∗ d)
rounds.

Lemma III.3 can be applied to solve (l, d)-conflict coloring

on any graph G, using a O(Δ2) initial coloring. This coloring

is computed in log∗ n+O(1) rounds using Linal’s algorithm

[25]. We thus obtain the following theorem.

Theorem III.1. There is a local distributed algorithm which
solves the (l, d)-conflict-coloring problem in O(log∗ d +
log∗Δ) + log∗ n rounds when l

d ≥ 10Δ2 lnΔ.

For example, for the special case of list coloring, this gives

the following corollary.

Corollary III.1. There is a local distributed algorithm
which finds a (10Δ2 lnΔ)-list-coloring in log∗ n+O(log∗Δ)
rounds.

In the next section, we will use Theorem III.1 as a building

block for solving conflict coloring instances with a smaller

value of ratio l/d.

IV. CONFLICT COLORING WITH A SMALL NUMBER OF

COLORS

In this section we show how to apply the techniques from

Section III to obtain a distributed solution to (l, d)-conflict

coloring problems with l ≥ d · Δ + 1, such as (Δ + 1)-list-

coloring.

Whereas we choose to speak of conflict colorings through-

out the rest of the paper, we will no longer make use of

the general structure of conflict colorings in our technical

arguments. The reader focusing on results directly relevant

to the (Δ + 1)-coloring problem may from now on assume

that the problem being solved is (Δ + 1)-list-coloring (and

specifically, that the conflict degree is d = 1), and in this

context, may rely on Corollary III.1 instead of Theorem III.1

as the relevant ingredient used in the subsequent construction.

In the designed algorithm we will also make use of the

following recent result on arbdefective coloring, shown by

Barenboim [3]. For β ≥ 0, a (possibly improper) vertex

coloring of a graph G is said to be β-arbdefective if there

is an orientation of the edges of G such that, for every node

v, at most β out-neighbors of v have the same color as v.

Lemma IV.1 ( [3]). There is a distributed algorithm, param-
eterized by k ≥ 1, which, given any graph G with a Δ2-
coloring of its vertex set, produces for β = O(Δk logΔ) a β-
arbdefective k-coloring V = V1∪ . . .∪Vk of G, together with
a corresponding orientation of each G[Vi] having outdegree
at most β. The running time of the algorithm is O(k logΔ)
rounds.

Our conflict coloring procedure will assume our graph G
is already equipped with a Δ2-coloring. This can be initially

computed using Linial’s algorithm [25], in log∗ n rounds.

Lemma IV.2. Given a Δ2-vertex coloring of graph G of
maximum degree at most Δ, there is an algorithm which solves
any conflict-coloring instance on G having conflict degree at
most d and color lists L such that |L(v)| ≥ d ·degG(v)+1 for
all v ∈ V , in at most O(

√
Δ log1.5 Δ(logΔ+log∗ d)) rounds.

Proof. We restrict considerations to the case where Δ is larger

than some fixed constant Δ′ > 0; otherwise, an appropriate

conflict coloring can be obtained in O(Δ′2) = O(1) rounds

by greedily assigning in each round colors to all vertices of

successive independent sets, corresponding to color classes of

the given Δ2-coloring of G.

We will design a conflict-coloring procedure A, which

satisfies the assumptions of the lemma. For a graph G, the

procedure starts by constructing the β-arbdefective k-coloring

V = V1 ∪ . . . ∪ Vk from Lemma IV.1, for a certain parameter

k that will be explicitly stated later. Each of the subgraphs

G[Vi] now has an edge orientation with maximum outdegree

at most β = Δ
k logΔ, and its vertices are also equipped with

locally unique identifiers in the range {1, . . . ,Δ2} by virtue

of the given Δ2-vertex coloring.

Now, we are ready to solve the conflict-coloring problem

on G for a given assignment of lists L such that |L(v)| ≥ d ·
degG(v)+1 for all v ∈ V . Our algorithm proceeds in k stages,

obtaining in the i-th stage a valid (final) conflict-coloring

of G[Ui] for a specifically defined subset Ui ⊆ V1 . . . ∪ Vi

(we let U0 = ∅), i.e., out(v) ∈ L(v) and the color pair

(out(v), out(u)) is not forbidden for the edge (v, u), for all

v ∈ Ui, u ∈ NG[Ui](v). Let Sv(u, cu) ⊆ L(v) denote the set

of colors available to a node v which are in conflict with a

color cu at neighboring node u; we recall that |Sv(u, cu)| ≤ d.

