
Faster Algorithms for Computing the Stationary Distribution, Simulating Random
Walks, and More (Extended Abstract)

Michael B. Cohen∗, Jonathan Kelner†, John Peebles∗, Richard Peng‡, Aaron Sidford§, and Adrian Vladu†
∗Computer Science and Artificial Intelligence Laboratory

MIT, Cambridge, Massachusetts
Email: {micohen, jpeebles}@mit.edu

†Department of Mathematics
MIT, Cambridge, Massachusetts
Email: {kelner, avladu}@mit.edu

‡College of Computing
Georgia Tech, Atlanta, Georgia

Email: rpeng@cc.gatech.edu
§Department of Management Science and Engineering

Stanford University, Stanford, California
Email: sidford@stanford.edu

Abstract—In this paper, we provide faster algorithms for
computing various fundamental quantities associated with
random walks on a directed graph, including the stationary
distribution, personalized PageRank vectors, hitting times, and
escape probabilities. In particular, on a directed graph with n
vertices and m edges, we show how to compute each quantity
in time Õ(m3/4n +mn2/3), where the Õ notation suppresses
polylog factors in n, the desired accuracy, and the appropriate
condition number (i.e. the mixing time or restart probability).

Our result improves upon the previous fastest running times
for these problems; previous results either invoke a general
purpose linear system solver on a n × n matrix with m non-
zero entries, or depend polynomially on the desired error or
natural condition number associated with the problem (i.e.
the mixing time or restart probability). For sparse graphs, we
obtain a running time of Õ(n7/4), breaking the O(n2) barrier
of the best running time one could hope to achieve using fast
matrix multiplication.

We achieve our result by providing a similar running time
improvement for solving directed Laplacian systems, a natural
directed or asymmetric analog of the well studied symmetric
or undirected Laplacian systems. We show how to solve such
systems in time Õ(m3/4n + mn2/3), and efficiently reduce a
broad range of problems to solving Õ(1) directed Laplacian
systems on Eulerian graphs. We hope these results and our
analysis open the door for further study into directed spectral
graph theory.

Keywords-PageRank, Markov chain, Laplacian, solver, diag-
onally dominant, stationary distribution

I. INTRODUCTION

This is an extended abstract for the full version of our

paper [1] which is available at https://arxiv.org/abs/1608.

03270. The full version has statements of all theorems and

lemmas as well as proofs. It is also more up to date and has

more internal cross-references. As such, readers are strongly

encouraged to read the full version instead.

The application and development of spectral graph theory

has been one of the great algorithmic success stories of the

past three decades. By exploiting the relationship between

the combinatorial properties of a graph, the linear algebraic

properties of its Laplacian, and the probabilistic behavior

of the random walks they induce, researchers have obtained

landmark results ranging across multiple areas in the the-

ory of algorithms, including Markov chain Monte Carlo

techniques for counting [2], [3], [4] and volume estimation

[5], [6], [7], [8], [9], [10], approximation algorithms for

clustering and graph partitioning problems [11], [12], [13],

[14], [15], derandomization [16], [17], error correcting codes

[18], [19], and the analysis of random processes [20], among

others. In addition to their theoretical impact, spectral tech-

niques have found broad applications in practice, forming the

core of Google’s PageRank algorithm, playing a ubiquitous

role in practical settings like machine learning, computer

vision, clustering, and graph visualization. Furthermore, they

have enabled the computation of fundamental properties of

various Markov chains, such as stationary distributions, es-

cape probabilities, hitting/commute times, and mixing times.

More recently, spectral graph theory has been driving

an emerging confluence of algorithmic graph theory, nu-

merical scientific computing, and convex optimization. This

recent line of work began with a sequence of papers that

used combinatorial techniques to accelerate the solution of

linear systems in undirected graph Laplacians, eventually

leading to algorithms that solve these systems in nearly-

linear time [12], [21], [22], [23], [24], [25], [26], [27], [28].

This was followed by an array of papers in the so-called

“Laplacian Paradigm” [29], which either used this nearly-

linear-time algorithm as a primitive or built on the struc-

tural properties underlying it to obtain faster algorithms for

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.69

582

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.69

583

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.69

583

problems at the core of algorithmic graph theory, including

finding maximum flows and minimum cuts [30], [31], [32],

[33], [34], solving traveling salesman problems [35], [36],

sampling random trees [37], [38], sparsifying graphs [39],

[40], [41], computing multicommodity flows [42], [33], and

approximately solving a wide range of general clustering

and partitioning problems [11], [13], [14], [15].
While these recent algorithmic approaches have been

very successful at obtaining algorithms running in close to

linear time for undirected graphs, the directed case has con-

spicuously lagged its undirected counterpart. With a small

number of exceptions involving graphs with particularly nice

properties and a line of research in using Laplacian system

solvers inside interior point methods for linear programming

[43], [44], [45], the results in this line of research have

centered almost entirely on the spectral theory of undirected

graphs. While there have been some interesting results in

candidate directed spectral graph theory [46], [14], [47],

their algorithmic ramifications have been less clear.
One problem that particularly well illustrates the discrep-

ancy between the directed and undirected settings is the

computation of the stationary distribution of a random walk.

Computing this is a primary goal in the analysis of Markov

chains, constitutes the main step in the PageRank algorithm,

remains the missing piece in derandomizing randomized

log space computations [48], and is necessary to obtain

the appropriate normalization for any of the theoretical

or algorithmic results in one of the few instantiations of

directed spectral graph theory [46], [14].
In the undirected setting, the stationary distribution is

proportional to the degree of a vertex, so it can be computed

trivially. However, despite extensive study in the mathe-

matics, computer science, operations research, and numer-

ical scientific computing communities, the best previously

known asymptotic guarantees for this problem are essentially

what one gets by applying general-purpose linear algebra

routines. Given a directed graph with n vertices and m edges

these previous algorithms fall into two broad classes:

• Iterative Methods: These aim to compute the station-

ary distribution by either simulating the random walk

directly or casting it as a linear system or eigenvector

computation and applying either a global or coordinate-

wise iterative method to find it. The running times

of these methods either depend polynomially on the

relevant numerical conditioning property of the in-

stance, which in this case is, up to polynomial factors,

the mixing time of the random process; or they only

compute a distribution that only approximately satisfies

the defining equations of the stationary distribution,

with a running time that is polynomial in 1/ε. There

has been extensive work on tuning and specializing

these methods to efficiently compute the stationary dis-

tribution, particularly in the special case of PageRank.

However, all such methods that we are aware of retain

a polynomial dependence on either the mixing time,

which can be arbitrary large as a function of the number

of edges of the graph, or on 1/ε.1

• Fast Matrix Multiplication: By using a direct method

based on fast matrix multiplication, one can find

the stationary distribution in time in time nω , where

ω < 2.3729 [49] is the matrix multiplication exponent.

