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Abstract—We present an Õ
(
m

10
7 U

1
7

)
-time algorithm for

the maximum s-t flow problem (and the minimum s-t cut
problem) in directed graphs with m arcs and largest integer
capacity U . This matches the running time of the Õ

(
(mU)

10
7

)
-

time algorithm of M ↪adry [30] in the unit-capacity case, and
improves over it, as well as over the Õ (m

√
n logU)-time

algorithm of Lee and Sidford [25], whenever U is moderately
large and the graph is sufficiently sparse. By well-known
reductions, this also implies similar running time improvements
for the maximum-cardinality bipartite b-matching problem.

One of the advantages of our algorithm is that it is
significantly simpler than the ones presented in [30] and [25].
In particular, these algorithms employ a sophisticated interior-
point method framework, while our algorithm is cast directly
in the classic augmenting path setting that almost all the
combinatorial maximum flow algorithms use. At a high level,
the presented algorithm takes a primal dual approach in which
each iteration uses electrical flows computations both to find
an augmenting s-t flow in the current residual graph and to
update the dual solution. We show that by maintain certain
careful coupling of these primal and dual solutions we are
always guaranteed to make significant progress.

Keywords-maximum flow problem; augmenting paths; min-
imum s-t cut problem; bipartite matchings; electrical flows;
Laplacian linear systems;

I. INTRODUCTION

The maximum s-t flow problem and its dual, the min-
imum s-t cut problem, are two of the most fundamental
and extensively studied graph problems in combinatorial
optimization. They have a wide range of applications, are
often used as subroutines in other algorithms (see, e.g.,
[1], [36]), and a number of other important problems –
e.g., bipartite matching problem – can be reduced to them.
Furthermore, these two problems were often a testbed for
development of fundamental algorithmic tools and concepts.
Most prominently, the Max-Flow Min-Cut theorem consti-
tutes the prototypical primal-dual relation.

Several decades of extensive work resulted in a number of
developments on these problems (see Goldberg and Rao [12]
for an overview) and many of their generalizations and spe-
cial cases. Still, despite all this effort, the basic problem of
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computing maximum s-t flow and minimum s-t cut in gen-
eral graphs resisted progress for a long time. In particular, for
a number of years, the best running time bound for the prob-
lem was an O(mmin{m 1

2 , n
2
3 } log(n2/m) logU) (with U

denoting the largest integer arc capacity) bound established
in a a breakthrough paper by Goldberg and Rao [12] and
this bound, in turn, matched the O(mmin{m 1

2 , n
2
3 }) bound

for unit-capacity graphs due to Even and Tarjan [9] – and,
independently, Karzanov [15] – that were put forth more
than 40 years ago.

The above bounds were improved only fairly recently.
Specifically, in 2013, M ↪adry [30] presented an interior-point
method based framework for flow computations that gave
an Õ

(
m

10
7

)
-time1 algorithm for the unit-capacity case of

the maximum s-t flow and minimum s-t cut problems.
This finally broke the long-standing Õ

(
n

3
2

)
running time

barrier for sparse graphs, i.e., for m = O(n). Later on,
Lee and Sidford [25] developed a variant of interior-point
method that delivers an improvement for the regime of dense
graphs. In particular, their algorithm is able to compute
the (general) maximum s-t flow and minimum s-t cut in
Õ (m

√
n logU) time and thus improve over the Goldberg-

Rao bound whenever the input graph is sufficiently dense.
It is also worth mentioning that, as a precursor to the

above developments, substantial progress was made in the
context of (1− ε)-approximate variant of the maximum s-t
flow problem in undirected graphs. In 2011, Christiano et
al. [3] developed an algorithm that allows one to compute a
(1 + ε)-approximation to the undirected maximum s-t flow
(and the minimum s-t cut) problem in Õ

(
mn

1
3 ε−11/3

)
time. Their result relies on devising a new approach to the
problem that combines electrical flow computations with
multiplicative weights update method (see [1]). Later, Lee et
al. [24] presented a quite different – but still electrical-flow-
based – algorithm that employs purely gradient-descent-
type view to obtain an Õ

(
mn1/3ε−2/3

)
-time (1 + ε)-

approximation for the case of unit capacities. Very recently,
this line of work was culminated by Sherman [37] and
Kelner et al. [16] who independently showed how to in-

1We recall that Õ (f) denotes O(f logc f), for some constant c.
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tegrate non-Euclidean gradient-descent methods with fast
poly-logarithmic-approximation algorithms for cut problems
of M ↪adry [28] to get an O(m1+o(1)ε−2)-time (1 + ε)-
approximation to the undirected maximum flow problem.
Then, Peng [34] built on these works to obtain a truly nearly-
linear, i.e., Õ

(
mε−2

)
, running time.

Finally, we note that, in parallel to the above work that is
focused on designing weakly-polynomial algorithms for the
maximum s-t flow and minimum s-t cut problems, there is
also a considerable interest in obtaining running time bounds
that are strongly-polynomial, i.e., that do not depend on
the values of arc capacities. The current best such bound
is O(mn) and it follows by combining the algorithms of
King et al. [18] and Orlin [33].

