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Abstract—We exhibit an n-node graph whose independent
set polytope requires extended formulations of size exponen-
tial in Ω(n/ logn). Previously, no explicit examples of n-
dimensional 0/1-polytopes were known with extension com-
plexity larger than exponential in Θ(

√
n). Our construction

is inspired by a relatively little-known connection between
extended formulations and (monotone) circuit depth.
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I. INTRODUCTION

A polytope P ⊆ R
n with many facets can sometimes admit

a concise description as the projection of a higher dimensional

polytope E ⊆ R
e with few facets. This phenomenon

is studied in the theory of “extended formulations”. The

extension complexity xc(P ) of a polytope P is defined as

the minimum number of facets in any E (called an extended
formulation for P ) such that

P = {x ∈ R
n : (x, y) ∈ E for some y}.

Extended formulations are useful for solving combinatorial

optimization problems: instead of optimizing a linear function

over P , we can optimize it over E—this may be more

efficient since the runtime of LP solvers often depends on

the number of facets.

Fiorini et al. [2] were the first to show (using methods

from communication complexity [3, 4]) exponential extension

complexity lower bounds for many explicit polytopes of

relevance to combinatorial optimization, thereby solving an

old challenge set by Yannakakis [5]. For example, their results

include a 2Ω(m) lower bound for the
(
m
2

)
-dimensional cor-

relation/cut polytope. In another breakthrough, Rothvoß [6]

proved a much-conjectured 2Ω(m) lower bound for the
(
m
2

)
-

dimensional matching polytope. By now, many accessible

introductions to extended formulations are available; e.g.,

Roughgarden [7, §5], Kaibel [8], Conforty et al. [9] or their

textbook [10, §4.10].

∗ Most proofs appear in the full version of this work [1].

√
n-frontier: Both of the results quoted above—while

optimal for their respective polytopes—seem to get “stuck”

at being exponential in the square root of their dimension.

In fact, no explicit n-dimensional 0/1-polytope (convex

hull of a subset of {0, 1}n) was known with extension

complexity asymptotically larger than 2Θ(
√
n). In comparison,

Rothvoß [11] showed via a counting argument that most n-

dimensional 0/1-polytopes have extension complexity 2Ω(n).

A. Our result

Our main result is to construct an explicit 0/1-polytope of

near-maximal extension complexity 2Ω(n/ logn). Moreover,

the polytope can be taken to be the independent set polytope
PG of an n-node graph G, i.e., the convex hull of (the

indicator vectors of) the independent sets of G. Previously,

a lower bound of 2Ω(
√
n) was known for independent set

polytopes [2].

Theorem 1. There is an (explicit) family of n-node graphs
G with xc(PG) ≥ 2Ω(n/ logn).

In fact, our graph family has bounded degree. Hence,

using known reductions, we get as a corollary quantita-

tive improvements—from 2Ω(
√
n) to 2Ω(n/ logn)—for the

extension complexity of, for instance, 3SAT and knapsack
polytopes; see [12, 13] for details.

We strongly conjecture that our graph family actually

satisfies xc(PG) ≥ 2Ω(n), i.e., that the log n factor in the

exponent is an artifact of our proof technique. We give

concrete evidence for this by proving an optimal bound

for a certain query complexity analogue of Theorem 1. In

particular, the conjectured bound xc(PG) ≥ 2Ω(n) would

follow from quantitative improvements to the known query-

to-communication simulation theorems ( [14] in particular).

Incidentally, this also answers a question of Lovász, Naor,

Newman, and Wigderson [15]: we obtain a maximal Ω(n)
lower bound on the randomized query complexity of a search

problem with constant certificate complexity.
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B. Our approach

Curiously enough, an analogous
√
n-frontier existed in

the seemingly unrelated field of monotone circuits: Raz and

Wigderson [16] proved an Ω(m) lower bound for the depth

of any monotone circuit computing the matching function on(
m
2

)
input bits. This remained the largest monotone depth

bound for an explicit function until the recent work of Göös

and Pitassi [17], who exhibited a function with monotone

depth Ω(n/ log n). In short, our idea is to prove an extension

complexity analogue of this latter result.