For i ≥ 1, given a valid conflict-coloring of G[Ui−1] at the

beginning of the stage, we create for each v ∈ Vi a list of

colors L′(v) = L(v) \ ⋃u∈Ui−1∩NG(v) S
v(u, out(u)), which

may be used at v to extend the conflict coloring of Ui−1. Now,

we use Lemma III.3 to perform a conflict coloring, restricted

to color lists L′, for the oriented subgraph of G[Vi] induced by

those vertices v ∈ Vi, for which the assumptions of the Lemma

are satisfied (i.e., |L′(v)| ≥ 10dβ2 lnΔ). This coloring routine

takes O(log∗Δ+ log∗ d) rounds.

We observe that if a vertex v ∈ Vi is colored during the
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phase, then it receives a color out(v) ∈ L′(v) ⊆ L(v), which

does not conflict with the colors of any of its neighbors in Ui−1

or simultaneously colored vertices from Vi; we thus construct

Ui by adding to Ui−1 all vertices colored in the current phase.

If, on the other hand, if vertex v ∈ Vi does not receive a

color, then we must have |L′(v)| < 10dβ2 lnΔ. By definition,

L′(v) consists of the colors in L(v) which are not in conflict

with colors chosen in a previous step. For a previously

colored neighbor u ∈ Ui, the color out(u) is in conflict

with at most d colors in L(v). Hence, the number of already

colored neighbors is |NG[Ui−1](v)| ≥ (|L(v)| − |L′(v)|)/d >
degG(v) − 10β2 lnΔ. In other words, there are at most

10β2 lnΔ neighbors of v who did not receive a color yet.

Finally, at the end of the k-th stage of the coloring process,

we are left with a set V ∗ = V \ Uk of uncolored vertices.

We observe that our conflict-coloring of G can now be com-

pleted correctly by conflict-coloring the graph G∗ = G[V ∗].
We define Δ∗ = 10β2 lnΔ, having Δ∗ ≥ ΔG∗ . Moreover,

we can complete the conflict-coloring of G by merging the

so-far obtained coloring out on Uk with the conflict-coloring

of G∗, with inherited conflicting color pairs and color lists L∗

defined for v ∈ V ∗ as:

L∗(v) = L(v) \
⋃

u∈Uk∩NG(v)

Sv(u, out(u)).

Since |L(v)| ≥ d degG(v) + 1 and Uk ∩NG(v) = degG(v)−
degG∗(v), it follows that |L∗(v)| ≥ d degG∗(v)+1, for all v ∈
V ∗. Thus, we may now complete procedure A by recursively

applying A to find a list-coloring on G∗ with lists L∗, and

merge the obtained colorings for Uk and V ∗. By assumption,

procedure A on G∗ must be given a (Δ∗)2-vertex coloring

of G∗, which we can compute using Linial’s color reduction

mechanism, based on the given Δ2-coloring of G, in log∗Δ
rounds. Overall, denoting by TA(Δ) an upper bound on the

running time of algorithm A on a graph of maximum degree

at most Δ, we obtain the following bound:

TA(Δ) ≤ O(k logΔ) +O(k(log∗Δ+ log∗ d))

+O(log∗Δ) + TA(O(β2 logΔ)),

where the first component of the sum comes from the routine

of Lemma IV.1, the second one is the time of the k stages

of coloring graphs G[Vi], the third stage is the time of

(Δ∗)2-coloring graph G∗, and the final stage comes from the

recursive application of procedure A. Taking into account that

β = O(Δk logΔ), we obtain:

TA(Δ) ≤ O(k(logΔ + log∗ d)) + TA(O(Δ
2

k2 log3 Δ)).

The above expression is minimized for an appropriately chosen

(sufficiently large) value k = O(
√

Δ log3 Δ), for which we

eventually obtain TA(Δ) = O(
√
Δ log1.5 Δ(logΔ+ log∗ d)).

