
Approximate Gaussian Elimination for Laplacians
– Fast, Sparse, and Simple

Rasmus Kyng, Sushant Sachdeva

Department of Computer Science
Yale University

New Haven, USA
rasmus.kyng@yale.edu, sachdeva@cs.yale.edu

Abstract—We show how to perform sparse approximate
Gaussian elimination for Laplacian matrices. We present a
simple, nearly linear time algorithm that approximates a
Laplacian by the product of a sparse lower triangular matrix
with its transpose. This gives the first nearly linear time solver
for Laplacian systems that is based purely on random sampling,
and does not use any graph theoretic constructions such as low-
stretch trees, sparsifiers, or expanders. Our algorithm performs
a subsampled Cholesky factorization, which we analyze using
matrix martingales. As part of the analysis, we give a proof
of a concentration inequality for matrix martingales where the
differences are sums of conditionally independent variables.1

Keywords-Gaussian elimination; Cholesky factorization;
Laplacian systems; Linear system solvers; Randomized numer-
ical linear algebra; Matrix martingales

I. INTRODUCTION

A symmetric matrix L is called Symmetric and Diago-

nally Dominant (SDD) if for all i, L(i, i) ≥∑j �=i |L(i, j)|.
An SDD matrix L is a Laplacian if L(i, j) ≤ 0 for i �= j,
and for all i,

∑
j L(i, j) = 0. A Laplacian matrix is

naturally associated with a graph on its vertices, where i, j
are adjacent if L(i, j) �= 0. The problem of solving systems

of linear equations Lx = b, where L is an SDD matrix (and

often a Laplacian), is a fundamental primitive and arises

in varied applications in both theory and practice. Example

applications include solutions of partial differential equa-

tions via the finite element method [1], [2], semi-supervised

learning on graphs [3]–[5], and computing maximum flows

in graphs [6]–[9]. It has also been used as a primitive in

the design of several fast algorithms [10]–[14]. It is known

that solving SDD linear systems can be reduced to solving

Laplacian systems [15].

Cholesky Factorization: A natural approach to solving

systems of linear equations is Gaussian elimination, or

its variant for symmetric matrices, Cholesky factorization.

Cholesky factorization of a matrix L produces a factorization

L = LDL�, where L is a lower-triangular matrix, and

D is a diagonal matrix. Such a factorization allows us to

solve a system Lx = b by computing x = L−1b =

1An extended version of this paper is available on Arxiv at
http://arxiv.org/abs/1605.02353

(L−1)�D−1L−1b, where the inverse of L, and D can be

applied quickly since they are lower-triangular and diagonal,

respectively.

The fundamental obstacle to using Cholesky factorization

for quickly solving systems of linear equations is that L can

be a dense matrix even if the original matrix L is sparse.

The reason is that the key step in Cholesky factorization,

eliminating a variable, say xi, from a system of equations,

creates a new coefficient L′(j, k) for every pair j, k such that

L(j, i) and L(i, k) are non-zero. This phenomenon is called

fill-in. For Laplacian systems, eliminating the first variable

corresponds to eliminating the first vertex in the graph, and

the fill-in corresponds to adding a clique on all the neighbors

of the first vertex. Sequentially eliminating variables often

produces a sequence of increasingly-dense systems, resulting

in an O(n3) worst-case time even for sparse L. Informally,

the algorithm for generating the Cholesky factorization for

a Laplacian can be expressed as follows:

1: for i = 1 to n− 1 do
2: Use equation i to express the variable for vertex i

in terms of the remaining variables.
3: Eliminate vertex i, adding a clique on the neighbors

of i.
4: end for

Eliminating the vertices in an order given by a permutation

π generates a factorization L = PπLDL�P�π , where Pπ

denotes the permutation matrix of π, i.e., (Pπz)i = zπ(i)
for all z. Though picking a good order of elimination can

significantly reduce the running time of Cholesky factoriza-

tion, it gives no guarantees for general systems, e.g., for

sparse expander graphs, every ordering results in an Ω(n3)
running time [16].

Our Results: In this paper, we present the first

nearly linear time algorithm that generates a sparse ap-

proximate Cholesky decomposition for Laplacian matri-

ces, with provable approximation guarantees. Our algorithm

SPARSECHOLESKY can be described informally as follows

(see Section III for a precise description):

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.68

572

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.68

573

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.68

573

1: Randomly permute the vertices.

2: for i = 1 to n− 1 do
3: Use equation i to express the variable for vertex i

in terms of the remaining variables.
4: Eliminate vertex i, adding random samples from the

clique on the neighbors of i.
5: end for

We prove the following theorem about our algorithm,

where for symmetric matrices A,B, we write A � B if

B −A is positive semidefinite (PSD).

Theorem 1.1: The algorithm SPARSECHOLESKY, given

an n× n Laplacian matrix L with m non-zero entries, runs

in expected time O(m log3 n) and computes a permutation

π, a lower triangular matrix L with O(m log3 n) non-zero

entries, and a diagonal matrix D such that with probability

1− 1
poly(n) , we have

1/2 · L � Z � 3/2 · L,
where Z = PπLDL�P�π , i.e., Z has a sparse Cholesky

factorization.

The sparse approximate Cholesky factorization for L
given by Theorem 1.1 immediately implies fast solvers for

Laplacian systems. We can use the simplest iterative method,

called iterative refinement [17, Chapter 12] to solve the

system Lx = b as follows. We let,

x(0) = 0, x(i+1) = x(i) − 1/2 · Z+(Lx(i) − b),

where we use the Z+, the pseudo-inverse of Z since Z has

a kernel identical to L. Let 1 denote the all ones vector, and

for any vector v, let ‖v‖L def
=
√
v�Lv.

Theorem 1.2: For all Laplacian systems Lx = b
with 1�b = 0, and all ε > 0, using the sparse

approximate Cholesky factorization Z given by Theo-

rem 1.1, the above iterate for t = 3 log 1/ε satisfies∥∥∥x(t) − L+b
∥∥∥
L
≤ ε
∥∥L+b

∥∥
L
. We can compute such an x(t)

in time O(m log3 n log 1/ε).
In our opinion, this is the simplest nearly-linear time

solver for Laplacian systems. Our algorithm only uses

random sampling, and no graph-theoretic constructions, in

contrast with all previous Laplacian solvers. A complete

analysis is quite short (see extended version for missing

proofs). We remark that there is a possibility that our

analysis is not tight, and that the bounds can be improved

by a stronger matrix concentration result.

Technical Contributions: There are several key ideas

that are central to our result: The first is randomizing the

order of elimination. At step i of the algorithm, if we

eliminate a fixed vertex and sample the resulting clique, we

do not know useful bounds on the sample variances that

would allow us to prove concentration. Randomizing over

the choice of vertex to eliminate allows us to bound the

sample variance by roughly 1/n times the Laplacian at the

previous step.