The conceptual inspiration for our construction is a rela-

tively little-known connection between Karchmer–Wigderson

games [18] (which characterize circuit depth) and extended

formulations. This “KW/EF connection” (see Section II for

details) was pointed out by Hrubeš [19] as a nonnegative

analogue of a classic rank-based method of Razborov [20].

In this work, we focus only on the monotone setting. For

any monotone f : {0, 1}n → {0, 1} we can study the convex

hull of its 1-inputs, namely, the polytope

F := conv f−1(1).

The upshot of the KW/EF connection is that extension

complexity lower bounds for F follow from a certain type

of strengthening of monotone depth lower bounds for f . For

example, using this connection, it turns out that Rothvoß’s

result [6] implies the result of Raz and Wigderson [16] in a

simple black-box fashion (Section II-C).

Our main technical result is to strengthen the existing

monotone depth lower bound from [17] into a lower bound

for the associated polytope (though we employ substantially

different techniques than were used in that paper). The

key communication search problem studied in [17] is a

communication version of the well-known Tseitin problem

(see Section III for definitions), which has especially deep

roots in proof complexity (e.g., [4, §18.7]) and has also

been studied in query complexity [15]. We use information

complexity techniques to prove the required Ω(n/ log n)
communication lower bound for the relevant variant of the

Tseitin problem; information theoretic tools have been used

in extension complexity several times [21]–[23]. One relevant

work is Huynh and Nordström [24] (predecessor to [17]),

whose information complexity arguments we extend in this

work.

(Instead of using information complexity, an alternative

seemingly promising approach would be to “lift” a strong

enough query complexity lower bound for Tseitin into

communication complexity. Unfortunately, this approach

runs into problems due to limitations in existing query-

to-communication simulation theorems; we discuss this in

Section V.)

Theorem 1 follows by reductions from the result for

Tseitin (Section IV). Indeed, it was known that the Tseitin

problem reduces to the monotone KW game associated with

an f : {0, 1}O(n) → {0, 1} that encodes (in a monotone

fashion) a certain CSP satisfiability problem. This gives us an

extension complexity lower bound for the (explicit) polytope

F := conv f−1(1). As a final step, we give a reduction from

F to an independent set polytope.

C. Background

Let M be a nonnegative matrix. The nonnegative rank of

M , denoted rk+(M), is the minimum r such that M can be

decomposed as a sum
∑

i∈[r] Ri where each Ri is a rank-1
nonnegative matrix.

Randomized protocols. Faenza et al. [25] observed that a

nonnegative rank decomposition can be naturally interpreted

as a type of randomized protocol that computes the matrix

M “in expectation”. We phrase this connection precisely as

follows: log rk+(M)+Θ(1) is the minimum communication

cost of a private-coin protocol Π whose acceptance proba-

bility on each input (x, y) satisfies P[Π(x, y) accepts] = α ·
Mx,y where α > 0 is an absolute constant of proportionality

(depending on Π but not on x, y). All communication

protocols in this paper are private-coin.

Slack matrices. The extension complexity of a polytope

P = {x ∈ R
n : Ax ≥ b} can be characterized in terms of the

nonnegative rank of the slack matrix M = M(P ) associated

with P . The entries of M are indexed by (v, i) where v ∈
P is a vertex of P and i refers to the i-th facet-defining

inequality Aix ≥ bi for P . We define Mv,i := Aiv − bi ≥ 0
as the distance (slack) of the i-th inequality from being tight

for v. Yannakakis [5] showed that xc(P ) = rk+(M(P )).