Bipartite Matching Problem.: Another problem that is
related to the maximum s-t problem – and, in fact, can
be reduced to it – is the (maximum-cardinality) bipartite
matching problem. This problem is a fundamental assign-
ment task with numerous applications and long history.
Already in 1931, König [19] and Egerváry [8] provided
first constructive characterization of maximum matchings
in bipartite graphs. This characterization can be turned into
a polynomial-time algorithm. Then, in 1973, Hopcroft and
Karp [14] and, independently, Karzanov [15], devised the
celebrated O(m

√
n)-time algorithm. For 40 years this bound

remained the best one known in the regime of relatively
sparse graphs. Only recently M ↪aadry [30] obtained an im-
proved Õ

(
m10/7

)
running time. It turns out, however, that

whenever the input graph is dense, i.e., when m is close to
n2 even better bounds can be obtain. In this regime, one can
combine the algebraic approach of Rabin and Vazirani [35] –
that builds on the work of Tutte [39] and Lovász [26] – with
matrix-inversion techniques of Bunch and Hopcroft [2] to
get an algorithm that runs in O(nω) time, where ω ≤ 2.3727
is the exponent of matrix multiplication [5], [40].

Finally, a lot of developments has been done in the
context of the (maximum-cardinality) matching problem in
general, i.e., not necessarily bipartite, graphs. Starting with
the pioneering work of Edmonds [6], these developments
led to bounds that essentially match the running time
guarantees that were previously known only for bipartite
case. More specifically, the running time bound of O(m

√
n)

for the general-graph case was obtained by Micali and
Vazirani [31], [41] (see also [10] and [11]). Then, Mucha
and Sankowski [32] gave an O(nω)-time algorithm. This
algorithm was later simplified by Harvey [13].

A. Our Contribution

In this paper, we put forth a new algorithm for solving the
maximum s-t flow and the minimum s-t cut problems in di-
rected graphs. More precisely, we develop an algorithm that
computes the maximum s-t flow of an input graph in time
Õ
(
m

10
7 U

1
7

)
, where m denotes the number of arcs of that

graph and U its largest integer capacity. Known reductions

imply similar running time bounds for the minimum s-t cut
problem as well as for the maximum-cardinality bipartite b-
matching problem, a natural generalization of the maximum
bipartite matching problem in which each vertex v has a
degree demand bv . For that problem, our algorithm yields
an Õ

(
m

10
7 B

1
7

)
-time algorithm, with B being the largest

(integer) vertex demand.
In the light of the above, for the unit-capacity/demand

cases, the resulting algorithms match the performance of the
algorithm of M ↪adry [30]. The latter algorithm, however, runs
in Õ

(
mU

10
7

)
time (which translates into an Õ

(
(mB)

10
7

)
running time for the bipartite b-matching problem) in the
case of arbitrary capacities/demands. Consequently, the sig-
nificantly better dependence of the running time of our
algorithm on the largest capacity U / largest demand B
makes it much more favorable in that setting. In fact, even
though that dependence on U /B is still polynomial it enables
our algorithm to remain competitive, for a non-trivial range
of parameters, with the best existing algorithms that run in
time that is logarithmic in U /B, such as the Õ (m

√
n logU)-

time algorithm of Lee and Sidford [25].
Even more crucially, the key advantage of our algorithm

is that it is significantly simpler than both the algorithm
of M ↪adry [30] and that of Lee and Sidford [25]). Both
these algorithms rely heavily on the interior-point method
framework. Specifically, [30] designed a certain new variant
of path-following interior-point method algorithm for the
near-perfect bipartite b-matching problem that encoded the
input maximum s-t flow instance. It then used electrical flow
computations to converge to the near-optimal solution for
that problem. In order to break the bottlenecking Õ

(
m

1
2

)
it-

eration bound, however, M ↪adry [30] needed to, first, develop
an extensive toolkit for perturbing and preconditioning the
underlying electrical flow computation and, then, to combine
this machinery with a very careful and delicate analysis of
the resulting dynamics.

Our algorithm also relies on electrical flow computa-
tions but it abandons the above methodology and works
instead fully within the classic augmenting path framework
that almost all the previous combinatorial maximum s-t
flow algorithms used. In this framework, the flow is built
in stages. Each stage corresponds to finding a so-called
augmenting flow in the current residual graph, which is a
directed graph that encodes the solution found so far. The
algorithm terminates when the residual graph admits no
more augmenting flows, i.e., there is no path from s to t
in it, since in this case the solution found so far has to be
already optimal.

The chief bottleneck in the running time analysis of
augmenting path based algorithms is ensuring that each flow
augmentation stage makes sufficient progress. Specifically,
one wants to obtain a good trade off between the amount of
flow pushed in each augmentation step and the time needed

593594594



to implement each such flow push. One simple approach
is to just use here s-t path computations. This is a nearly-
linear time procedure but it only guarantees pushing one
unit of flow each time. A much more sophisticated primitive
developed in this context are blocking flow computations.
Combining this primitive with a simple duality argument en-
abled Goldberg and Rao [12], who built on the work of Even
and Tarjan [9], to obtain an O(mmin{m 1

2 , n
2
3 } logU)-time

maximum flow that remained the best known algorithm for
nearly two decades. Unfortunately, trying to improve such
blocking flow-based approaches turned out to be extremely
difficult and no progress was made here so far, even in the
unit-capacity case for which the best known bounds were
established over 40 years ago.

One of the key contributions of this paper is bringing a
new type of primitive: electrical flows to the augmenting
path framework; and showing how to successfully use it
to outperform the blocking flow-based methods. Specifi-
cally, our algorithm finds augmenting flows by computing
electrical flows in certain symmetrization of the current
residual graph – see Section III-C for more details. (Note that
performing such a symmetrization is necessary as residual
graphs are inherently directed while electrical flows are
inherently undirected.) The key difficulty that arises here
though is that this symmetrized residual graph might not
support anymore a significant fraction of the s-t capacity
of the original residual graph. It is not hard to see that,
in general, this could be the case. To address this problem
we introduce a certain careful coupling of the primal and
dual solutions, which is inspired by the so-called centrality
condition arising in interior-point method based maximum
flow algorithms (see [30]). We then show that maintaining
this coupling and applying a simple preconditioning tech-
nique let us guarantee that looking only for the flows in
the symmetrized version of the residual graph still provides
sufficient progress in each iteration and, in particular, im-
mediately delivers a Õ

(
m

3
2 logU

)
-time algorithm.