These methods neglect the graph structure and cannot

exploit sparsity. As such, even if one found a matrix

multiplication algorithm matching the lower bound of

ω = 2, this cannot give a running time lower than

Ω(n2), even when the graph is sparse.

Another problem which well demonstrates the gap between

directed and undirected graph problems is that of solving

linear systems involving graph Laplacians. For undirected

graphs, as we have discussed there are multiple algorithms

to solve associated Laplacian systems in nearly time. How-

ever, in the case of directed graphs natural extensions of

solving Laplacian systems are closely related to computing

the stationary distribution, and thus all known algorithms

either depend polynomially on the condition number of

the matrix or the desired accuracy or they require time

Ω(n2). Moreover, many of the techniques, constructions,

and properties used to solve undirected Laplacian systems

either have no known analogues for directed graphs or can

be explicitly shown to not exist. This gap in our ability to

solve Laplacian systems is one of the the primary reasons

(perhaps the primary reason) that the recent wave of graph

algorithms based on the “Laplacian Paradigm” have not

produced directed results to match the undirected ones.

Given the fact that, despite several decades of work on

designing specialized methods for this problem, there are

no methods known that asymptotically improve upon general

linear algebra routines, along with the structural problems in

translating the techniques from the undirected case, it would

not be unreasonable to expect that the best one can hope

for is heuristic improvements in special cases, and that the

worst-case asymptotics for graph Laplacians are no better

than the minO(nω, nm) ≥ Ω(n2) that is known for general

matrices.

In this paper, we show that this is not the case by

providing an algorithm that solves directed graph Laplacian

systems—a natural generalization of undirected graph Lapla-

cian systems—in time Õ(nm3/4 + n2/3m) where here and

throughout the paper the Õ(·) notation hides polylogarithmic

factors in n, the desired accuracy, and the natural condition

numbers associated with the problem. Consequently, we

obtain the first asymptotic improvement for these systems

1The algorithm that is perhaps an exception to this rule, is the one which
invokes conjugate gradient in a black box manner to solve the requisite
linear system to compute the stationary distribution. At best this analysis
would suggest an O(mn) running time. However, it is not known how
to realize even this running time in the standard word-RAM model of
computation.

583584584

over solving general linear systems.2 In particular, when

the graph is sparse, i.e. m = O(n), our algorithm runs in

time Õ(n7/4), breaking the barrier of O(n2) that would be

achieved by algorithms based on fast matrix multiplication

if ω = 2. We then leverage this result to obtain improved

running times for a host of problems in algorithmic graph

theory, scientific computing, and numerical linear algebra,

including:

• Computing the Stationary Distribution: We compute

a vector within �2 distance ε of the stationary distribu-

tion of a random walk on a strongly connected directed

graph in time Õ(nm3/4 + n2/3m), where the natural

condition number of this problem is the mixing time.

• Solving Large Classes of Linear Systems: We provide

algorithms that solve a large class of well-studied linear

systems. Compared with prior algorithms capable of

solving this class, ours are the first that are asymptot-

ically faster than solving general linear systems, and

the first that break the O(n2) barrier for sufficiently

sparse instances. Our methods solve directed Laplacian

systems and systems where the matrix is both row-

and column-diagonally dominant. The running time is

Õ
(
nm3/4 + n2/3m

)
.

• Computing Personalized PageRank: We compute a

vector within �2 distance ε of the personalized PageR-

ank vector, for a directed graph with with restart

probability β, in time Õ
(
nm3/4 + n2/3m

)
. Here the

natural condition number is 1/β. In the case of small

β and ε, this improves upon local methods that take

O(mβ−1ε−1) time [50], [51], [52], [14], [53], [54].

• Simulating Random Walks: We show how to compute

a wide range of properties of random walks on directed

graphs including escape probabilities, commute times,

and hitting times. We also show how to efficiently

estimate the mixing time of a lazy random walk on

a directed graph up to polynomial factors in n and the

mixing time. The runtime for all these algorithms is

Õ
(
nm3/4 + n2/3m

)
.

• Estimating All Commute Times: We show how

to build a Õ(nε−2 log n) size data structure in time

Õ(nm3/4 + n2/3m) that, when queried with any two

vertices a and b, outputs a 1 ± ε multiplicative ap-

proximation to the expected commute time between a
and b, i.e. the expected amount of time for a random

walk starting at a to reach b and return to a. Our

data structure is similar to the data structure known for

computing all-pairs effective resistances in undirected

graphs [39].

It is important to note that the Õ-notation hides fac-

2In follow up work, the authors of this paper in collaboration with Anup
Rao have improved the running time to almost linear in the number of edges
in the graph, meaning the running time is linear if we ignore contributions
to the running time that are smaller than any polynomial. This paper will
be made available online as soon as possible.

tors that are polylogarithmic in both the condition number

(equivalently, mixing time) and the ratio of maximum to

minimum stationary probability. As such, the natural param-

eter regime for our algorithms is when these quantities are

subexponential or polynomial. For all the above problems,

the best prior algorithms had worst case runtimes no better

than O(min{nω, nm}) ≥ Ω(n2) in this regime. We hope

that our results open the door for further research into

directed spectral graph theory, and serve as foundation for

the development of faster algorithms for directed graphs.

A. Approach

Our approach for solving these problems centers around

solving linear systems in a class of matrices we refer to

as directed (graph) Laplacians, a natural generalization of

undirected graph Laplacians. A directed Laplacian, L ∈
Rn×n, is simply a matrix with non-positive off-diagonal

entries such that each diagonal entry is equal to the sum of

the absolute value of the other off-diagonal entries in that

column, i.e. Lij ≤ 0 for i �= j and Lii = −∑
j �=i Lji

(equivalently �1�L = �0). As with undirected Laplacians,

every directed Laplacian there is naturally associated with

a directed graph G = (V,E,w), where the vertices V
correspond to the columns of L and there is an edge from

vertex i to vertex j of weight α if and only if Lji = −α.
Another close feature of directed and undirected Lapla-

cians is the close connection between random walks on

the associated graph G and solutions to linear systems

in L. We ultimately show that solving a small number

of directed Laplacian systems suffices to obtain all of

our desired applications (See Section V and Section VII).

Unfortunately, solving linear systems in L directly is quite

challenging. Particularly troubling is the fact that we while

we know L has a non-trivial kernel (since �1�L = �0�),
we do not have a simple method to compute it efficiently.