The second key idea is our approach to estimating effec-

tive resistances: A core element in all nearly linear time

Laplacian solvers is a procedure for estimating effective

resistances (or leverage scores) for edges in order to compute

sampling probabilities. In previous solvers, these estimates

are obtained using fairly involved procedures (e.g. low-

stretch trees, ultrasparsifiers, or the subsampling procedure

due to Cohen et al. [18]). In contrast, our solver starts

with the crudest possible estimates of 1 for every edge,

and then uses the triangle inequality for effective resistances

(Lemma 5.1) to obtain estimates for the new edges gener-

ated. We show that these estimates suffice for constructing

a nearly linear time Laplacian solver.

Finally, we develop concentration bounds for a class of

matrix martingales that we call bags-of-dice martingales.

The name is motivated by a simple scalar model: at each

step, we pick a random bag of dice from a collection of

bags (in the algorithm, this corresponds to picking a random

vertex to eliminate), and then we independently roll each die

in the selected bag (corresponding to drawing independent

samples from the clique added). The concentration bound

gives us a powerful tool for handling conditionally indepen-

dent sums of variables. We give two proofs of the concen-

tration result, one using Lieb’s concavity theorem [19], and

another using the Matrix Freedman inequality [20]. We defer

a formal description of the martingales and the concentration

bound to Section IV-B.

Comparison to other Laplacian solvers: Though the

current best algorithm for solving a general n × n pos-

itive semidefinite linear system with m non-zero entries

takes time O(min{mn, n2.2373}) [21], a breakthrough re-

sult by Spielman and Teng [22], [23] showed that linear

systems in graph Laplacians could be solved in time O(m ·
poly(log n) log 1/ε). There has been a lot of progress over

the past decade [24]–[29], and the current best running time

is O(m log
1/2 n log 1/ε) (up to polylog n factors) [27]. All of

these algorithms have relied on graph-theoretic constructions

– low-stretch trees [22], [24]–[27], graph sparsification [22],

[24], [25], [27], [28], and explicit expander graphs [29].

In contrast, our algorithm requires no graph-theoretic

construction, and is based purely on random sampling.

Our result only uses two algebraic facts about Laplacian

matrices:

1) They are closed under taking Schur complements, and

2) They satisfy the effective resistance triangle inequality

(Lemma 5.1).

[29] presented the first nearly linear time solver for block

Diagonally Dominant (bDD) systems – a generalization of

SDD systems. If bDD matrices satisfy the effective resis-

tance triangle inequality (we are unaware if they do), then

the algorithm in the main body of this paper immediately

applies to bDD systems, giving a sparse approximate block

573574574

Cholesky decomposition and a nearly linear time solver for

bDD matrices.

In Appendix D (extended version), we sketch a near-

linear time algorithm for computing a sparse approximate

block Cholesky factorization for bDD matrices. It combines

the approach of SPARSECHOLESKY with a recursive ap-

proach for estimating effective resistances, as in [29], using

the subsampling procedure [18]. Though the algorithm is

more involved than SPARSECHOLESKY, it runs in time

O(m log3 n+n log5 n), and produces a sparse approximate

Cholesky decomposition with only O(m log2 n + n log4 n)
entries. The algorithm only uses that bDD matrices are

closed under taking Schur complements, and that the Schur

complements have a clique structure similar to Laplacians

(see Section II).

Comparison to Incomplete Cholesky Factorization: A

popular approach to tackling fill-in is Incomplete Cholesky
factorization, where we throw away most of the new entries

generated when eliminating variables. The hope is that

the resulting factorization is still an approximation to the

original matrix L, in which case such an approximate

factorization can be used to quickly solve systems in L.
Though variants of this approach are used often in practice,

and we have approximation guarantees for some families of

Laplacians [30]–[32], there are no known guarantees for gen-

eral Laplacians to the best of our knowledge. Most variants

of incomplete Cholesky in the literature are deterministic

algorithms. A notable exception is a randomized rounding

scheme proposed by Clarkson [33] that he experimentally

showed performs well on some matrices.

II. PRELIMINARIES

Laplacians and Multi-Graphs.: We consider a con-

nected undirected multi-graph G = (V,E), with positive

edges weights w : E → R+. Let n = |V | and m = |E|.
We label vertices 1 through n, s.t. V = {1, . . . , n}. Let ei

denote the ith standard basis vector. Given an ordered pair

of vertices (u, v), we define the pair-vector bu,v ∈ R
n as

bu,v = ev − eu. For a multi-edge e, with endpoints u, v
(arbitrarily ordered), we define be = bu,v. By assigning

an arbitrary direction to each multi-edge of G we define

the Laplacian of G as L =
∑

e∈E w(e)beb
�
e . Note that

the Laplacian does not depend on the choice of direction

for each edge. Given a single multi-edge e, we refer to

w(e)beb
�
e as the Laplacian of e.

A weighted multi-graph G is not uniquely defined by its

Laplacian, since the Laplacian only depends on the sum of

the weights of the multi-edges on each edge. We want to

establish a one-to-one correspondence between a weighted

multi-graph G and its Laplacian L, so from now on, we

will consider every Laplacian to be maintained explicitly as

a sum of Laplacians of multi-edges, and we will maintain

this multi-edge decomposition as part of our algorithms.

Fact 2.1: If G is connected, then the kernel of L is the

span of the vector 1.

Let L+ denote the pseudo-inverse of L. Let J
def
= 11�.

Then, we define Π
def
= LL+ = I − 1

nJ.

Cholesky Factorization in Sum and Product Forms.: We

now formally introduce Cholesky factorization. Rather than

the usual perspective where we factor out lower triangular

matrices at every step of the algorithm, we present an

equivalent perspective where we subtract a rank one term

from the current matrix, obtaining its Schur complement.

The lower triangular structure follows from the fact that the

matrix effectively become smaller at every step.

Let L be any symmetric positive-semidefinite matrix. Let

L(:, i) denote the ith column of L. Using the first equation

in the system Lx = b to eliminate the variable x1 produces

another system S(1)x′ = b′, where b′1 = 0, x′ is x with x1

replaced by 0, and S(1) def
= L− (L(1, 1))−1L(:, 1)L(:, 1)�,

is called the Schur complement of L with respect to 1. The

first row and column of S(1) are identically 0, and thus this

is effectively a system in the remaining n − 1 variables.

Letting α1
def
= L(v1, v1), c1

def
= 1

α1
L(:, v1), we have L =

S(1) + α1c1c
�
1 .

For computing the Cholesky factorization, we perform

a sequence of such operations, where in the kth step, we

select an index vk ∈ V \ {v1, . . . , vk−1} and eliminate

the variable vk. We define αk = S(k−1)(vk, vk), ck =
α−1
k S(k−1)(:, vk), and S(k) = S(k−1) − αkckc

�
k . If at some

step k, S(k−1)(vk, vk) = 0, then we define αk = 0, and

ck = 0. Continuing until k = n− 1, S(k) will have at most

one non-zero entry, which will be on the vn diagonal. We

define αn = S(k) and cn = evn . Let C be the n×n matrix

with ci as its ith column, and D be the n×n diagonal matrix

D(i, i) = αi, then L =
∑n

i=1 αicic
�
i = CDC�. Define the

permutation matrix P by Pe i = evi
. Letting L = P�C,

we have L = PLDL�P�. This decomposition is known

as Cholesky factorization. Crucially, L is lower triangular,

since L(i, j) = (P�cj)(i) = cj(vi), and for i < j, we have

cj(vi) = 0.