A convenient fact for proving lower bounds on rk+(M)
is that the nonnegative rank is unaffected by the addition of

columns to M that each record the slack between vertices

of P and some valid (but not necessarily facet-defining)

inequality for P . For notation, let P ⊆ Q be two nested

polytopes (in fact, Q can be an unbounded polyhedron). We

define M(P ;Q) as the slack matrix whose rows correspond

to vertices of P and columns correspond to the facets of

Q (hence M(P ;P ) = M(P )). We have rk+(M(P )) ≥
rk+(M(P ) ∪M(P ;Q)) − 1 ≥ rk+(M(P ;Q)) − 1 where

“∪” denotes concatenation of columns.1 We summarize all

the above in the following.

Fact 2. For all polytopes P ⊆ Q, we have xc(P ) =
rk+(M(P )) ≥ rk+(M(P ;Q))− 1.

1Specifically, Farkas’s Lemma implies that the slack of any valid inequality
for P can be written as a nonnegative linear combination of the slacks
of the facet-defining inequalities for P , plus a nonnegative constant [26,
Proposition 1.9]. Thus if we take M(P ) ∪ M(P ;Q) and subtract off
(possibly different) nonnegative constants from each of the “new” columns
M(P ;Q), we get a matrix each of whose columns is a nonnegative linear
combination of the “original” columns M(P ) and hence has the same
nonnegative rank as M(P ). Since we subtracted off a nonnegative rank-1
matrix, we find that rk+(M(P ) ∪M(P ;Q)) ≤ rk+(M(P )) + 1.
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II. KW/EF CONNECTION

We now describe the connection showing that EF lower

bounds follow from a certain type of strengthening of lower

bounds for monotone KW games (and similarly, lower bounds

for monotone KW games follow from certain strong enough

EF lower bounds). This is not directly used in the proof of

Theorem 1, but it serves as inspiration by suggesting the

approach we use in the proof.

A. Definitions

Let f : {0, 1}n → {0, 1} be a monotone function. We de-

fine KW+(f) as the deterministic communication complexity

of the following monotone KW game associated with f .

——— KW+-game: ———

Input: Alice gets x ∈ f−1(1), Bob gets y ∈ f−1(0).
Output: An index i ∈ [n] such that xi = 1 and yi = 0.

We often think of x and y as subsets of [n]. In this language,

a feasible solution for the KW+-game is an i ∈ x ∩ ȳ
where ȳ := [n] � y. Given a monotone f , we denote by

F := conv f−1(1) the associated polytope. We can express

the fact that any pair (x, y) ∈ f−1(1) × f−1(0) admits at

least one witness i ∈ x∩ ȳ via the following linear inequality:
∑

i : yi=0

xi ≥ 1. (1)

Since (1) is valid for all the vertices x ∈ F , it is valid for the

whole polytope F . Define FKW ⊇ F as the polyhedron whose

facets are determined by the inequalities (1), as indexed by 0-

inputs y. The (x, y)-th entry in the slack matrix M(F ;FKW)
is then

∑
i : yi=0 xi − 1. In words, this quantity counts the

number of witnesses in the KW+-game on input (x, y) minus

one.

More generally, let S ⊆ X ×Y×Q be any communication

search problem (not necessarily a KW+-game, even though

any S can be reformulated as such [27, Lemma 2.3]). Here

Q is some set of solutions/witnesses, and letting S(x, y) :=
{q ∈ Q : (x, y, q) ∈ S} denote the set of feasible solutions

for input (x, y), we assume that S(x, y) 
= ∅ for all (x, y). We

associate with S the following natural “number of witnesses
minus one” communication game.

——— (#∃−1)-game: ———

Input: Alice gets x ∈ X , Bob gets y ∈ Y .

Output: Accept with probability proportional to |S(x, y)|−1

The communication complexity of this game is simply

log rk+(MS) + Θ(1) where MS
x,y := |S(x, y)| − 1.