Moreover, L is not symmetric, complicating the analysis

of standard iterative algorithms.Furthermore, the standard

approach of multiplying on the left by the transpose, so

that we are solving linear systems in L�L, would destroy

the combinatorial structure of the problem and cause an

intolerably large condition number. A natural idea is to try to

work with a symmetrization of this matrix, 1
2 (L+L�), but

it turns out that this may not even be positive semidefinite

(PSD).3 Consequently, it is not clear a priori how to define

an efficient iterative method for computing the stationary L
or solve systems in it without depending polynomially on

the condition number of L.
Fortunately, we do know how to characterize the kernel

of L, even if computing it is difficult a priori. If we let

3Consider the directed edge Laplacian L =

[
1 0
−1 0

]
. Then, L +

L+ =

[
2 −1
−1 0

]
has an eigenvector (

√
2−1, 1) with a corresponding

eigenvalue of (1−√2).

584585585

D ∈ Rn×n denote the diagonal matrix consistent with L,
i.e., Dii = Lii, then we see that LD−1 = I −W where

I is the identity matrix and W is the random walk matrix

associated with G. In other words, for any distribution p,
we have that Wp is the resulting distribution of one step

of the random walk where, at a vertex i ∈ [n], we pick

a random outgoing edge with probability proportional to its

weight and follow that edge. The Perron-Frobenius Theorem

implies that as long as the graph is strongly connected there

is some stationary distribution s ∈ R>0 such that Ws =
s. Consequently, the kernel of L is simply the stationary

distribution of the natural random walk on G multiplied by

D.

Consequently, we can show that for every directed Lapla-

cian L that corresponds to a strongly connected graph, there

is always a vector x ∈ Rn
>0 such that Lx = 0 (See

Lemma 1). In other words, letting X denote the diagonal

matrix associated with x the directed Laplacian L′ = LX
satisfies L′X1 = 0. This says that the total weight of

incoming edges to a vertex is the same as the total weight

of outgoing edges from that vertex, i.e., that L′ corresponds
to the Laplacian of an Eulerian graph. We call such a vector

an Eulerian scaling of L.
Now, solving systems in an Eulerian Laplacian L (i.e., a

Laplacian corresponding to an Eulerian graph) seems easier

than solving an arbitrary directed Laplacian. In particular,

we know the kernel of a L, since it is just the all ones

vector. In addition, we have that 1
2 (L + L�) is symmetric

and PSD—in fact it is just the Laplacian of an undirected

graph! Unfortunately, this does not immediately yield an

algorithm, as it is not known how to use the ability to solve

systems in such a symmetrization to solve systems in the

original matrix.

Ultimately, this line of reasoning leaves us with two

fundamental questions:

1) Can we solve Eulerian Laplacian systems in time

o(nω, nm)?
2) Can we use an Eulerian Laplacian system solver for

more than solving Eulerian Laplacian systems?

The major contribution of this paper is answering both of

these questions in the affirmative. We show the following:

• We show that we can solve Eulerian Laplacian systems

in time Õ
(
nm3/4 + n2/3m

)
.

• We show that using Eulerian Laplacian systems we can

solve broader classes of matrices we refer to as RCDD

Z-matrices, and α RCDD Z-matrices.

• We show that using solvers for α RCDD Z-matrices,

we can estimate an Eulerian scaling of a directed

Laplacian.

• Putting these components together we achieve our

desired applications. Some of these are applications are

straightforward, whereas others require some signifi-

cant work.

A serious question that arises throughout these results is the

degree of precision do we need to carry out our arithmetic

operations. This arrises both in using undirected Laplacian

system solvers to solving Eulerian Laplacian systems, and

then again in using Eulerian Laplacian system solvers to

derive the rest of our results. These numerical issues are not

merely technicalities—they crucially affect the algorithms

we can use to solve our problem. In fact, we will see

in Section IV that, if we disregarded the numerics and

relied on frequently-quoted assertions relating the behavior

of conjugate gradient to the existence of polynomials with

certain properties, we would actually obtain a better running

time, but that these assertions do not carry over to reasonable

finite-precision setting.

Given these subtleties, we discuss numerical issues

throughout the full version of the paper, showing that we

can achieve all our results in the standard unit cost RAM

model (or any other reasonable model of computation).

We now briefly comment on the key technical ingredients

of each of these results.

1) Solving Eulerian Laplacian Systems: To solve a Eu-

lerian Laplacian system Lx = b, we first precondition,

multiplying both sides by L�U+, where U
def
= 1

2 (L�+L) is
a Laplacian of an undirected graph corresponding to L, and
U+ is its Moore-Penrose pseudoinverse. This shows that it

suffices to instead solve, L�U+Lx = L�U+x. Now using

a nearly-linear-time Laplacian system solver, we can apply

U+ to a vector efficiently. As such, we simply need to show

that we can efficiently solve systems in the symmetric matrix

L�U+L.
Next, we show that the matrix L�U+L is, in an appro-

priate sense, approximable by U. Formally we show that U
is smaller in the sense that U � L�U+L, and that it is not

too much larger in the sense that tr(U+/2L�U+LU+/2) =
O(n2). While the first proof is holds for a broad class of

asymmetric matrices, to prove the second fact we exploit

structure of Eulerian Laplacians, particularly the fact that an

Eulerian graph has a decomposition into simple cycles.

Unfortunately, this property doesn’t immediately yield

an algorithm for solving Laplacian systems. The natural

approach would be to use preconditioned Krylov methods,

such as the Chebyshev method or conjugate gradient. These

essentially apply a polynomial of U+L�U+L to the right

hand side. Unfortunately, Chebyshev iterations only yield

a Ω(mn) time algorithm with this approach. For conjugate

gradient, it can be shown that the trace bound leads to o(mn)
time algorithm in exact arithmetic, but, unfortunately, this

analysis does not appear to be numerically stable, and we

do not know how to show it yields this running time in our

computational model.

Instead we implement an approach based on precondition-

ing and subsampling. We precondition with L�U+L+αU
for a value of α we tune. This reduces the problem to only

solving Õ(
√
α) linear systems in L�U+L+ αU. To solve

585586586

these systems we note that we can write this equivalently as

L�U+UU+L+ αU and using the factorization of U into

its edges we can subsample the inner U while preserving the

matrix. Ultimately, this means we only need to solve systems

in αU plus a low rank matrix which we can do efficiently

using the fact that there is an explicitly formula for low rank

updates (i.e. Sherman-Morrison-Woodbury Matrix Identity).

Trading between the number of such systems to solve, the

preprocessing to solve these systems, and the time to solve

them gives us our desired running time for solving such

linear systems. We show in the appendix that we can, with

some care, stably implement a preconditioned Chebyshev

method and low rank update formulas. This allows us to cir-

cumvent the issues in using conjugate gradient and achieve

our running time in the desired computational model.