We then build on that basic algorithm and develop an `p-
geometric understanding of its running time analysis. This
understanding guides us towards a simple electrical flow
perturbation technique – akin to the perturbation techniques
used in [3] and [30] – that enables us to break the Ω(

√
m)

iterations bottleneck that all the blocking flow-based algo-
rithms were suffering from, and thus get the final, improved
result.

We believe that further study of this new augmenting
flow based framework will deliver even faster and simpler
algorithms.

II. PRELIMINARIES

Throughout this paper, we will be viewing graphs as
having both lower and upper capacities. Specifically, we
will denote by G = (V,E,u) a directed graph with a
vertex set V , an arc set E (we allow parallel arcs), and two

(non-negative) integer capacities u−e and u+e , for each arc
e ∈ E. (We will explain the role of these capacities below.)
Usually, m will denote the number |E| of arcs of the graph
in question and n = |V | will be the number of its vertices.
We view each arc e of G as an ordered pair (u, v), where
u is its tail and v is its head.

Observe that this perspective enables us to view undi-
rected graphs as directed ones in which the ordered pair
(u, v) ∈ E is an (undirected) edge (u, v) and the order just
specifies the orientation of that edge (from u to v).

Maximum Flow Problem.: The basic notion of this
paper is the notion of a flow. Given a graph G, we view
a flow in G as a vector f ∈ Rm that assigns a value fe to
each arc e of G. If this value is negative we interpret it as
having a flow of |fe| flowing in the direction opposite to the
arc orientation.

We say that a flow f is an σ-flow, for some demands
σ ∈ Rn iff it satisfies flow conservation constraints with
respect to that demands. That is, we have that∑
e∈E+(v)

fe −
∑

e∈E−(v)

fe = σv, for each vertex v ∈ V .

(1)
Here, E+(v) (resp. E−(v)) is the set of arcs of G that are
entering (resp. leaving) vertex v. Intuitively, these constraints
enforce that the net balance of the total in-flow into vertex
v and the total out-flow out of that vertex is equal to σv , for
every v ∈ V . (Observe that this implies, in particular, that∑
v σv = 0.)
Furthermore, we say that a σ-flow f is feasible in G iff

f obeys the the capacity constraints:

−u−e ≤ fe ≤ u+e , for each arc e ∈ E. (2)

In other words, we want each arc e to have a flow that is at
most u+e if it flows in the direction of e’s orientation (i.e.,
fe ≥ 0), and at most u−e , if it flows in the opposite direction
(i.e., fe < 0). Note that setting all u−e s be equal to zero
recovers the standard notion of flow feasibility in directed
graphs.

One type of flows that will be of special interest to us
are s-t flows, where s (the source) and t (the sink) are two
distinguish vertices of G. Formally, an s-t flow is a σ-flow
whose demand vector σ is equal to F · χs,t, where F ≥ 0
is called the value of f and χs,t is a demand vector that
has −1 (resp. 1) at the coordinate corresponding to s (resp.
t) and zeros everywhere else.

Now, the maximum flow problem corresponds to a task in
which we are given a (directed) graph G = (V,E,u) with
integer capacities as well as a source vertex s and a sink
vertex t and want to find a feasible (in the sense of (2))
s-t flow of maximum value. We will denote this maximum
value as F ∗.

Residual Graphs.: A fundamental object in many max-
imum flow algorithms (including ours) is the notion of a
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residual graph. Given a graph G = (V,E,u) and a feasible
σ-flow f in that graph (it is useful to think σ = F · χs,t),
we define the residual graph Gf (of G with respect to f )
as a graph Gf = (V,E, û(f )) over the same vertex and arc
set as G and such that, for each arc e = (u, v) of G, its
lower and upper capacities are defined as

û+e (f ) := u+e − fe and û−e (f ) := u−e + fe. (3)

We will refer to û+e (f ) (resp. û−e (f )) as forward residual
capacity (resp. backward residual capacity) of e and also
define the residual capacity ûe(f ) of e as the minimum of
these two, i.e., ûe(f ) := min{û−e (f ), û+e (f )}. Note that the
value of residual capacity depends on the flow f but we will
ensure that it is always clear from the context with respect to
which flow the residual capacity is measured. Also, observe
that feasibility of f implies that all residual capacities are
always non-negative (cf. (2)).

The main reason why residual graphs are useful in com-
puting maximum flows is that they constitute a very conve-
nient representation of the progress made so far. Specifically,
we have the following important fact. (Again, it is useful
to think here of the maximum s-t flow setting, in which
σ = F ∗χs,t.)

Fact II.1. Let σ be some demand and G = (V,E,u) be a
graph in which a demand of σ can be routed, i.e., there exists
a σ-flow f ∗ that is feasible in G. Also, for any 0 ≤ α ≤ 1,
let f be a feasible ασ-flow in G, and Gf = (V,E, û(f ))
be the residual graph of G with respect to f . We have that
(a)

1) one can route a demand of (1− α)σ in Gf ;
2) if f ′ is a feasible α′σ-flow in Gf , for some α′, then

f + f ′ is a feasible (α+ α′)σ-flow in G.