Clique Structure of the Schur Complement.: Given

a Laplacian L, let (L)v ∈ R
n×n denote the Laplacian

corresponding to the edges incident on vertex v, i.e.

(L)v
def
=

∑
e∈E:e�v

w(e)beb
�
e . (1)

For example, we denote the first column of

L by

(
d
−aaa
)
, then L1 =

[
d −aaa�

−aaa Diag (aaa)

]
.

We can write the Schur complement S(1) as

S(1) = L− (L)v + (L)v − (L(v, v))−1L(:, v)L(:, v)�.
It is immediate that L − (L)v is a Laplacian matrix, since

L − (L)v =
∑

e∈E:e��v w(e)beb
�
e . A more surprising (but

574575575

well-known) fact is that

Cv(L)
def
= (L)v − (L(v, v))−1L(:, v)L(:, v)� (2)

is also a Laplacian, and its edges form a clique on the

neighbors of v. It suffices to show it for v = 1. We write

i ∼ j to denote (i, j) ∈ E. Then

C1(L) = L1 − (L(1, 1))−1L(:, 1)L(:, 1)� (3)

=

[
0 0�

0 Diag (aaa)− aaaaaa�
d

]
=
∑
i∼1

∑
j∼1

w(1, i)w(1, j)

d
b(i,j)b

�
(i,j).

Thus S(1) is a Laplacian since it is a sum of two Laplacians.

By induction, for all k, S(k) is a Laplacian.

III. THE SPARSECHOLESKY ALGORITHM

Fig. 1 gives the pseudo-code for our algorithm

SPARSECHOLESKY. Our main result, Theorem 3.1 (a more

precise version of Theorem 1.1), shows that the algorithm

computes an approximate sparse Cholesky decomposition

in nearly linear time. We assume the Real RAM model. We

prove the theorem in Section IV.

Theorem 3.1: Given a connected undirected multi-graph

G = (V,E), with positive edges weights w : E → R+,

and associated Laplacian L, and scalars δ > 1, 0 < ε ≤
1/2, the algorithm SPARSECHOLESKY(L, ε, δ) returns an

approximate sparse Cholesky decomposition (P,L,D) s.t.

with probability at least 1− 2/nδ ,

(1− ε)L � PLDL�P� � (1 + ε)L. (4)

For all c > 1, the maximum number of non-zero entries

in L and the total running time are both bounded by

O(c δ
2

ε2 m log3 n) with probability 1− 1/nc.

Fig. 2 gives the pseudo-code for our CLIQUESAMPLE algo-

rithm.

The most significant obstacle to making Cholesky fac-

torization of Laplacians efficient is the fill-in phenomenon,

namely that each clique Cv(S) has roughly (degS(v))
2 non-

zero entries. To solve this problem, we develop a sampling

procedure CLIQUESAMPLE that produces a sparse Laplacian

matrix which approximates the clique Cv(S). As input, the

procedure requires a Laplacian matrix S, maintained as a

sum of Laplacians of multi-edges, and a vertex v. It then

computes a sampled matrix that approximates Cv(S). The

elimination step in SPARSECHOLESKY removes the degS(v)
edges incident on v, and CLIQUESAMPLE(S, v) only adds

at most degS(v) multi-edges. This means the total number

of multi-edges does not increase with each elimination step,

solving the fill-in problem. The sampling procedure is also

very fast: It takes O(degS(v)) time, much faster than the

order (degS(v))
2 time required to even write down the

clique Cv(S).
Although it is notationally convenient for us to pass the

whole matrix S to CLIQUESAMPLE, the procedure only

relies on multi-edges incident on v, so we will only pass

these multi-edges.

Remark 3.2: The algorithm SPARSECHOLESKY can be

made slightly faster by performing sparsification after elim-

inating n/poly log n of the vertices. This gives a running

time and sparsity of O(δ
2

ε2 m log2 n log log n) w.h.p. In Ap-

pendix C (extended version) we sketch a proof of this.

Remark 3.3: The algorithm SPARSECHOLESKY can be

modified so that it applies to bDD matrices. In Appendix D

(extended version) we sketch a proof of this.

IV. ANALYSIS OF THE ALGORITHM USING MATRIX

CONCENTRATION

In this section, we analyze the SPARSECHOLESKY al-

gorithm, and prove Theorem 3.1. To prove the theorem,

we need several intermediate results which we will now

present. In Section IV-A, we show how the output the

SPARSECHOLESKY and CLIQUESAMPLE algorithms can be

used to define a matrix martingale. In Section IV-B, we

introduce a new type of martingale, called a bags-of-dice

martingale, and a novel matrix concentration result for these

martingales. In Section IV-C, we show how to apply our

new matrix concentration results to the SPARSECHOLESKY

martingale and prove Theorem 3.1. We defer proofs of the

lemmas that characterize CLIQUESAMPLE to Section V,

and proofs of our matrix concentration results to Section 6

(extended version).

A. Clique Sampling and Martingales for Cholesky Factor-
ization

Throughout this section, we will study matrices that arise

in the when using SPARSECHOLESKY to produce a sparse

approximate Cholesky factorization of the Laplacian L of

a multi-graph G. We will very frequently need to refer to

matrices that are normalized by L. We adopt the following

notation: Given a symmetric matrix S s.t. ker(L) ⊆ ker(S),

S
def
= (L+)1/2S(L+)1/2.

We will only use this notation for matrices S that satisfy the

condition ker(L) ⊆ ker(S). Note that L = Π, and A � B
iff A � B. Normalization is always done with respect to the

Laplacian L input to SPARSECHOLESKY. We say a multi-

edge e is 1/ρ-bounded if∥∥∥w(e)beb
�
e

∥∥∥ ≤ 1/ρ.

Given a Laplacian S that corresponds to a multi-graph GS ,

and a scalar ρ > 0, we say that S is 1/ρ-bounded if every

multi-edge of S is 1/ρ-bounded. Since every multi-edge

of L is trivially 1-bounded, we can obtain a 1/ρ-bounded

Laplacian that corresponds to the same matrix, by splitting

each multi-edge into �ρ
 identical copies, with a fraction

1/ �ρ
 of the initial weight. The resulting Laplacian has at

most �ρ
m multi-edges.