2) Solving RCDD Z-matrices: A row column diagonal

dominant (RCDD) matrix is simply a matrix M where

Mii ≥
∑

j �=i |Mij | and Mii ≥
∑

j �=i |Mji| and a Z-

matrix is a matrix M where the off-diagonal entries are

negative. We show how to solve such matrices by directly

reducing them to solving Eulerian Laplacian systems. Given

a RCDD Z-matrix M, we add an additional row and column,

filling in the entries in the natural way so that the resulting

matrix is an Eulerian Laplacian. We show that, from the

solution to such a linear system, we can immediately glean

the solution to systems in M. This reduction is analogous to

the reduction from solving symmetric diagonally dominant

(SDD) systems to solving undirected Laplacian systems. In

the appendix we show that this method is stable.

3) Computing the Stationary: Given a RCDD Z-matrix

solver we use it to compute the scaling that makes a directed

Laplacian L Eulerian, i.e., we compute the stationary distri-

bution. To do this, we pick an initial non-negative diagonal

scaling X and a initial non-negative diagonal matrix E such

that (E + L)X is α-RCDD, that is each diagonal entry is

a 1 + α larger in absolute value than the sum of the off-

diagonal entries in both the corresponding row and column.

We then iteratively decrease E and update X while

maintaining that the matrix is α-RCDD. The key to this

reduction is the fact that there is a natural way to perform a

rank 1 update of (E+L)X to obtain an Eulerian Laplacian,

and that the stationary distribution of this Laplacian can

be obtained by solving a single system in (E + L)X.

Ultimately, this method yields a sequence of stationary

distributions that, when multiplied together entrywise, yield

a good approximate stationary distribution for L. For a more

detailed over this approach and this intuition underlying it,

see Section III-A.

4) Applications: Our algorithms for computing person-

alized page rank, solving arbitrary RCDD systems, and

solving aribtrary directed Laplacian systems are all proven

in a similar fashion. We obtain an approximate stationary

distribution, rescale the system to make it strictly RCDD,

then solve it—all using algorithms from the previous sec-

tions in a black box fashion. Therefore, the running times for

these applications—and in fact all our applications—depend

solely4 on the black-box costs of computing the stationary

distribution and solving RCDD matrices.
However, our algorithms must determine how much ac-

curacy to request when they invoke these two black-box

routines. For computing personalized PageRank, one can

determine the accuracy to request based solely on the

restart probability. However, for our other applications, the

accuracy our algorithms request has a dependence on the

condition number κ(L) of L and the ratio κ(S∗) of max

over min stationary probability. In order to get an uncon-

ditional running time—and out of intrinsic interest—we

show how to efficiently compute reasonable upper bounds

on these quantities. We use an approach motivated by the

close relationship of κ(L) and mixing time. Specifically,

we formulate a notion of personalized PageRank mixing

time, then get a polynomially good estimate of this quantity

using our ability to solve personalized PageRank. Finally,

we show that κ(L) and personalized pagerank mixing time

are equivalent up to factors that are good enough5 for our

purposes. With a reasonable bound on κ(L), we are then

able to choose a restart probability that is small enough in

order to guarantee that personalized solving PageRank gives

a good approximation of the stationary distribution.
Our algorithms for computing hitting times, escape prob-

abilities, and all pairs commute times all start by taking a

natural definition for the quantity of interest and massaging

it into an explicit formula that has an L+ in it. Then, they

use various methods to approximately evaluate the formula.

In the case of hitting times, we simply plug everything into

the formula and invoke our approximate solver for L+ with

appropriately small error. Escape probabilities are handled

similarly, except that there are also two unknown parameters

which we show we can estimate to reasonable accuracy and

plug in.
Perhaps the most sophisticated application is comput-

ing all pairs commute times. We show that the commute

time from u to v is given by the simple formula (�1u −
�1v)

ᵀ(L�b U+
b Lb)

+(�1u−�1v) where Lb is the matrix obtained

by performing the diagonal rescaling of L that turns its

diagonal into the stationary distribution, which also makes

the graph Eulerian. An interesting feature of this formula is

that it involves applying the pseudo-inverse of a matrix of

the very same form as the preconditioned system L�U+L
that our Eulerian Laplacian solver uses. Another interesting

feature is that when L is symmetric, this formula simplifies

to (�1u−�1v)
ᵀU+

b (
�1u−�1v) = 2m · (�1u−�1v)

ᵀU+(�1u−�1v).
Thus, it is a generalization of the well-known characteriza-

tion of commute times in terms of effective resistance from

undirected graphs. In undirected graphs, all pairs commute

4up to polylogarithmic factors
5They are equivalent up to factors polynomial in n and themselves. Since

these quantities appear only in logs in our runtimes, this is good enough.

586587587

times can be computed efficiently via Johnson-Lindenstrauss

sketching [39]. We show that a similar approach extends to

directed Laplacians as well. While the general approach is

similar, the error analysis is complicated by the fact that we

only have access to an approximate stationary distribution.

If this were used naively, one would have to deal with

an approximate version of Lb that, importantly, is only

approximately Eulerian. We bypass this issue by showing

how to construct an Eulerian graph whose stationary is

exactly known and whose commute times approximate the

commute times of the original graph. This may be of

independent interest.

The fact that a matrix of the form L�U+L comes up both

in solving Eulerian Laplacians and in sketching commute

times indicates that it is a considerably more natural object

than it might appear at first.

B. Paper Organization

The rest of the paper is organized as follows:

• Section II - we cover preliminary information

• Section III - we show how to compute the stationary

distribution

• Section IV - we provide our fast Eulerian Laplacian

system solver

• Section V - we reduce strict RCDD linear systems to

solving Eulerian systems

• Section VI - we provide condition number quantities

for applications and prove equivalences

• Section VII - we provide our applications

II. PRELIMINARIES

A. Notation

Matrices: We use bold to denote matrices and let

In,0n ∈ Rn×n denote the identity matrix and zero matrix

respectively. For symmetric matrices A,B ∈ Rn×n we use

A � B to denote the condition that x�Ax ≤ x�Bx and

we define �, ≺, and
 analogously. We call a symmetric

matrix A ∈ Rn×n positive semidefinite if A � 0n and we

let ‖x‖A def
=
√
x�Ax. For any norm ‖ · ‖ define on vectors

in Rn we define the operator norm it induces on Rn×n by

‖A‖ = maxx �=0
‖Ax‖
‖x‖ for all A ∈ Rn×n.

Diagonals: For x ∈ Rn, diag(x) ∈ Rn×n denotes

the matrix whose diagonal is x and off-diagonal

entries are 0. For A ∈ Rn×n, diag(A) denotes the

vector corresponding to the diagonal of A and we let

diag(A)
def
= diag(diag(A)), i.e. A with the off-diagonal

set to 0.