Intuitively, the above fact enables us to reduce the task of
routing a demand σ in G to a sequence of computations of
augmenting α′σ-flows in the residual graph Gf . We know
that as long as we have not yet computed a feasible σ-
flow in G, Gf can route a demand of (1−α)σ-flow, where
(1 − α) > 0 is the fraction of routed demand that we are
still “missing”, and each new augmenting α′σ-flow found
in Gf brings us closer to routing σ in full in G. (Note that
initially Gf is equal to G and Gf is changing after each
new augmenting α′σ-flow is found.)

Electrical Flows and Vertex Potentials.: Another notion
that will play a fundamental role in this paper is the notion of
electrical flows. We briefly review some of the key properties
that we will need later.

Consider a graph G and a vector of resistances r ∈ Rm
that assigns to each edge e its resistance re > 0. For a
given σ-flow f in G, let us define its energy (with respect
to resistances r ) Er (f ) to be

Er (f ) :=
∑
e

ref
2
e . (4)

For a given demand vector σ and a vector of resistances
r , we define the electrical σ-flow in G (that is determined
by resistances r ) to be the flow that minimizes the energy
Er (f ) among all flows with demand σ in G. As energy is a
strictly convex function, one can easily see that such a flow
is unique. (It is important to keep in mind that such flow is
not required to be feasible with respect to capacities of G,
in the sense of (2).)

A very useful property of electrical flows is that they can
be characterized in terms of vertex potentials inducing them.
Namely, one can show that a flow f with demands σ in
G is an electrical σ-flow determined by resistances r iff
there exist vertex potentials φv (that we collect into a vector
φ ∈ Rn) such that, for any edge e = (u, v) in G,

fe =
φv − φu
re

. (5)

In other words, a f with demands σ is an electrical σ-flow
iff it is induced via (5) by some vertex potential φ. (Note
that the orientation of edges matters in this definition.) The
above equation corresponds to the Ohm’s law known from
physics.

Note that we are able to express the energy Er (f ) (see
(4)) of an electrical σ-flow f in terms of the potentials φ
inducing it as

Er (f ) =
∑

e=(u,v)

(φv − φu)2

re
. (6)

One of the consequences of the above is that one can
develop a dual characterization of the energy of an electrical
σ-flow in terms of optimization over vertex potentials.
Namely, we have the following lemma whose proof can be
found, e.g., in [30] Lemma 2.1.

Lemma II.2. For any graph G = (V,E), any vector of
resistances r , and any demand vector σ,

1

Er (f ∗)
= min

φ|σTφ=1

∑
e=(u,v)∈E

(φv − φu)2

re
,

where f ∗ is the electrical σ-flow determined by r in G.
Furthermore, if φ∗ are the vertex potentials corresponding
to f ∗ then the minimum is attained by taking φ to be equal
to φ̂ := φ∗/Er (f ∗).

Note that the above lemma provides a convenient way of
lowerbounding the energy of an electrical σ-flow. One just
needs to expose any vertex potentials φ such that σTφ = 1
and this will immediately constitute an energy lowerbound.

Laplacian Solvers.: The fact that the electrical σ-flow
determined by resistances r is the only flow with demands
σ that can be induced by vertex potentials (cf. (5)) has an
important consequence. It enables us to reduce electrical σ-
flow computations to solving a linear system. In fact, the
task of finding vertex potentials that induce that flow can be
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cast as a Laplacian linear system. That is, a linear system
in which the constraint matrix corresponds to a Laplacian
of the underlying graph with weights given by the (inverses
of) the resistances r .

Now, from the algorithmic point of view, the crucial
property of Laplacian systems is that we can solve them,
up to a very good approximation, very efficiently. Namely,
there is a long line of work [38], [20], [21], [17], [4], [22],
[23] that gives us a number of Laplacian system solvers that
run in only nearly-linear time and, in case of more recent
variants, are conceptually fairly simple. In particular, this
line of work establishes the following theorem.

Theorem II.3. For any ε > 0, any graph G with n vertices
and m edges, any demand vector σ, and any resistances r ,
one can compute in Õ

(
m log ε−1

)
time vertex potentials φ̃

such that ‖φ̃− φ∗‖L ≤ ε‖φ∗‖L, where L is the Laplacian
of G, φ∗ are potentials inducing the electrical σ-flow

determined by resistances r , and ‖φ‖L :=

√
φTLφ.

Even though the solutions delivered by the above Lapla-
cian solvers are only approximate, the quality of approxima-
tion that it delivers is more than sufficient for our purposes.
Therefore, in the rest of this paper we assume that these
solutions are exact. (See, e.g., [30] for discussion how to
deal with inexactness of the electrical flows computed.)

III. AUGMENTING RESIDUAL GRAPHS WITH
ELECTRICAL FLOWS

In this section, we put forth the general framework we
will use to solve the maximum s-t problem. In particular,
we demonstrate how this framework enables us to solve the
maximum s-t flow problem in Õ

(
m

3
2 logU

)
time, where

m = |E| is the number of arcs in of the input graph and U
is its largest (integer) capacity.

More precisely, for any maximum s-t flow instance G =
(V,E,u) and any value F ≥ 0, our algorithm will work in
Õ
(
m

3
2 logU

)
time and either: compute a feasible s-t flow

of value F in G; or conclude that the maximum s-t flow
value F ∗ of G is strictly smaller than F .

Note that such procedure can be turned into a “classic”
maximum s-t flow by applying binary search over values of
F and incurring a multiplicative running time overhead of
only O(logUn). (In fact, a standard use of capacity scaling
technique [7] enables one to keep the overall running time of
the resulting algorithm be only linear, instead of quadratic,
in logU .)