575576576

1: Ŝ(0) ← L with edges split into ρ =
⌈
12(1 + δ)2ε−2 ln2 n

⌉
copies with 1/ρ of the original weight

2: Define the diagonal matrix D ← 0n×n

3: Let π be a uniformly random permutation. Let Pπ be its permutation matrix, i.e., (Pπx)i = xπi

4: for k = 1 to n− 1 do
5: D(π(k), π(k))← (π(k), π(k)) entry of Ŝ(k−1)

6: ck ← π(k)th column of Ŝ(k−1) divided by D(π(k), π(k)) if D(π(k), π(k)) �= 0, or zero otherwise

7: Ĉk ← CLIQUESAMPLE(Ŝ(k−1), π(k))

8: Ŝ(k) ← Ŝ(k−1) −
(
Ŝ(k−1)

)
π(k)

+ Ĉk

9: end for
10: D(π(n), π(n))← Ŝ(n) and cn ← eπ(n)

11: L ← P�π
(
c1 c2 . . . cn

)
12: return (Pπ,L,D)
Figure 1: SPARSECHOLESKY(ε, L) : Given an ε > 0 and a Laplacian L, outputs (P,L,D), a sparse approximate Cholesky factorization
of L

1: for i← 1 to degS(v) do
2: Sample e1 from list of multi-edges incident on v

with probability w(e)/wS(v).
3: Sample e2 uniformly from list of multi-edges inci-

dent on v.
4: if e1 has endpoints v, u1

5: and e2 has endpoints v, u2 and u1 �= u2

6: then
7: Yi ← w(e1)w(e2)

w(e1)+w(e2)
bu1,u2

b�u1,u2

8: else
9: Yi ← 0

10: end if
11: end for
12: return

∑
i Yi

Figure 2:
∑

i Yi = CLIQUESAMPLE(S, v) : Returns several i.i.d
samples of edges from the clique generated after eliminating vertex
v from the multi-graph represented by S

Our next lemma describes some basic properties of the

samples output by CLIQUESAMPLE. We prove the lemma

in Section V.

Lemma 4.1: Given a Laplacian matrix S that is 1/ρ-

bounded w.r.t. L and a vertex v, CLIQUESAMPLE(S, v)
returns a sum

∑
e Ye of degS(v) IID samples Ye ∈ R

n×n.

The following conditions hold

1) Ye is 0 or the Laplacian of a multi-edge with endpoints

u1, u2, where u1, u2 are neighbors of v in S.

2) E
∑

e Ye = Cv(S).

3)
∥∥∥Y e

∥∥∥ ≤ 1/ρ, i.e. Ye is 1/ρ-bounded w.r.t. L.

The algorithm runs in time O(degS(v)).
The lemma tells us that the samples in expectation behave

like the clique Cv(S), and that each sample is 1/ρ-bounded.

This will be crucial to proving concentration properties of

our algorithm. We will use the fact that the expectation

of the CLIQUESAMPLE algorithm output equals the matrix

produced by standard Cholesky elimination, to show that in

expectation, the sparse approximate Cholesky decomposition

produced by our SPARSECHOLESKY algorithm equals the

original Laplacian. We will also see how we can use this

expected behaviour to represent our sampling process as a

martingale. We define the kth approximate Laplacian as

L(k) = Ŝ(k) +
k∑

i=1

αicic
�
i . (5)

Thus our final output equals L(n). Note that Line (10) of

the SPARSECHOLESKY algorithm does not introduce any

sampling error, and so L(n) = L(n−1). The only significance

of Line (10) is that it puts the matrix in the form we need

for our factorization. Now

L(k) − L(k−1) = αkckc
�
k + Ŝ(k) − Ŝ(k−1)

= αkckc
�
k + Ĉk −

(
Ŝ(k−1)

)
π(k)

= Ĉk − Cπ(k)(Ŝ
(k−1)).

Each call to CLIQUESAMPLE returns a sum of sample

edges. Letting Y
(k)
e denote the eth sample in the kth call

to CLIQUESAMPLE, we can write this sum as
∑

e Y
(k)
e .

Thus, conditional on the choices of the SPARSECHOLESKY

algorithm until step k− 1, and conditional on π(k), we can

apply Lemma 4.1 to find that the expected value of Ĉk is∑
e EY

(k)
e

Y
(k)
e = Cπ(k)(Ŝ

(k−1)). Hence the expected value

of L(k) is exactly L(k−1), and we can write

L(k) − L(k−1) =
∑
e

Y (k)
e − E

Y
(k)
e

Y (k)
e .

By defining X
(k)
e

def
= Y

(k)
e − E

Y
(k)
e

Y
(k)
e , this becomes

L(k) − L(k−1) =
∑
e

X(k)
e .

576577577

So, without conditioning on the choices of the

SPARSECHOLESKY algorithm, we can write

L(n) − L = L(n) − L(0) =
n−1∑
i=1

∑
e

X(i)
e .

This is a martingale. To prove multiplicative concentration

bounds, we need to normalize the martingale by L, and so

instead we consider

L(n) − L = L(n−1) − L = L(n) −Π =
n−1∑
i=1

∑
e

X
(i)
e . (6)

This martingale has considerable structure beyond a

standard martingale. Conditional on the choices of the

SPARSECHOLESKY algorithm until step k − 1, and condi-

tional on π(k), the terms X
(k)
e are independent.

In Section IV-B we define a type of martingale that

formalizes the important aspects of this structure.

B. Bags-of-Dice Martingales and Matrix Concentration Re-
sults

We use the following shorthand nota-

tion: Given a sequence of random variables

(r1, R
(1), r2, R

(2), . . . , rk, R
(k)), for every i, we write

E
(i)

[·] = E
r1

E
R(1)

· · ·E
ri

E
R(i)

[·] .

Extending this notation to conditional expectations, we

write,

E
ri

[· ∣∣(i− 1)
]
= E

ri

[
·
∣∣∣r1, R(1), . . . , ri−1, R

(i−1)
]

Definition 4.2: A bags-of-dice martingale is a sum of

random d × d matrices Z =
∑k

i=1

∑li
e=1 Z

(i)
e , with some

additional structure. We require that there exists a sequence

of random variables (r1, R
(1), r2, R

(2), . . . , rk, R
(k)), s.t. for

all 1 ≤ i ≤ k, conditional on (i − 1) and ri, li is a

non-negative integer, and R(i) is a tuple of li independent

random variables: R(i) = (R
(i)
1 , . . . , R

(i)
li
). We also require

that conditional on (r1, R
(1), r2, R

(2), . . . , ri, R
(i)) and ri,

for all 1 ≤ e ≤ li Z
(i)
e is a symmetric matrix, and

a deterministic function of R
(i)
e . Finally, we require that

E
R

(i)
e

[
Z

(i)
e

∣∣∣(i− 1), ri

]
= 0.

Note that li is allowed to be random, as long as it is fixed

conditional on (i − 1) and ri. The martingale given in

Equation (6) is a bags-of-dice martingale, with ri = π(i),

and R
(i)
e = Y

(i)
e . The name is motivated by a simple model:

At each step of the martingale we pick a random bag of dice

from a collection of bags (this corresponds to the outcome

of ri) and then we independently roll each die in the bag

(corresponds to the outcomes R
(i)
e).

It is instructive to compare the bags-of-dice martin-

gales with matrix martingales such as those considered by

Tropp [34]. A naive application of the results from [34]

tells us that if we have good uniform norm bounds on each

term Z
(i)
e , and there exists fixed matrices Ω

(i)
e s.t. that for

all i, e and for all possible outcomes we get deterministic

bounds on the matrix variances: E
R

(i)
e
(Z

(i)
e)2 � Ω

(i)
e , then

the concentration of the martingale is governed by the norm

of the sum of the variances
∥∥∥∑i

∑
e Ω

(i)
e

∥∥∥. In our case, this

result is much too weak: Good enough Ω
(i)
e do not exist.