Vectors: We let �0n,�1n ∈ Rn denote the all zeros and ones

vectors respectively. We use �1i ∈ Rn to denote the indicator

vector for coordinate i ∈ [n], i.e. [�1i]j = 0 for j �= i and

[�1i]i = 1. Occasionally we apply scalar operations to

vectors with the interpretation that they should be applied

coordinate-wise, e.g. for x, y ∈ Rn we let max{x, y}
denote the vector z ∈ Rn with zi = max{xi, yi} and we

use x ≥ y to denote the condition that xi ≥ yi for all i ∈ [n].

Condition Numbers: Given a invertible matrix A ∈ Rn×n

we let κ(A)
def
= ‖A‖2 · ‖A−1‖2 denote the condition

number of A. Note that if X ∈ Rn×n is a diagonal matrix

then κ(X) =
maxi∈[n] |Xii|
mini∈[n] |Xii| .

Sets: We let [n]
def
= {1, ..., n} and Δn def

= {x ∈ Rn
≥0 |�1�n x =

1}, i.e. the n-dimensional simplex.

B. Matrix Classes
Diagonal Dominance: A possibly asymmetric

matrix A ∈ Rn×n is α-row row-column diagonally
dominant (RCDD) if Aii ≥ (1 + α)

∑
j �=i |Aij | for

all i ∈ [n], α-column diagonally dominant (CDD) if

Aii ≥ (1 + α)
∑

j �=i |Aji|, and α-RCDD if it is both

α-RDD and α-CDD. For brevity, we call A RCDD if

it is 0-RCDD and strictly RCDD if it is α-RCDD for α > 0.

Z-matrix: A matrix M ∈ Rn×n is called a Z-matrix

if Mij ≤ 0 for all i �= j, i.e. every off-diagonal entry is

non-positive.

Directed Laplacian: A matrix L ∈ Rn×n is called a

directed Laplacian if it a Z-matrix with �1�nL = �0n, that

is Lij ≤ 0 for all i �= j and Lii = −∑
j �=i Lji for all

i. To every directed Laplacian L we associate a graph

GL = (V,E,w) with vertices V = [n] and an edge (i, j)
of weight wij = −Lji for all i �= j ∈ [n] with Lji �= 0.
Occasionally we write L = D − A� to denote that we

decompose L into the diagonal matrix D where Dii = Lii

is the out degree of vertex i in GL and A is weighted

adjacency matrix of GL with Aij = wij if (i, j) ∈ E and

Aij = 0 otherwise. We call W = A�D−1 the random

walk matrix associated with GL. We call L Eulerian if

additionally L�1n = �0n as in this case the associated graph
GL is Eulerian.

(Symmetric) Laplacian: A matrix U ∈ Rn×n is called a

Symmetric Laplacian or just a Laplacian if it is symmetric

and a Laplacian. This coincides with the standard definition

of Laplacian and in this case note that the associated graph

GU = (V,E,w) is symmetric. For a Laplacian we also

associate a matrix B ∈ RE×V known as the weighted

incidence matrix. Each row b(i) of B corresponds to an

edge {j, k} ∈ E and for a canonical orientation ordering

of {j, k} we have b
(i)
j =

√
w{j,k}, b

(i)
k = −√w{j,k}, and

b
(i)
l = 0 if l /∈ {j, k}. Note that U = B�B and thus L is

always PSD.

Random Walk Matrix: A matrix W ∈ Rn×n is

called a random walk matrix if Wij ≥ 0 for all i, j ∈ [n]

587588588

and �1�nW = �1n. To every random walk matrix W we

associated a directed graph GW = (V,E,w) with vertices

V = [n] and an edge from i to j of weight wij = Wij for

all i, j ∈ [n] with Wij �= 0. Note if we say that L = I−W
is a directed Laplacian, then W is a random walk matrix

and the directed graphs associated with L and W are

identical.

Lazy Random Walk Matrix: Given a random walk matrix

W ∈ Rn×n the α-lazy random walk matrix associated

with W for α ∈ [0, 1] is given by αI + (1 − α)W. When

α = 1
2 we call this a lazy random walk matrix for short

and typically denote it W̃.

Personalized PageRank Matrix: Given a random

walk matrix W ∈ Rn×n the personalized PageRank

matrix with restart probability β ∈ [0, 1] is given by

Mpp(β) = β(I − (1 − β)W)−1. Given any probability

vector p ∈ Δn the personalized PageRank vector with

restart probability β and vector p is the vector x which

satisfies βp + (1 − β)Wx = x. Rearranging terms we see

that x = Mβp hence justifying our naming of Mpp(β) as

the personalized PageRank matrix.

C. Directed Laplacians of Strongly Connected Graphs

The most important properties of directed Laplacians tha

twe use are encapsulated below.

Lemma 1. For directed Laplacian L = D −A� ∈ Rn×n

whose associated graph is strongly connected there exists a
positive vector s ∈ Rn

>0 (unique up to scaling) such that
the following equivalent conditions hold.
• Ws = s for the random walk matrix W = A�D−1

associated with L.
• LD−1s = 0
• LD−1S for S = diag(s) is an Eulerian Laplacian.
If we scale s so that ‖s‖1 = 1 then we call s the

stationary distribution associated with the random walk on
the associated graph GL. We call any vector x ∈ Rn

>0 such
that LX is an Eulerian Laplacian an eulerian scaling for
L. Furthermore, ker(L) = span(D−1s) and ker(L�) =
span(�1n).

III. COMPUTING THE STATIONARY DISTRIBUTION

Here we show to compute the stationary distribution given

an α-RCDD Z-matrix linear system solver. Throughout this

section, we let L = D − A� ∈ Rn×n denote a directed

Laplacian and our primary goal in this section is to compute

an approximate stationary vector s ∈ RV
>0 such that LD−1S

is approximately Eulerian. The main result of this section is

the following:

Theorem 2 (Stationary Computation Using a RCDD

Solver). Given α ∈ (0, 1
2) and L ∈ Rn×n, a directed

Laplacian with m nonzero-entries, we can compute in time

O((m+T)·logα−1) an approximate stationary distribution
s ∈ Δn such that (3αn ·D + L)D−1S is α-RCDD where
D = diag(L), S = diag(s), and T is the cost of computing
an ε-approximate solution to a n × n α-RCDD Z-matrix
linear system with m-nonzero entries, i.e. computing x such
that ‖x −M−1b‖diag(M) ≤ ε

α‖b‖diag(M)−1 for α-RCDD
Z-matrix M ∈ Rn×n with O(m) non-zero entries and
ε = O(poly(n/α)). Furthermore, κ(S) ≤ 20

α2n, where κ(S)
is the ratio between the largest and smallest elements of s.

An analysis of this algorithm is in the full version of this

paper.