Our algorithm follows the primal dual augmenting paths
based framework. At a high level, in each iteration (see Sec-
tion III-B), we use electrical flow computations to compute
an augmenting flow as well as an update to the dual solution.
To ensure that each augmenting iteration makes enough
progress, we maintain a careful coupling of the primal and
dual solution. We describe it below.

A. Primal Dual Coupling

Let us fix our target flow value F and, for notational
convenience, for any 0 ≤ α ≤ 1, let us denote by χα the
demand vector αFχs,t, i.e., the demand corresponding to
routing α-fraction of the target flow value F of the s-t flow.
Also, let us define χ to be the demand equal to χ1.

Again, our algorithm will be inherently primal dual in
nature. That is, in addition to maintaining a primal solution:
a χα-flow f , for some 0 ≤ α ≤ 1, that is feasible in G, it
will also maintain a dual solution y ∈ Rn, which should be
viewed as an embedding of all the vertices of the graph G
into a line.

Consequently, our goal will be to either to make f be
a feasible flow with demands χα and α = 1, which
corresponds to routing the target s-t flow value F in full, or
to make the dual solution y certify that the target demand
χ1 = χ cannot be fully routed in G and thus F > F ∗.

Well-coupled Solutions.: Our primal dual scheme will
be enforcing a very specific coupling of the primal solution
f and the dual solution y . More precisely, let us define for
each arc e = (u, v)

∆e(y) := yv − yu, (7)

to be the “stretch“ of the arc e in the embedding given by
y . Also, let Gf be the residual graph of G with respect to
f and let us define, for a given arc e, a potential function

Φe(f ) :=
1

û+e (f )
− 1

û−e (f )
, (8)

where we recall that û+e (f ) := u+e − fe (resp. û−e (f ) :=
u−e +fe) are forward (resp. backward) residual capacities of
the arc e. (See preliminaries, i.e., Section II, for details.)

Then, our intention is to maintain the following relation
between f and y :

∆e(y) = Φe(f ) for each arc e. (9)

Intuitively, this condition ensures that the line embedding
y stretches each arc e in the direction of the smaller of
the residual capacities, and that this stretch is inversely
proportional to the value of that capacity. (Note that if G
was undirected and thus the initial capacities u+e and u−e
were equal, the direction of smaller residual capacity is also
the direction in which the flow f flows through the arc e.) It
is worth pointing out that this coupling condition is directly
inspired by (and, in fact, can be directly derived from) a
certain variant of centrality condition used by interior-point
method based maximum flow algorithms (see [30]).

Even though condition (9) expresses our intended cou-
pling, it will be more convenient to work with a slightly
relaxed condition that allows us to have small violations of
that ideal coupling. Specifically, we say that a primal dual
solution (f ,y) is γ-coupled iff

|∆e(y)− Φe(f )| ≤ γe
ûe(f )

for all arcs e = (u, v). (10)
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Here, ûe(f ) = min{û+e (f ), û−e (f )} is the (symmetrized)
residual capacity of the arc e, and γ ∈ Rm is the violation
vector that we intend to keep very small. In particular, we
say that a primal dual solution (f ,y) is well-coupled iff
its violation vector γ has its `2-norm be at most 1

100 , i.e.,
‖γ‖2 ≤ 1

100 .
One of the key consequences of maintaining a well-

coupled primal dual pair of solutions (f ,y) is that it enables
us to use y as a dual certificate for inability to route certain
demands in G. The following lemma gives us a concrete
criterion for doing that. Its proof is deferred to the full
version of the paper [27].

Lemma III.1. Let (f ,y) be a well-coupled primal dual
solution with f being a χα-flow, for some 0 ≤ α < 1. If

χTy >
2m

(1− α)

then the demand χ cannot be routed in G, i.e., F > F ∗.

Note that the choice of the constant 2 in the above lemma
is fairly arbitrary. In principle, any constant strictly larger
than 1 would suffice.

In the light of the above discussion, for a given well-
coupled primal dual solution (f ,y), we should view the
value of α as a measure of our primal progress, while the
value of the inner product σTy can be seen as a measure
of our dual progress.

Initialization.: The coupling condition (10) ties the
primal and dual solutions f and y fairly tightly. In fact,
coming up with some primal dual solutions that are well-
coupled, which we need to initialize our framework, might
be difficult.

Fortunately, finding such a pair of initial well-coupled
solutions turns out to be easy, if our input graph G is
undirected. In that case, just taking f to be a trivial zero flow
and y to be a trivial all-zeros embedding makes condition
(10) satisfied (with γes being all zero). After all, the residual
graph Gf with respect to such zero flow f is just the graph
G itself and thus û+e (f ) = u+e = u−e = û−e (f ).

Furthermore, even though we are interested in solving
directed instances too, every such instance can be reduced
to an undirected one. Specifically, we have the following
lemma.

Lemma III.2. Let G be an instance of the maximum s-t
flow problem with m arcs and the maximum capacity U , and
let F be the corresponding target flow value. In Õ (m) time,
one can construct an instance G′ of undirected maximum s-t
flow problem that has O(m) arcs and the maximum capacity
U , as well as target flow value F ′ such that: (a)

1) if there exists a feasible s-t flow of value F in G then
a feasible s-t flow of value F ′ exists in G′;

2) given a feasible s-t flow of value F ′ in G′ one can
construct in Õ (m) time a feasible s-t flow of value
F in G.

The proof of the above lemma boils down to a known
reduction of the directed maximum flow problem to its
undirected version – see, e.g., Theorem 3.6.1 in [29] for
details. Consequently, from now on we can assume without
loss of generality that we always have a well-coupled primal
dual pair to initialize our framework.