A slight extension of the results from [34] allows us to

do a somewhat better: Since the terms Z
(i)
e are independent

conditional on ri, it suffices to produce fixed matrices Ω(i)

s.t. that for all i, e and for all possible outcomes we get

deterministic bounds on the matrix variances of the sum of

variables in each “bag”:
∑

e ER
(i)
e
(Z

(i)
e)2 � Ω(i). Then the

concentration of the martingale is governed by
∥∥∥∑i Ω

(i)
∥∥∥.

Again, this result is not strong enough: Good fixed Ω(i) do

not seem to exist.

We show a stronger result: If we can produce a uniform

norm bound on E
R

(i)
e
(Z

(i)
e)2, then it suffices to produce fixed

matrices Ω̂(i) that upper bound the matrix variance averaged
over all bags: Eri

∑
e ER

(i)
e
(Z

(i)
e)2 � Ω̂(i). The concentra-

tion of the martingale is then governed by
∥∥∥∑i Ω̂

(i)
∥∥∥. In

the context where we apply our concentration result, our

estimates of
∥∥∥∑i Ω

(i)
∥∥∥ are larger than

∥∥∥∑i Ω̂
(i)
∥∥∥ by a factor

≈ n
lnn . Consequently, we would not obtain strong enough

concentration using the weaker result. The precise statement

we prove is:

Theorem 4.3: Suppose Z =
∑k

i=1

∑li
e=1 Z

(i)
e is a bags-

of-dice martingale of d× d matrices that satisfies

1) Every sample Z
(i)
e satisfies

∥∥∥Z(i)
e

∥∥∥2 ≤ σ2
1 .

2) For every i we have∥∥∥∥∥∑
e

E

R
(i)
e

[
(Z(i)

e)2
∣∣∣(i− 1), ri

]∥∥∥∥∥ ≤ σ2
2 .

3) There exist deterministic matrices Ωi such that

Eri

[∑
e ER

(i)
e
(Z

(i)
e)2

∣∣∣(i− 1)
]
� Ωi, and

∥∥∑
i Ωi

∥∥ ≤
σ2
3 .

Then, for all ε > 0, we have

Pr [Z �� εI] ≤ d exp
(
−ε2/4σ2

)
,

where

σ2 = max

{
σ2
3 ,

ε

2
σ1,

4ε

5
σ2

}
.

This theorem and all the results in this section extend

immediately to Hermitian matrices. We prove the above

theorem in Section 6 (extended version). This result is based

on the techniques introduced by Tropp [34] for using Lieb’s

Concavity Theorem to prove matrix concentration results.

Tropp’s result improved on earlier work, such as Ahlswede

and Winter [35] and Rudelson and Vershynin [36]. These

577578578

earlier matrix concentration results required IID sampling,

making them unsuitable for our purposes.

Remark 4.4: Joel Tropp brought to our attention that

Theorem 4.3 can be proven using his Matrix Freedman

result [20]. Using this result, we give a proof of Theorem 4.3

in Appendix B (extended version).

Unfortunately, we cannot apply Theorem 4.3 directly to

the bags-of-dice martingale in Equation (6). As we will see

later, the variance of
∑

e X
(i)
e can have norm proportional to∥∥∥L(i)

∥∥∥, which can grow large. However, we expect that the

probability of
∥∥∥L(i)

∥∥∥ growing large is very small. Our next

construction allows us to leverage this idea, and avoid the

small probability tail events that prevent us from directly

applying Theorem 4.3 to the bags-of-dice martingale in

Equation (6).

Definition 4.5: Given a bags-of-dice martingale of d ×
d matrices Z =

∑k
i=1

∑li
e=1 Z

(i)
e , and a scalar ε > 0, we

define for each h ∈ {1, 2, . . . , k + 1} the event

Ah =

⎡⎣∀1 ≤ j < h.

j∑
i=1

li∑
e=1

Z(i)
e � εI

⎤⎦ .
We also define the ε-truncated martingale:

Z̃ =

k∑
i=1

⎛⎝�Ai

li∑
e=1

Z(i)
e

⎞⎠
The truncated martingale is derived from another martingale

by forcing the martingale to get “stuck” if it grows too large.

This ensures that so long as the martingale is not stuck, it is

not too large. On the other hand, as our next result shows,

the truncated martingale fails more often than the original

martingale, and so it suffices to prove concentration of the

truncated martingale to prove concentration of the original

martingale. The theorem stated below is proven in Section 6

(extended version).

Theorem 4.6: Given a bags-of-dice martingale of d × d

matrices Z =
∑k

i=1

∑li
e=1 Z

(i)
e , a scalar ε > 0, the as-

sociated ε-truncated martingale Z̃ is also a bags-of-dice

martingale, and

Pr[−εI �� Z or Z �� εI] ≤ Pr[−εI �� Z̃ or Z̃ �� εI]

C. Analyzing the SPARSECHOLESKY Algorithm Using
Bags-of-Dice Martingales

By taking Z
(k)
e = X

(k)
e , ri = π(i) and R

(i)
e = Y

(i)
e ,

we obtain a bags-of-dice martingale Z =
∑n−1

i=1

∑
e Z

(i)
e .

Let Z̃ denote the corresponding ε-truncated bags-of-dice

martingale. The next lemma shows that Z̃ is well-behaved.

The lemma is proven in Section V.

Lemma 4.7: Given an integer 1 ≤ k ≤ n− 1, conditional

on the choices of the SPARSECHOLESKY algorithm until

step k − 1, let
∑

e Ye = CLIQUESAMPLE(Ŝ(k−1), π(k)).

Let Xe
def
= Ye − EYe

Ye. The following statements hold

1) Conditional on π(k), EYe
�Ak

Xe = 0.

2)
∥∥∥�Ak

Xe

∥∥∥ ≤ 1/ρ holds always.

3) Conditional on π(k),∑
e

E
Ye

(�Ak
Xe)

2 � �Ak

1

ρ
Cv(S).

4)

∥∥∥∥�Ak
Cπ(k)(Ŝ(k−1))

∥∥∥∥ ≤ 1 + ε holds always.

5) Eπ(k) �Ak
Cπ(k)(Ŝ(k−1)) � 2(1+ε)

n+1−k I.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1: We have L(n) = Π + Z. Since

for all k, e, ker(L) ⊆ ker(Y
(k)
e), the statement (1 − ε)L �

L(n) � (1 + ε)L is equivalent to −εΠ � Z � εΠ. Further,

ΠZΠ = Z, and so it is equivalent to −εI � Z � εI . By

Theorem 4.6, we have,

Pr[(1− ε)L � L(n) � (1 + ε)L] = 1− Pr [−Z �� εI or Z �� εI]

≥ 1− Pr
[
−Z̃ �� εI or Z̃ �� εI

]
≥ 1− Pr

[
−Z̃ �� εI

]
− Pr

[
Z̃ �� εI

]
(7)

To lower bound this probability, we’ll prove concentration

using Theorem 4.3. We now compute the parameters for

applying the theorem. From Lemma 4.1, for all k and e,

we have EYe
�Ak

X
(k)
e = 0,

∥∥∥∥�Ak
X

(k)
e

∥∥∥∥ ≤ 1
ρ . Thus, we can

pick σ1 = 1
ρ . Next, again by Lemma 4.1, we have∥∥∥∥∥∥
[∑

e

E

Y
(k)
e

(
�Ak

X
(k)
e

)2
∣∣∣∣∣(k), rk

]∥∥∥∥∥∥
≤ 1

ρ

∥∥∥�Ak
Cπ(k)(S)

∥∥∥ ≤ 1 + ε

ρ
≤ 3

2ρ
.