A. The Approach

Our approach to computing the stationary distribution is

broadly related to the work of Daitch and Spielman [55]

for computing the diagonal scaling makes a symmetric M -

matrix diagonally dominant. However, the final rescaling that

we are trying to calculate is given by the uniqueness of

the stationary distribution, which in turn follows from the

Perron-Frobenius theorem.

As in [55] we use an iterative that brings a matrix in-

creasingly close to being RCDD. However, our convergence

process is through potential functions instead of through

combinatorial entry count; instead of making parts of L
RCDD incrementally we instead start with a relaxation of

L that is RCDD and iteratively bring this matrix closer to

L while maintaining that it is RCDD. We remark that this

scheme can also be adapted to find rescalings of symmetric

M-matrices.

Our algorithm hinges on two key insights. The first is

that if we have positive vectors e, x ∈ Rn
>0 so that M

def
=

(E + L)X is α-RCDD, then for any vector g ∈ Rn
>0 with

‖g‖1 = 1 we can compute the stationary distribution of the

directed Laplacian L′ = E − ge� + L by solving a single

linear system in M.

This implies that if we have a RCDD Z-matrix we can

compute the stationary of a related matrix. However a priori

it is unclear how this allows to compute the stationary of

L. The second insight is that if we compute the stationary

of L′, e.g. we compute some y ∈ Rn
>0 such that L′Y is

an Eulerian Laplacian, then (E + L)Y is strictly RCDD.

Since L′Y is Eulerian, (E − L − L′)Y = ge�Y is an all

positive matrix which is entrywise less than L′ in absolute

value. In other words, removing ge�Y from L′Y strictly

decreases the absolute value of the off diagonal entries and

increases the value of the diagonal entries causing (E+L)Y
to be strictly RCDD. Consequently, given y we can hope to

decrease e to achieve e′ to obtain an α-RCDD Z-matrix

M′ = (E′ + L)Y where e′ ≤ e.

Combining these insights naturally yields our algorithm,

which converges quickly provided we use a sufficiently

accurate RCDD linear system solver.

588589589

IV. EULERIAN LAPLACIAN SOLVER

Throughout this section, let L denote an Eulerian directed

Laplacian with n vertices and m edges, and let U denote

the associated undirected Laplacian: U
def
= 1

2 (L + L�). We

define Tsolve def
= (nm3/4 + n2/3m)(log n)3 to simplify the

statements of our runtime bounds.

This section’s goal is to proving Theorem 3, showing that

we can efficiently solve linear systems in L. We make no

attempt to minimize the number of logarithmic factors in

this presentation (including e.g. in parameter balancing); we

suspect that with careful use of the recent results [41] and

[27] the log n factors can all be eliminated.

Theorem 3. Let b be an n-dimensional vector in the image
of L, and let x be the solution to Lx = b. Then for any
0 < ε ≤ 1

2 , one can compute in O(Tsolve log(1/ε)) time,
a vector x′ which with high probability is an approximate
solution to the linear system in that ‖x′ − x‖U ≤ ε‖b‖U+ .

Our proof is crucially based on the symmetric matrix

X
def
= L�U+L. We begin by noting that X is somewhat

well approximated by U:

Lemma 4. X � U, while tr(XU+) = tr(L�U+LU+) ≤
2(n− 1)2.

We use a technique similar to the method of ultraspar-

sification used in Laplacian solvers, in particular [22]. Our

method deviates from much of this previous work in that

it is non-recursive and uses only the Woodbury matrix

identity (instead of partial Cholesky factorization) to solve

the preconditioner. This allows us to obtain a preconditioner

with a better relative condition number than U itself, which

can still be applied nearly as efficiently. Details are given in

the full version of this paper.

V. SOLVING STRICTLY RCDD SYSTEMS

Here we show how to reduce solving strictly RCDD

systems using an Eulerian Laplacian solver. We provide and

prove Theorem 5 which achieves this goal by using the

Eulerian Laplacian system solver presented in Section V.

The full version has a corollary specializing this to the α-
RCDD case.

Theorem 5. Let A ∈ Rn×n be a strictly RCDD Z-matrix,
let b ∈ Rn, let x be the solution to Ax = b, and let 0 < ε ≤
1
2 . Then in O(Tsolve log(1/ε)) time we can compute a vector
x′ that satisfies ‖x′−x‖ 1

2 (A+A�) ≤ ε‖b‖(1
2 (A+A�))−1 with

high probability.

VI. CONDITION NUMBER BOUNDS

For our applications (Section VII) we use three quantities

to measure the degeneracy or condition number of the

matrices involved. These quantities only appear inside logs,

so it suffices to relate them up to various polynomial factors.

This is done in the full version. Let W and s be the

random walk matrix and stationary distribution associated

with a directed Laplacian. The quantities are ‖L+‖2, the

mixing time of the lazy random walk associated with W,

and personalized PageRank mixing time. This last quantity

is the smallest k ≥ 0 such that, setting β = 1
k , one has

‖Mpp(β)p − s‖1 ≤ 1
2 , for all p ∈ Δn; where Mpp(β) =

β (I− (1− β)W)
−1

.

VII. APPLICATIONS

We now use the algorithms from the previous sections

to efficiently solve several of problems of interest, mostly

related to computing random walk-related quantities of

directed graphs. We emphasize that unlike all prior work

for directed graphs, our results have only a polylogarithmic

dependence on the condition number—or equivalently—

mixing time. We can compute

• A−1b where A is any invertible RCDD matrix, without

strictness or Z-matrix requirements

• L+b where L is a directed Laplacian and b ∈ Rn

• personalized PageRank

• the mixing time of a Markov chain—up to various

polynomial factors—and its stationary distribution

• hitting times for any particular pair of vertices

• escape probabilities for any triple of vertices

• all pairs commute times via JL sketching

Like Theorem 2, all of our routines will utilize a solver

for RCDD linear systems in a black-box manner, giving

runtimes of Õ(Tsolve) ≤ Õ(nm3/4 + n2/3m).

ACKNOWLEDGMENT

M.B.C., J.K., and A.V.: This material is based upon work

supported by the National Science Foundation under Grant

No. 1111109.

J.P.: This material is based upon work supported by the

National Science Foundation Graduate Research Fellowship

under Grant No. 1122374 and by the National Science

Foundation under Grant No. 1065125.

R.P.: Part of this work was done while at MIT.

A.S.: This work was supported in part by the Simons

Institute for the Theory of Computing, NSF award 1111109,

a NSF Graduate Research Fellowship (grant no. 1122374),

Microsoft Research New England, and Stanford University.

REFERENCES

[1] M. B. Cohen, J. Kelner, J. Peebles, R. Peng, A. Sidford, and
A. Vladu, “Faster algorithms for computing the stationary
distribution, simulating random walks, and more,” 2016.