B. Progress Steps
Once we described our basic framework and how to

initialize it, we are ready to put forth its main ingredient:
progress steps that enable us to gradually improve the primal
dual solutions that we maintain. To this end, let us fix
a well-coupled primal dual solutions (f ,y) with f being
a χα-flow, for some 0 ≤ α < 1, that is feasible in G.
Our goal in this section will be to use (f ,y) to compute,
in nearly-linear time, another pair of well-coupled primal
dual solutions (f +,y+) that bring us closer to the optimal
solutions. The flow f + we obtain will be a χα′ -flow feasible
in G, for α′ > α. So, the resulting flow update f + − f is
an augmenting flow that is feasible in our current residual
graph Gf and pushes (α′−α)-fraction of the target s-t flow.

We will compute (f +,y+) in two stages. First, in the
augmentation step, we obtain a pair of solutions (f̂ , ŷ), with
f̂ being a χα′ -flow, for α′ > α, that is feasible in G. These
solutions make progress toward the optimal solutions but
might end up being not well-coupled. Then, in the fixing
step, we correct (f̂ , ŷ) slightly by adding a carefully chosen
flow circulation, i.e., a flow with all-zeros demands, to f̂ and
an dual update to ŷ so as to make the resulting solutions
(f +,y+) be well-coupled, as desired.

The key primitive in both these steps will be electrical
flow computation. As we will see, the crucial property of
electrical flows we will rely on here is their“self-duality“.
That is, the fact that each electrical flow computation gives
us both the flow and the corresponding vertex potentials that
are coupled to it via Ohm’s law (5). This enables us not only
to update our primal and dual solutions with that flow and
vertex potentials, respectively, but also, much more crucially,
this coupling introduced by Ohm’s law will be exactly what
will allow us to (approximately) maintain our desired primal
dual coupling property (10).

Augmentation Step.: To perform an augmentation step
we compute first an electrical χ-flow f̃ in G with the
resistances r defined as

re :=
1

(û+e (f ))2
+

1

(û−e (f ))2
, (11)

for each arc e. Note that the resistance re is proportional,
roughly, to the inverse of the square of the residual capacity
ûe(f ) of that arc. So, in particular, it becomes very large
whenever residual capacity of the arc e is small, and vice
versa. As we will see shortly, this correspondence will allow
us to control the amount of flow that f̃ sends over each edge
and thus ensure that the respective residual capacities are not
violated.
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Let φ̃ be the vertex potentials inducing f̃ (via the Ohm’s
law (6)). Then, we obtain the new primal and dual solution
(f̂ , ŷ) as follows:

f̂e := fe + δf̃e for each arc e (12)
ŷv := yv + δφ̃v for each vertex v,

where δ is the desired step size. Observe that this update
is exactly an augmentation of our current flow f with the
(scaled) electrical flow δf̃ and adding to our dual solution
the (scaled) vertex potentials δφ̃. This, in particular, means
that the new flow f̂ we obtain here is a χα′ -flow with

α′ = α+ δ. (13)

The step size δ, however, will have to be carefully chosen.
On one hand, as we see in (13), the larger it is the more
progress we make. On the other hand, though, it has to be
small enough so as to keep the flow δf̃ feasible in Gf (and
thus, by Fact II.1, to make the flow f̂ + f feasible in G).

Note that, a priori, we have no direct control over neither
the directions in which the electrical χ-flow f̃ is flowing
thorough each arc nor the amount of that flow. So, in order
to establish a grasp on what is the right setting of δ, it is
useful to define a congestion vector ρ given by

ρe :=
f̃e

ûe(f )
, (14)

for each arc e. One can view ρe as a normalized measure
of how much the electrical flow f̃ overflows the residual
capacity ûe(f ) of the arc e and in what direction. In other
words, the sign of ρe encodes the direction of the flow f̃e.

It is now not hard to see that to ensure that δf̃ is feasible
in Gf , i.e., that no residual capacity is violated by the update
(12), it suffices that δ|ρe| ≤ 1

4 , for all arcs e, or, equivalently,
that

δ ≤ 1

4‖ρ‖∞
, (15)

where ‖ · ‖∞ is the standard `∞-norm.
It is also worth pointing out that the congestion vector

ρ turns out to capture (up to a small multiplicative factor)
the contribution of each arc e to the energy Er (f̃ ) of f̃ .
In particular, we have the following simple but important
observation.

Lemma III.3. For any arc e, ρ2e ≤ ref̃2e ≤ 2ρ2e and ‖ρ‖22 ≤
Er (f̃ ) ≤ 2‖ρ‖22, where ‖ · ‖2 is the standard `2-norm.

This link between the energy-minimizing nature of the
electrical σ-flow f̃ and the `2-norm of the congestion vector
ρ will end up being very important. One reason for that is
the fact that `∞-norm is always bounded by the `2-norm.
Consequently, we can use this connection to control the `∞-
norm of the vector ρ and thus the value of δ needed to satisfy
the feasibility condition (15).

It turns out, however, that just ensuring that our aug-
menting flow is feasible is not enough for our purposes.
Specifically, we also need to control the coupling of our
primal dual solutions, and the feasibility bound (15) might
be not sufficiently strong for this purpose. We thus have
to develop analyze the impact of the update (12) on the
coupling condition (10) more closely.

To this end, let us first notice the following fact that stems
from a standard application of the Taylor’s theorem. Its proof
is deferred to the full version of the paper [27].