Thus, we can pick σ2 =
√

3
2ρ . Finally, Lemma 4.1 also

gives,

E
π(k)

∑
e

E

Y
(k)
e

(
�Ak

X
(k)
e

)2

� 1

ρ
E

π(k)
�Ak

Cπ(k)(Ŝ(k−1))

� 2(1 + ε)

ρ(n+ 1− k)
I � 3

ρ(n+ 1− k)
I.

Thus, we can pick Ωk = 3
ρ(n+1−k)I, and

σ2
3 =

3 lnn

ρ
≥

n−1∑
k=1

3

ρ(n+ 1− k)
.

Similarly, we obtain concentration for −Z̃ with the same

parameters. Thus, by Theorem 4.3,

Pr
[
−Z̃ �� εI

]
+ Pr

[
Z̃ �� εI

]
≤ 2n exp

(−ε2/4σ2
)
,

578579579

for

σ2 = max

{
σ2
3 ,

ε

2
σ1,

4ε

5
σ2

}
= max

{
3 lnn

ρ
,
ε

2

√
3

2ρ
,
4ε

5ρ

}
.

Picking ρ =
⌈
12(1 + δ)2ε−2 ln2 n

⌉
, we get

σ2 ≤ ε2

4(1+δ) lnn , and

Pr
[
−Z̃ �� εI

]
+ Pr

[
Z̃ �� εI

]
≤ 2n exp

(−ε2/4σ2
)

= 2n exp
(−(1 + δ) lnn

)
= 2n−δ.

Combining this with Equation (7) establishes Equation (4).

Finally, we need to bound the expected running time

of the algorithm. We start by observing that the algorithm

maintains the two following invariants:

1) Every multi-edge in Ŝ(k−1) is 1/ρ-bounded.

2) The total number of multi-edges is at most ρm.

We establish the first invariant inductively. The invariant

holds for Ŝ(0), because of the splitting of original edges into

ρ copies with weight 1/ρ. The invariant thus also holds for

Ŝ(0) −
(
Ŝ(0)
)
π(1)

, since the multi-edges of this Laplacian

are a subset of the previous ones. By Lemma 4.1, every

multi-edge Ye output by CLIQUESAMPLE is 1/ρ-bounded,

so Ŝ(1) = Ŝ(0) −
(
Ŝ(0)
)
π(1)

+ Ĉ1 is 1/ρ-bounded. If we

apply this argument repeatedly for k = 1, . . . , n− 1 we get

invariant (1).

Invariant (2) is also very simple to establish: It

holds for Ŝ(0), because splitting of original edges

into ρ copies does not produce more than ρm multi-

edges in total. When computing Ŝ(k), we subtract(
Ŝ(k−1)

)
π(k)

, which removes exactly deg
̂S(k−1)(π(k))

multi-edges, while we add the multi-edges produced by the

call to CLIQUESAMPLE(Ŝ(k−1), π(k)), which is at most

deg
̂S(k−1)(π(k)). So the number of multi-edges is not in-

creasing.

By Lemma 4.1, the running time for the call to

CLIQUESAMPLE is O(deg
̂S(k)(π(k))). Given the invari-

ants, we get that the expected time for the kth call to

CLIQUESAMPLE is O(Eπ(k) deĝS(k)(π(k))) = O(ρm/(n+
1 − k)). Thus the expected running time of all calls to

CLIQUESAMPLE is O(mρ
∑n−1

i=1
1

n−i) = O(mδ2ε−2 ln3 n).
The total number of entries in the L,D matrices must also

be bounded by O(mδ2ε−2 ln3 n) in expectation, and so the

permutation step in Line 11 can be applied in expected

time O(mδ2ε−2 ln3 n), and this also bounds the expected

running time of the whole algorithm. Finally, we can also

show that the running time of the algorithm is concentrated.

The conditional on previous rounds, the running time in

round i of elimination is a positive random variable that is at

most 2ρm, and in expectation 2ρm · 1
n−i . By subtracting the

average in each round, we can get a scalar martingale. Using

a standard application of the scalar Freedman Inequality [37]

(see also [20] for a convenient version), one can show that

the running time is upper bounded by O(cρm log n) with

probability 1− 1/nc for all c ≥ 1.
�

V. CLIQUE SAMPLING PROOFS

In this section, we prove Lemmas 4.1 and 4.7 that char-

acterize the behaviour of our algorithm CLIQUESAMPLE,

which is used in SPARSECHOLESKY to approximate the

clique generated by eliminating a variable.
A important element of the CLIQUESAMPLE algorithm is

our very simple approach to leverage score estimation. Using

the well-known result that effective resistance in Laplacians

is a distance (see Lemma 5.2), we give a bound on the

leverage scores of all edges in a clique that arises from

elimination. We let

wS(v) =
∑

e∈E(S)
e�v

w(e).

Then by Equation (3)

Cv(S) =
1

2

∑
e∈E(S)
e has

endpoints
v,u

∑
e′∈E(S)
e′ has

endpoints
v,z �=u

w(e)w(e′)
wS(v)

bu,zb
�
u,z. (8)

Note that the factor 1/2 accounts for the fact that every pair

is double counted.
Lemma 5.1: Suppose multi-edges e, e′ � v are 1/ρ-

bounded w.r.t. L, and have endpoints v, u and v, z respec-

tively, and z �= u, then w(e)w(e′)bu,zb
�
u,z is

w(e)+w(e′)
ρ -

bounded.
To prove Lemma 5.1, we need the following result about

Laplacians:
Lemma 5.2: Given a connected weighted multi-graph

G = (V,E,w) with associated Laplacian matrix L in G,

consider three distinct vertices u, v, z ∈ V , and the pair-

vectors bu,v , bv,z and bu,z .∥∥∥bu,zb
�
u,z

∥∥∥ ≤ ∥∥∥bu,vb
�
u,v

∥∥∥+ ∥∥∥bv,zb
�
v,z

∥∥∥ .
This is known as phenomenon that Effective Resistance is

a distance [38].

Proof of Lemma 5.1: Using the previous lemma:

w(e)w(e′)
∥∥∥bu,zb

�
u,z

∥∥∥
≤ w(e)w(e′)

(∥∥∥bu,vb
�
u,v

∥∥∥ +
∥∥∥bv,zb

�
v,z

∥∥∥) ≤ 1

ρ

(
w(e) + w(e′)

)
.