We thus obtain the main result of our paper.

Theorem IV.1. There is a distributed algorithm which solves
any conflict-coloring instance on G with conflict degree at

most d and color lists L such that |L(v)| ≥ d degG(v)+1 for
all v ∈ V , in at most O(

√
Δ log1.5 Δ(logΔ+log∗ d))+log∗ n

rounds.

We remark that, for any conflict coloring problem in which

the conflict degree d is constant or bounded by any reasonable

function of Δ (i.e., log∗ d = O(logΔ)), the obtained round

complexity simplifies to O(
√
Δ log2.5 Δ) + log∗ n. In partic-

ular, for the case of (Δ + 1)-list-coloring, we have d = 1,

giving the following corollary.

Corollary IV.1. There is a distributed algorithm for the
distributed (Δ + 1)-list-coloring problem, performing in
O(
√
Δ log2.5 Δ) + log∗ n rounds.

V. A CENTRALIZED LOCAL ALGORITHM FOR

CONFLICT-COLORING

In this section, we provide algorithms for solving the

conflict coloring problem in the model of centralized local

computation. These LCAs are obtained by adapting our dis-

tributed algorithms for the LOCAL model to the centralized

local model, using the guidelines in [12]. As a special case,

we obtain an LCA for (Δ + 1)-coloring algorithm with a

smaller probe complexity (in terms of n and Δ) than the

best previously known approach. Throughout this section we

assume a reasonably small conflict degree for the problem (i.e.,

log∗ d = O(logΔ)).

Theorem V.1. There is a deterministic oblivious LCA for
solving an instance of (l, d)-conflict coloring, satisfying the
following:
• if l/d ≥ 10Δ2 lnΔ, then the algorithm performs

ΔO(log∗Δ) log∗ n probes per query.
• if l/d > Δ, then the algorithm performs

ΔO(
√
Δ log2.5 Δ) log∗ n probes per query.

Considering list-coloring as a special case of conflict-

coloring, we get the following corollary.

Corollary V.1. There is a deterministic oblivious LCA for list-
coloring, which runs in ΔO(log∗Δ) log∗ n probes per query
when all color lists are of length at least 10Δ2 lnΔ, and in
ΔO(

√
Δ log2.5 Δ) log∗ n probes per query when all color lists

are of length at least Δ+ 1.

VI. CONCLUSION

This paper presents the problem of (l, d)-conflict-coloring

in a twofold light. First of all, we show that it is a general-

ization of numerous symmetry-breaking tasks, which can be

solved efficiently in a distributed setting. Secondly, we rely on

conflict coloring as a tool to describe intermediate instances

of tasks when applying the simplification technique used in

our algorithms (cf. Lemma III.1). In view of our results, the

deterministic round complexities of (Δ+1)-coloring, (Δ+1)-
list-coloring, and (l, d)-conflict-coloring with l/d > Δ, all

collapse to Õ(
√
Δ) + log∗ n rounds. The sufficiently large

value of the ratio l/d in the conflict coloring formulation

appears to be what sets these problems apart from not easier
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tasks, such as MIS, for which no approaches with deterministic

o(Δ) + log∗ n runtime are currently known.

We close the paper by remarking briefly on the amount of

local computations which individual nodes need to perform

to run the proposed algorithms. The most computationally-

intensive steps are related to Lemma III.2, which relies on an

enumeration of a potentially large set of inputs I to perform

a color assignment to each element of the set. The size of this

set I , and consequently the complexity of local computations

of our algorithms, can be bounded as 2Δ
O(log∗ Δ)

. This value

is polynomially bounded with respect to n for values of

Δ = (log n)o(1/ log∗ n). Since the enumeration of set I is the

only bottleneck in our algorithms, there exist several ways

of speeding up local computations. For example, one can

introduce into the algorithms an element of non-uniformity

with respect to maximum degree Δ, and for a given upper

bound on Δ, construct the solution in Lemma III.2 through a

pre-computed hash function on set I , known to the algorithm,

rather than a greedy color selection algorithm. This reduces

the local computation time of our algorithms to ΔO(log∗Δ).
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