Fact III.4. For any u1, u2 > 0 and x such as |x| ≤ u
4 ,

where u = min{u1, u2}, we have that(
1

u1 − x
− 1

u2 + x

)
=

1

u1
− 1

u2
+

(
1

u21
+

1

u22

)
x+ x2ζ,

where |ζ| ≤ 5
u3 .

Now, the above approximation bound enables us to get
an accurate estimate of how the coupling condition evolves
during the augmentation step (12). Specifically, for any arc
e, the first order approximation of the change in the primal
contribution of the arc e to the coupling condition (10)
caused by the update (12) is exactly

Φe(f̂ )− Φe(f ) ≈
(

1

(û+e (f ))2
+

1

(û−e (f ))2

)
δf̃e = reδf̃e,

where we also used (11). (In fact, the choice of the resis-
tances r was made exactly to make the above statement
true.)

Furthermore, by Ohm’s law (5) and the definition of our
augmentation step (12), we have that

reδf̃e = δ
(
φ̃v − φ̃u

)
= ∆e(ŷ)−∆e(y),

which is exactly the change in the dual contribution of the
arc e = (u, v) to the coupling condition (10) caused by the
augmentation step update (12).

So, up to first order approximation, these two contri-
butions cancel out, leaving the coupling (10) intact. Con-
sequently, any increase in the violation of the coupling
condition must come from the second-order terms that we
suppressed. The following lemma, whose proof is deferred
to the full version of the paper [27], makes this precise.

Lemma III.5. Let 0 < δ ≤ (4‖ρ‖∞)−1 and the primal dual
solution (f ,y) be γ-coupled. Then, we have that, for any
arc e = (u, v),∣∣∣∆e(ŷ)− Φe(f̂ )

∣∣∣ ≤ 4
3γe + 7(δρe)

2

ûe(f̂ )
.

Fixing Step.: Although Lemma III.5 enables us to
bound the deterioration of the primal dual coupling dur-
ing the augmentation step, we cannot prevent this effect
altogether. Therefore, we need to introduce a fixing step
that deals with this problem. More precisely, we develop
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a procedure that uses a single electrical flow computation
to significantly reduce that violation, provided it was not
too large to begin with. This is formalized by the following
lemma, whose proof is deferred to the full version of the
paper [27].

Lemma III.6. Let (g , z ) be a ς-coupled primal dual solu-
tion, with g being a feasible χα′ -flow and ‖ς‖2 ≤ 1

50 . In
Õ (m) time, we can compute a primal dual solution (ḡ , z̄ )
that is well-coupled and in which ḡ is still a χα′ -flow.

Now, after putting Lemmas III.5 and III.6 together, we are
finally able to state the condition that δ in the update (12)
has to satisfy in order to ensure that the solutions (f +,y+)
we obtain after performing the augmentation and fixing step
is still well-coupled.

Lemma III.7. (f +,y+) is a well-coupled primal dual
solution with f + being a χα′ -flow that is feasible in G
whenever

δ ≤ (33‖ρ‖4)
−1
,

The above lemma (whose proof is deferred to the full
version of the paper [27]) tells us that the step size δ of
our augmentation step (12) should be governed by the `4-
norm of the congestion vector (14). Observe that the `4-norm
of a vector is always upper bounding its `∞-norm. So, the
condition (15) is subsumed by this `4-norm bound.

C. Analysis of the Algorithm
We want now to analyze the overall running time of

our algorithm. Recall that given our target demand χ that
corresponds to sending F units of flow from the source s
to the sink t, our overarching goal is to either route this
demand fully in G or provide a dual certificate that it is
impossible to route χ in G.

We aim to achieve this goal by maintaining and gradually
improving a primal dual solution (f ,y). In this solution, f
is a χα-flow (which corresponds to routing an α fraction
of the desired demand χ) that is feasible in G and f and
y are well-coupled, i.e., tied to each other via condition
(10) with the violation vector γ̂ having sufficiently small
`2-norm. As described in Section III-B, each iteration runs
in nearly-linear time and boils down to employing electrical
flow computations to find an augmenting flow in the current
residual graph Gf (as well as to update the dual solution to
maintain well-coupling).

Consequently, all we need to do now is to lower bound
the amount of progress that each of these iteration makes.
Ideally, we would like to prove that in each iteration in which
f already routed α-fraction of the desired flow, i.e., f is a
feasible χα-flow, the step size δ (see (12)) can be taken to
be at least

δ ≥ (1− α)δ̂, (16)

for some fixed δ̂ > 0. Observe that if such a lower bound was
established then, by (13), it would imply that each iteration

finds an augmenting flow that routes at least δ̂-fraction of the
amount of flow still to be routed. As a result, after executing
at most O(δ̂−1 logmU) iterations, the remaining value of
flow to be routed would be at most 1 and thus a simple flow
rounding and augmenting path finding would yield the final
answer (see, e.g., [30]), making the overall running time be
at most Õ

(
δ̂−1m logU

)
.

Unfortunately, a priori, it is difficult to provide any such
non-trivial unconditional lower bound on the amount of
primal progress we make in each iteration. After all, it
could be the case that the target flow cannot be even routed
in G. More importantly though, even if the target flow
could be routed in G, and thus the residual graph always
admitted augmenting flows of sufficiently large value, it is
still not clear that our flow augmenting procedure would
be able to find them. (It is worth noting that this problem
is by no means specific to our algorithm. In fact, in all the
maximum flow algorithms that rely on the augmenting paths
framework ensuring that each iteration makes a sufficient
primal progress is a chief bottleneck in the analysis.)