�

To prove Lemma 4.1, we need the following result of

Walker [39] (see Bringmann and Panagiotou [40] for a

modern statement of the result).
Lemma 5.3: Given a vector p ∈ R

d of non-negative val-

ues, the procedure UNSORTEDPROPORTIONALSAMPLING

579580580

requires O(d) preprocessing time and after this allows for

IID sampling for a random variable x distributed s.t.

Pr[x = i] = p(i)/ ‖p‖1 .
The time required for each sample is O(1).

Remark 5.4: We note that there are simpler sampling

constructions than that of Lemma 5.3 that need O(log n)
time per sample, and using such a method would only

worsen our running time by a factor O(log n).

Proof of Lemma 4.1: From Lines (7) and (7), Yi is 0
or the Laplacian of a multi-edge with endpoints u1, u2. To

upper bound the running time, it is important to note that we

do not need access to the entire matrix S. We only need the

multi-edges incident on v. When calling CLIQUESAMPLE,

we only pass a copy of just these multi-edges.

We observe that the uniform samples in Line (3) can be

done in O(1) time each, provided we count the number of

multi-edges incident on v to find degS(v). We can compute

degS(v) in O(degS(v)) time. Using Lemma 5.3, if we

do O(degS(v)) time preprocessing, we can compute each

sample in Line (2) in time O(1). Since we do O(degS(v))
samples, the total time for sampling is hence O(degS(v)).

Now we determine the expected value of the sum of the

samples. Note that in the sum below, each pair of multi-

edges appears twice, with different weights.

E

∑
i

Yi

= degS(v)·∑
e∈E(S)
e has

endpoints
v,u

∑
e′∈E(S)
e′ has

endpoints
v,z �=u

w(e)

wS(v)

1

degS(v)

w(e)w(e′)
w(e) + w(e′)

bu,zb
�
u,z

= Cv(S).

By Lemma 5.1,∥∥∥Yi

∥∥∥ ≤ max
e,e′∈E(S)
e,e′ has
endpoints

v,u and v,z �=u

w(e)w(e′)
w(e) + w(e′)

∥∥∥bu,zb
�
u,z

∥∥∥ ≤ 1/ρ.

�

Proof of Lemma 4.7: Throughout the proof of this

lemma, all the random variables considered are conditional

on the choices of the SPARSECHOLESKY algorithm up to

and including step k − 1.

Observe, by Lemma 4.1:∑
e

E
Ye

Ye
2 � E

∑
e

E
Ye

∥∥∥Ye

∥∥∥Ye � 1

ρ
Cπ(k)(Ŝ(k−1)).

Now

E
Ye

�Ak
Xe = �Ak

E
Ye

Xe = 0.

Note that Ye and EYe
Ye are PSD, and∥∥∥∥EYe

Ye

∥∥∥∥ ≤ E
Ye

∥∥∥Ye

∥∥∥ ≤ 1/ρ

so∥∥∥Xe

∥∥∥ = ∥∥∥∥Ye − E
Ye

Ye

∥∥∥∥ ≤ max

{∥∥∥Ye

∥∥∥ , ∥∥∥∥EYe

Ye

∥∥∥∥
}
≤ 1/ρ.

Also EYe(�Ak
Xe)

2 = �Ak
EYe Xe

2
, so

E
Ye

Xe
2
= (E

Ye

Ye
2
)− (E

Ye

Ye)
2 � (E

Ye

Ye
2
),

where, in the last line, we used 0 � (EYe Ye)
2. Thus∑

e EYe
(�Ai

Xe)
2 � �Ak

1
ρCπ(k)(Ŝ(k−1)). Equation (6)

gives:

L(k−1) = L+
k−1∑
i=1

∑
e

X(i)
e . (9)

Consequently, �Ak
= 1 gives L(k−1) � (1 + ε)L.

Now, Cπ(k)(Ŝ
(k−1)) is PSD since it is a Laplacian, so∥∥∥∥Cπ(k)(Ŝ(k−1))

∥∥∥∥ = λmax(Cπ(k)(Ŝ(k−1))). By Equation (2),

we get Cπ(k)(Ŝ
(k−1)) �

(
Ŝ(k−1)

)
π(k)

and by Equation (1)

we get
(
Ŝ(k−1)

)
π(k)

� Ŝ(k−1), finally by Equation (5) we

get Ŝ(k−1) � L(k−1) so∥∥∥∥�Ak
Cπ(k)(Ŝ(k−1))

∥∥∥∥ ≤ �Ak
λmax(Cπ(k)(Ŝ(k−1)))

≤ �Ak
λmax(L(k−1)) ≤ 1 + ε.

Again, using Cπ(k)(Ŝ
(k−1)) �

(
Ŝ(k−1)

)
π(k)

, we get

E
π(k)

�Ak
Cπ(k)(Ŝ(k−1)) � �Ak

E
π(k)

(
Ŝ(k−1)

)
π(k)

= �Ak

2

n+ 1− k
S(k−1)

� 2(1 + ε)

n+ 1− k
I.

�

ACKNOWLEDGEMENTS

This work was supported by NSF grant CCF-1111257,

ONR Award N00014-16-1-2374, and a Simons Investigator

Award to Daniel A. Spielman. We thank Daniel Spielman

for suggesting this project and for helpful comments and dis-

cussions. We thank Joel Tropp for suggesting an alternative

proof of Theorem 4.3, and Michael Cohen for pointing out

that the simplest version of our algorithm has concentrated

running time.

580581581

REFERENCES

[1] G. Strang, Introduction to Applied Mathematics. Wellesley-
Cambridge Press, 1986.

[2] E. G. Boman, B. Hendrickson, and S. A. Vavasis, “Solving elliptic
finite element systems in near-linear time with support precondition-
ers,” SIAM J. Numerical Analysis, vol. 46, no. 6, pp. 3264–3284,
2008.

[3] X. Zhu, Z. Ghahramani, and J. D. Lafferty, “Semi-supervised learning
using gaussian fields and harmonic functions,” ICML, 2003.

[4] D. Zhou and B. Schölkopf, “A regularization framework for learning
from graph data,” in ICML workshop on statistical relational learning
and Its connections to other fields, vol. 15, 2004, pp. 67–68.

[5] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf,
“Learning with local and global consistency,” Advances in neural
information processing systems, vol. 16, no. 16, pp. 321–328, 2004.

[6] S. I. Daitch and D. A. Spielman, “Faster approximate lossy general-
ized flow via interior point algorithms,” in Proceedings of the 40th
annual ACM symposium on Theory of computing. ACM, 2008, pp.
451–460.

[7] P. Christiano, J. A. Kelner, A. Madry, D. A. Spielman, and S.-H.
Teng, “Electrical flows, laplacian systems, and faster approximation
of maximum flow in undirected graphs,” in Proceedings of the 43rd
annual ACM symposium on Theory of computing, ser. STOC ’11.
New York, NY, USA: ACM, 2011, pp. 273–282.

[8] A. Madry, “Navigating central path with electrical flows: From
flows to matchings, and back,” in 54th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2013, 26-29 October, 2013,
Berkeley, CA, USA, 2013, pp. 253–262.