[2] A. Sinclair and M. Jerrum, “Approximate counting, uniform
generation and rapidly mixing markov chains,” Inf. Comput.,
vol. 82, no. 1, pp. 93–133, 1989.

[3] R. M. Karp, M. Luby, and N. Madras, “Monte-carlo approx-
imation algorithms for enumeration problems,” Journal of
algorithms, vol. 10, no. 3, pp. 429–448, 1989.

589590590

[4] M. Jerrum, A. Sinclair, and E. Vigoda, “A polynomial-time
approximation algorithm for the permanent of a matrix with
nonnegative entries,” Journal of the ACM (JACM), vol. 51,
no. 4, pp. 671–697, 2004.

[5] L. Lovász and M. Simonovits, “The mixing rate of markov
chains, an isoperimetric inequality, and computing the vol-
ume,” in Foundations of Computer Science, 1990. Proceed-
ings., 31st Annual Symposium on. IEEE, 1990, pp. 346–354.

[6] M. Dyer, A. Frieze, and R. Kannan, “A random polynomial-
time algorithm for approximating the volume of convex
bodies,” Journal of the ACM (JACM), vol. 38, no. 1, pp. 1–17,
1991.

[7] S. Vempala, “Geometric random walks: a survey,” Combina-
torial and computational geometry, vol. 52, no. 573-612, p. 2,
2005.

[8] L. Lovász and S. Vempala, “Fast algorithms for logconcave
functions: Sampling, rounding, integration and optimization,”
in 2006 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’06). IEEE, 2006, pp. 57–68.

[9] ——, “Hit-and-run from a corner,” SIAM Journal on Com-
puting, vol. 35, no. 4, pp. 985–1005, 2006.

[10] Y. T. Lee and S. S. Vempala, “Geodesic walks on polytopes,”
arXiv preprint arXiv:1606.04696, 2016.

[11] N. Alon and V. D. Milman, “λ1, isoperimetric inequalities
for graphs, and superconcentrators,” Journal of Combinatorial
Theory, Series B, vol. 38, no. 1, pp. 73–88, 1985.

[12] D. Spielman and S. Teng, “Nearly linear time algorithms for
preconditioning and solving symmetric, diagonally dominant
linear systems,” SIAM Journal on Matrix Analysis and Ap-
plications, vol. 35, no. 3, pp. 835–885, 2014, available at
http://arxiv.org/abs/cs/0607105.

[13] R. Kannan, S. Vempala, and A. Vetta, “On clusterings: Good,
bad and spectral,” Journal of the ACM (JACM), vol. 51, no. 3,
pp. 497–515, 2004.

[14] R. Andersen, F. Chung, and K. Lang, “Local graph partition-
ing using pagerank vectors,” in Proceedings of the 47th An-
nual IEEE Symposium on Foundations of Computer Science,
ser. FOCS ’06. Washington, DC, USA: IEEE Computer
Society, 2006, pp. 475–486.

[15] L. Orecchia, S. Sachdeva, and N. K. Vishnoi, “Approximating
the exponential, the lanczos method and an o (m)-time spec-
tral algorithm for balanced separator,” in Proceedings of the
forty-fourth annual ACM symposium on Theory of computing.
ACM, 2012, pp. 1141–1160.

[16] S. Hoory, N. Linial, and A. Wigderson, “Expander graphs and
their applications,” Bulletin of the American Mathematical
Society, vol. 43, no. 4, pp. 439–561, 2006.

[17] O. Reingold, “Undirected connectivity in log-space,” Journal
of the ACM (JACM), vol. 55, no. 4, p. 17, 2008.

[18] D. A. Spielman, “Linear-time encodable and decodable error-
correcting codes,” in Proceedings of the twenty-seventh an-
nual ACM symposium on Theory of computing. ACM, 1995,
pp. 388–397.

[19] M. Sipser and D. A. Spielman, “Expander codes,” IEEE
Transactions on Information Theory, vol. 42, no. 6, pp. 1710–
1722, 1996.

[20] L. Lovász, “Random walks on graphs,” Combinatorics, Paul
erdos is eighty, vol. 2, pp. 1–46, 1993.

[21] I. Koutis, G. L. Miller, and R. Peng, “Approaching optimality
for solving SDD linear systems,” in Proceedings of the
2010 IEEE 51st Annual Symposium on Foundations of
Computer Science, ser. FOCS ’10. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 235–244, available
at http://arxiv.org/abs/1003.2958. [Online]. Available: http:
//arxiv.org/abs/1003.2958

[22] ——, “A nearly-m log n time solver for SDD linear systems,”
in Proceedings of the 2011 IEEE 52nd Annual Symposium on
Foundations of Computer Science, ser. FOCS ’11. Washing-
ton, DC, USA: IEEE Computer Society, 2011, pp. 590–598,
available at http://arxiv.org/abs/1102.4842.

[23] J. A. Kelner, L. Orecchia, A. Sidford, and Z. A. Zhu, “A
simple, combinatorial algorithm for solving SDD systems
in nearly-linear time,” in Proceedings of the 45th annual
ACM symposium on Symposium on theory of computing, ser.
STOC ’13. New York, NY, USA: ACM, 2013, pp. 911–920,
available at http://arxiv.org/abs/1301.6628.

[24] Y. T. Lee and A. Sidford, “Efficient accelerated coordinate
descent methods and faster algorithms for solving linear
systems,” in Foundations of Computer Science (FOCS), 2013
IEEE 54th Annual Symposium on. IEEE, 2013, pp. 147–156.

[25] M. B. Cohen, R. Kyng, G. L. Miller, J. W. Pachocki, R. Peng,
A. B. Rao, and S. C. Xu, “Solving sdd linear systems in
nearly mlog1/2n time,” in Proceedings of the 46th Annual
ACM Symposium on Theory of Computing, ser. STOC ’14.
New York, NY, USA: ACM, 2014, pp. 343–352.

[26] R. Peng and D. A. Spielman, “An efficient parallel solver
for SDD linear systems,” in Proceedings of the 46th Annual
ACM Symposium on Theory of Computing, ser. STOC ’14.
New York, NY, USA: ACM, 2014, pp. 333–342, available at
http://arxiv.org/abs/1311.3286.

[27] Y. T. Lee, R. Peng, and D. A. Spielman, “Sparsified cholesky
solvers for SDD linear systems,” CoRR, vol. abs/1506.08204,
2015.

[28] R. Kyng, Y. T. Lee, R. Peng, S. Sachdeva, and D. A.
Spielman, “Sparsified Cholesky and multigrid solvers for
connection Laplacians,” CoRR, vol. abs/1512.01892, 2015,
available at http://arxiv.org/abs/1512.01892.