The root of the problem here is that our flow augmenting
procedure is based on electrical flows and these are undi-
rected in nature. Consequently, the augmenting flows that it
finds have to come from a fairly restricted class: s-t flows
that are feasible in a certain “symmetrized” version of the
residual graph.

To make it precise, given a residual graph Gf , let us
define its symmetrization Ĝf to be an undirected graph in
which each arc e has its forward and backward capacity
equal to ûe(f ), i.e., to the minimum of the forward û+e (f )
and backward û−e (f ) residual capacities in Gf . Observe
now that each (electrical) augmenting flow δf̃ found in
the augmentation step (cf. (12)) is not only feasible in the
residual graph Gf but also in its symmetrization Ĝf – this
is exactly what the condition (15) enforces.

However, not all augmenting s-t flows that are feasible
in Gf have to be feasible in Ĝf too. In fact, it can happen
that a large maximum s-t flow value that the residual graph
Gf supports mostly vanishes in its symmetrization Ĝf , and
thus prevents our algorithm from making a sufficient good
primal progress. (Again, a difficulty of a exactly the same
nature arises in the analysis of the classic flow augmenting
algorithms such as [9], [15], [12].)

Preconditioning Arcs.: It turns out, however, that there
is a fairly simple way to circumvent the above difficulty
and ensure that the kind of direct, “primal-only“ analysis
we hoped for above can indeed be performed. Namely, we
just need to “precondition“ our input graph by adding to it
a large number of s-t arcs of sufficiently large capacities.

More precisely, we modify our input graph G by adding
to it m undirected arcs between the source s and sink t
with a forward and backward capacities equal to 2U and
their orientation being from s to t. We will call these arcs
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preconditioning arcs. Observe that after this modification the
number of arcs of our graph as well as its maximum capacity
at most doubled, and the maximum s-t flow value changed
additively by exactly 2mU . In particular, the preconditioning
arcs constitute exactly half of all the arcs and the amount
of s-t flow that they alone can support is at least twice the
s-t throughput of the rest of the graph. (Also, as these arcs
are undirected they do not interfere with our initialization
procedure – cf. Lemma III.2.) Consequently, we can just
focus on analyzing the running time of our algorithm on
this preconditioned instance and the bounds we establish
will immediately translate over to the original instance.2

As already mentioned, somewhat surprisingly, once such
preconditioning arcs are in place and our primal dual so-
lution (f ,y) is well-coupled, it is always the case that the
symmetrization Ĝf of our current residual graph Gf retains a
constant fraction of the s-t throughput. Intuitively speaking,
well-coupling prevents the “shortcutting” preconditioning
arc from getting “clogged” too quickly. Instead, their resid-
ual capacity is consumed at the same rate as that of the rest
of the graph. Consequently, these arcs alone are always able
to provide enough of s-t throughput in the symmetrization
Ĝf of the residual graph Gf . This is made precise in the
following lemma.

Lemma III.8. Let (f ,y) be a well-coupled primal dual
solution in the (preconditioned) graph G and let f be a
χα-flow, for some 0 ≤ α < 1, that is feasible in G. We have
either that: (a)

1) there exists a χ (1−α)
10

-flow f ′ that is feasible in the

symmetrization Ĝf of the residual graph Gf ;
2) or χTy > 2m

(1−α) implying that our target demand χ
cannot be routed in G (cf. Lemma III.1).

Note that if our target demand χ is exactly the demand
F ∗χs,t of the maximum s-t flow, the second condition
cannot ever trigger and thus indeed it is the case that
the symmetrization of the (preconditioned) residual graph
retains a constant fraction of the original s-t throughput.

Lower Bounding δ̂.: Once we proved that the sym-
metrization Ĝf of the residual graph Gf retains most of
its s-t flow throughput (see Lemma III.8), we are finally
able to provide an absolute lower bound δ̂ (cf. (16)) on the
amount of primal progress each iteration of our algorithm
makes. To this end, we upper bound first the energy, or,
(almost) equivalently, the `2-norm of the congestion vector
(see Lemma III.3) of the electrical flow that we use in our
augmentation step (see (12)). Its proof is deferred to the full
version of the paper [27].

Lemma III.9. Let (f ,y) be a well-coupled primal dual
solution, with f being a χα-flow that is feasible in Gf , for

2Note that the preconditioning arcs have to be fully saturated in any
maximum s-t flow. So, simply dropping these arcs and the flow on them
will yield the maximum s-t flow in the original graph.

some 0 ≤ α < 1. Let f̃ be an electrical χ-flow determined
by the resistances r given by (11). We have that either: (a)

1) ‖ρ‖22 ≤ Er (f̃ ) ≤ CEm
(1−α)2 , where ρ is the congestion

vector defined in (14), and CE > 0 is an explicit
constant;

2) or, χTy > 2m
(1−α) , i.e., our target demand χ cannot

be routed in G.

Now, we should notice that by Lemma III.7 it suffices
that we always have that

δ ≤ 1

33‖ρ‖4
≤ 1

33‖ρ‖2
≤ (1− α)

33
√
CEm

, (17)

where we used Lemma III.9 and the fact that ‖ρ‖4 ≤ ‖ρ‖2.
By (16), we see that we can take δ̂ := (33

√
CEm)−1, which

gives us the desired Õ
(
m

3
2 logU

)
time algorithm.

Finally, we want to emphasize again that even though our
above analysis was based solely on analyzing our primal
progress3, maintaining the dual solution and the primal dual
coupling (10) was absolutely critical for its success.

The description and analysis of the improved,
Õ
(
m

10
7 U

1
7

)
-time algorithm is deferred to the full

version of the paper [27].
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