[9] Y. T. Lee and A. Sidford, “Path finding methods for linear pro-
gramming: Solving linear programs in Õ(vrank) iterations and faster
algorithms for maximum flow,” in Foundations of Computer Science
(FOCS), 2014 IEEE 55th Annual Symposium on, Oct 2014, pp. 424–
433.

[10] J. Kelner and A. Madry, “Faster generation of random spanning
trees,” in Foundations of Computer Science, 2009. FOCS’09. 50th
Annual IEEE Symposium on. IEEE, 2009, pp. 13–21.

[11] L. Orecchia, S. Sachdeva, and N. K. Vishnoi, “Approximating the ex-
ponential, the lanczos method and an Õ(m)-time spectral algorithm
for balanced separator.” in Proceedings of The Fourty-Fourth Annual
ACM Symposium On The Theory Of Computing (STOC ’12), 2012.

[12] J. A. Kelner, G. L. Miller, and R. Peng, “Faster approximate multi-
commodity flow using quadratically coupled flows,” in Proceedings
of the 44th symposium on Theory of Computing, ser. STOC ’12. New
York, NY, USA: ACM, 2012, pp. 1–18.

[13] A. Levin, I. Koutis, and R. Peng, “Improved spectral sparsifica-
tion and numerical algorithms for sdd matrices,” in Proceedings of
the 29th Symposium on Theoretical Aspects of Computer Science
(STACS), 2012.

[14] R. Kyng, A. Rao, and S. Sachdeva, “Fast, provable algorithms
for isotonic regression in all l p-norms,” in Advances in Neural
Information Processing Systems 28, 2015, pp. 2719–2727.

[15] K. Gremban, “Combinatorial preconditioners for sparse, symmetric,
diagonally dominant linear systems,” Ph.D. dissertation, Carnegie
Mellon University, Pittsburgh, October 1996, cMU CS Tech Report
CMU-CS-96-123.

[16] R. E. T. Richard J. Lipton, Donald J. Rose, “Generalized nested
dissection,” SIAM Journal on Numerical Analysis, vol. 16, no. 2,
pp. 346–358, 1979.

[17] N. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed.
Society for Industrial and Applied Mathematics, 2002.

[18] M. B. Cohen, Y. T. Lee, C. Musco, C. Musco, R. Peng, and A. Sid-
ford, “Uniform sampling for matrix approximation,” in Proceedings
of the 2015 Conference on Innovations in Theoretical Computer
Science, ser. ITCS ’15. New York, NY, USA: ACM, 2015, pp.
181–190.

[19] E. H. Lieb, “Convex trace functions and the wigner-yanase-dyson
conjecture,” Advances in Mathematics, vol. 11, no. 3, pp. 267 – 288,
1973.

[20] J. Tropp, “Freedman’s inequality for matrix martingales,” Electron.
Commun. Probab., vol. 16, pp. no. 25, 262–270, 2011.

[21] V. V. Williams, “Multiplying matrices faster than coppersmith-
winograd,” in Proceedings of the Forty-fourth Annual ACM Sympo-
sium on Theory of Computing, ser. STOC ’12. New York, NY, USA:
ACM, 2012, pp. 887–898.

[22] D. A. Spielman and S.-H. Teng, “Nearly-linear time algorithms for
graph partitioning, graph sparsification, and solving linear systems,”
in Proceedings of the Thirty-sixth Annual ACM Symposium on Theory
of Computing, ser. STOC ’04. New York, NY, USA: ACM, 2004,
pp. 81–90.

[23] ——, “Nearly-linear time algorithms for preconditioning and solving
symmetric, diagonally dominant linear systems,” SIAM. J. Matrix
Anal. & Appl., vol. 35, p. 835885, 2014.

[24] I. Koutis, G. Miller, and R. Peng, “Approaching optimality for solving
SDD linear systems,” in Foundations of Computer Science (FOCS),
2010 51st Annual IEEE Symposium on, 2010, pp. 235 –244.

[25] ——, “A nearly-m logn time solver for SDD linear systems,” in
Foundations of Computer Science (FOCS), 2011 52nd Annual IEEE
Symposium on, 2011, pp. 590–598.

[26] J. A. Kelner, L. Orecchia, A. Sidford, and Z. A. Zhu, “A simple, com-
binatorial algorithm for solving sdd systems in nearly-linear time,”
in Proceedings of the 45th annual ACM symposium on Symposium
on theory of computing. ACM, 2013, pp. 911–920.

[27] M. B. Cohen, R. Kyng, G. L. Miller, J. W. Pachocki, R. Peng, A. B.
Rao, and S. C. Xu, “Solving sdd linear systems in nearly mlog1/2n
time,” in Proceedings of the 46th Annual ACM Symposium on Theory
of Computing, ser. STOC ’14. New York, NY, USA: ACM, 2014,
pp. 343–352.

[28] R. Peng and D. A. Spielman, “An efficient parallel solver for SDD
linear systems,” in Symposium on Theory of Computing, STOC 2014,
New York, NY, USA, May 31 - June 03, 2014, 2014, pp. 333–342.

[29] R. Kyng, Y. T. Lee, R. Peng, S. Sachdeva, and D. A. Spielman,
“Sparsified cholesky and multigrid solvers for connection laplacians,”
in Proceedings of the Forty-Eighth Annual ACM on Symposium on
Theory of Computing, ser. STOC ’16, 2016.

[30] I. Gustafsson, “A class of first order factorization methods,” BIT
Numerical Mathematics, vol. 18, no. 2, pp. 142–156, 1978.

[31] S. Guattery, “Graph embedding techniques for bounding condition
numbers of incomplete factor preconditioning,” 1997.

[32] M. Bern, J. R. Gilbert, B. Hendrickson, N. Nguyen, and S. Toledo,
“Support-graph preconditioners,” SIAM Journal on Matrix Analysis
and Applications, vol. 27, no. 4, pp. 930–951, 2006.

[33] K. L. Clarkson, “Solution of linear systems using randomized round-
ing,” 2003.

[34] J. A. Tropp, “User-friendly tail bounds for sums of random matrices,”
Foundations of Computational Mathematics, vol. 12, no. 4, pp. 389–
434, 2012.

[35] R. Ahlswede and A. Winter, “Strong converse for identification
via quantum channels,” Information Theory, IEEE Transactions on,
vol. 48, no. 3, pp. 569–579, 2002.

[36] M. Rudelson and R. Vershynin, “Sampling from large matrices: An
approach through geometric functional analysis,” J. ACM, vol. 54,
no. 4, Jul. 2007.

[37] D. A. Freedman, “On tail probabilities for martingales,” Ann. Probab.,
vol. 3, no. 1, pp. 100–118, 02 1975.

[38] D. J. Klein and M. Randic, “Resistance distance,” Journal of Math-
ematical Chemistry, vol. 12, no. 1, pp. 81–95, 1993.

[39] A. J. Walker, “An efficient method for generating discrete random
variables with general distributions,” ACM Trans. Math. Softw., vol. 3,
no. 3, pp. 253–256, Sep. 1977.

[40] K. Bringmann and K. Panagiotou, “Efficient sampling methods for
discrete distributions,” in Automata, Languages, and Programming.
Springer, 2012, pp. 133–144.

581582582