[29] S.-H. Teng, “The laplacian paradigm: Emerging algorithms
for massive graphs,” in Proceedings of the 7th Annual Confer-
ence on Theory and Applications of Models of Computation,
ser. TAMC’10. Berlin, Heidelberg: Springer-Verlag, 2010,
pp. 2–14.

[30] P. Christiano, J. A. Kelner, A. Madry, D. A. Spielman, and
S.-H. Teng, “Electrical flows, laplacian systems, and faster
approximation of maximum flow in undirected graphs,” in
Proceedings of the forty-third annual ACM symposium on
Theory of computing. ACM, 2011, pp. 273–282.

590591591

[31] Y. T. Lee, S. Rao, and N. Srivastava, “A new approach
to computing maximum flows using electrical flows,” in
Proceedings of the forty-fifth annual ACM symposium on
Theory of computing. ACM, 2013, pp. 755–764.

[32] J. Sherman, “Nearly maximum flows in nearly linear time,” in
Foundations of Computer Science (FOCS), 2013 IEEE 54th
Annual Symposium on. IEEE, 2013, pp. 263–269.

[33] J. A. Kelner, Y. T. Lee, L. Orecchia, and A. Sidford, “An
almost-linear-time algorithm for approximate max flow in
undirected graphs, and its multicommodity generalizations,”
in Proceedings of the Twenty-Fifth Annual ACM-SIAM Sym-
posium on Discrete Algorithms. Society for Industrial and
Applied Mathematics, 2014, pp. 217–226.

[34] R. Peng, “Approximate undirected maximum flows in
O(mpolylog(n)) time,” in Proceedings of the Twenty-Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2016, Arlington, VA, USA, January 10-12, 2016, 2016,
pp. 1862–1867.

[35] A. Asadpour, M. X. Goemans, A. Madry, S. O. Gharan, and
A. Saberi, “An o (log n/log log n)-approximation algorithm
for the asymmetric traveling salesman problem.” in SODA,
vol. 10. SIAM, 2010, pp. 379–389.

[36] N. Anari and S. O. Gharan, “Effective-resistance-reducing
flows, spectrally thin trees, and asymmetric tsp,” in Founda-
tions of Computer Science (FOCS), 2015 IEEE 56th Annual
Symposium on. IEEE, 2015, pp. 20–39.

[37] J. A. Kelner and A. Madry, “Faster generation of random
spanning trees,” in Foundations of Computer Science, 2009.
FOCS’09. 50th Annual IEEE Symposium on. IEEE, 2009,
pp. 13–21.

[38] A. Mądry, D. Straszak, and J. Tarnawski, “Fast generation of
random spanning trees and the effective resistance metric,” in
Proceedings of the Twenty-Sixth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms. SIAM, 2015, pp. 2019–2036.

[39] D. A. Spielman and N. Srivastava, “Graph sparsification by
effective resistances,” in Proceedings of the Fortieth Annual
ACM Symposium on Theory of Computing, ser. STOC ’08.
New York, NY, USA: ACM, 2008, pp. 563–568.

[40] Z. Allen-Zhu, Z. Liao, and L. Orecchia, “Spectral sparsifi-
cation and regret minimization beyond matrix multiplicative
updates,” in Proceedings of the Forty-Seventh Annual ACM
on Symposium on Theory of Computing. ACM, 2015, pp.
237–245.

[41] Y. T. Lee and H. Sun, “Constructing linear-sized spectral spar-
sification in almost-linear time,” in Foundations of Computer
Science (FOCS), 2015 IEEE 56th Annual Symposium on, Oct
2015, pp. 250–269.

[42] J. A. Kelner, G. L. Miller, and R. Peng, “Faster approximate
multicommodity flow using quadratically coupled flows,” in
Proceedings of the forty-fourth annual ACM symposium on
Theory of computing. ACM, 2012, pp. 1–18.

[43] A. Madry, “Navigating central path with electrical flows:
From flows to matchings, and back,” in 54th Annual IEEE
Symposium on Foundations of Computer Science, FOCS
2013, 26-29 October, 2013, Berkeley, CA, USA, 2013, pp.
253–262.

[44] Y. T. Lee and A. Sidford, “Path finding methods
for linear programming: Solving linear programs in
Õ
√
rank iterations and faster algorithms for maximum

flow,” in Foundations of Computer Science (FOCS), 2014
IEEE 55th Annual Symposium on. IEEE, 2014, pp.
424–433, available at http://arxiv.org/abs/1312.6677 and
http://arxiv.org/abs/1312.6713.

[45] M. B. Cohen, A. Madry, P. Sankowski, and A. Vladu,
“Negative-weight shortest paths and unit capacity mini-

mum cost flow in õ(m10/7 log W) time,” CoRR, vol.
abs/1605.01717, 2016.

[46] F. Chung, “Laplacians and the cheeger inequality for directed
graphs,” Annals of Combinatorics, vol. 9, no. 1, pp. 1–19.

[47] K. Guo and B. Mohar, “Hermitian adjacency matrix of
digraphs and mixed graphs,” ArXiv e-prints, May 2015.

[48] K. M. Chung, O. Reingold, and S. Vadhan, “S-t connectivity
on digraphs with a known stationary distribution,” in Compu-
tational Complexity, 2007. CCC ’07. Twenty-Second Annual
IEEE Conference on, June 2007, pp. 236–249.

[49] V. V. Williams, “Multiplying matrices faster than
coppersmith-winograd,” in Proceedings of the 44th
Symposium on Theory of Computing Conference, STOC
2012, New York, NY, USA, May 19 - 22, 2012, 2012, pp.
887–898.

[50] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pager-
ank citation ranking: bringing order to the web.” 1999.

[51] G. Jeh and J. Widom, “Scaling personalized web search,” in
Proceedings of the 12th international conference on World
Wide Web. ACM, 2003, pp. 271–279.

[52] D. Fogaras and B. Rácz, “Towards scaling fully personalized
pagerank,” in International Workshop on Algorithms and
Models for the Web-Graph. Springer, 2004, pp. 105–117.

[53] R. Andersen, C. Borgs, J. Chayes, J. Hopcraft, V. S. Mirrokni,
and S.-H. Teng, “Local computation of pagerank contribu-
tions,” in International Workshop on Algorithms and Models
for the Web-Graph. Springer, 2007, pp. 150–165.

[54] P. A. Lofgren, S. Banerjee, A. Goel, and C. Seshadhri,
“Fast-ppr: scaling personalized pagerank estimation for large
graphs,” in Proceedings of the 20th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining.
ACM, 2014, pp. 1436–1445.

[55] S. I. Daitch and D. A. Spielman, “Faster approximate lossy
generalized flow via interior point algorithms,” in Proceed-
ings of the Fortieth Annual ACM Symposium on Theory of
Computing, ser. STOC ’08. New York, NY, USA: ACM,
2008, pp. 451–460.

591592592