B. The connection

What Hrubeš [19, Proposition 4] observed was that an

efficient protocol for a search problem S implies an efficient

protocol for the associated (#∃−1)-game. In particular, for

KW+-games,

log rk+(M(F ;FKW)) ≤ O(KW+(f)). (KW/EF)

The private-coin protocol for M(F ;FKW) computes as

follows. On input (x, y) ∈ f−1(1) × f−1(0) we first run

the optimal deterministic protocol for the KW+-game for f
to find a particular i ∈ [n] witnessing xi = 1 and yi = 0.

Then, Alice uses her private coins to sample a j ∈ [n]� {i}
uniformly at random, and sends this j to Bob. Finally, the

two players check whether xj = 1 and yj = 0 accepting iff

this is the case. The acceptance probability of this protocol is

proportional to the number of witnesses minus one, and the

protocol has cost KW+(f) + log n + O(1) ≤ O(KW+(f))
(where we assume w.l.o.g. that f depends on all of its input

bits so that KW+(f) ≥ log n).

C. Example: Matchings

Rothvoß vs. Raz–Wigderson. Consider the monotone func-

tion f : {0, 1}(m2 ) → {0, 1} that outputs 1 iff the input, inter-

preted as a graph on m nodes (m even), contains a perfect

matching. Then F := conv f−1(1) is the perfect matching

polytope. The inequalities (1) for f happen to include the

so-called “odd set” inequalities, which were exploited by

Rothvoß [6] in showing that log rk+(M(F ;FKW)) ≥ Ω(m).
Applying the (KW/EF) connection to Rothvoß’s lower bound

implies in a black-box fashion that KW+(f) ≥ Ω(m), which

is the result of Raz and Wigderson [16].

Converse to (KW/EF)? It is interesting to compare the above

with the case of bipartite perfect matchings. Consider a

monotone f : {0, 1}m×m → {0, 1} that takes a bipartite

graph as input and outputs 1 iff the graph contains a perfect

matching. It is well-known that F := conv f−1(1) admits a

polynomial-size extended formulation [28, Theorem 18.1].

By contrast, the lower bound KW+(f) ≥ Ω(m) from [16]

continues to hold even in the bipartite case. This example

shows that the converse inequality to (KW/EF) does not hold

in general. Hence, a lower bound for the (#∃−1)-game can

be a strictly stronger result than a similar lower bound for

the KW+-game.

D. Minterms and maxterms

A minterm x ∈ f−1(1) is a minimal 1-input in the sense

that flipping any 1-entry of x into a 0 will result in a 0-

input. Analogously, a maxterm y ∈ f−1(0) is a maximal

0-input. It is a basic fact that solving the KW+-game for

minterms/maxterms is enough to solve the search problem

on any input: Say that Alice’s input x is not a minterm.

Then Alice can replace x with any minterm x′ ⊆ x and run

the protocol on x′. A witness i ∈ [n] for (x′, y) works also

for (x, y). A similar fact holds for the (#∃−1)-game: we

claim that the nonnegative rank does not change by much

when restricted to minterms/maxterms. Say that Alice’s input
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x is not a minterm. Then Alice can write x = x′ ∪ x′′

(disjoint union) where x′ is a minterm. Then |x ∩ ȳ| − 1 =
(|x′ ∩ ȳ| − 1) + |x′′ ∩ ȳ| where the first term is the (#∃−1)-
game for (x′, y) and the second term has nonnegative rank

at most n. (A similar argument works if Bob does not have

a maxterm.)

III. TSEITIN PROBLEM

A. Query version

Fix a connected node-labeled graph G = (V,E, �) where

� ∈ Z
V
2 has odd weight, i.e.,

∑
v∈V �(v) = 1 where the

addition is modulo 2. For any edge-labeling z ∈ Z
E
2 and a

node v ∈ V we write concisely z(v) :=
∑

e�v z(e) for the

mod-2 sum of the edge-labels adjacent to v.

——— Tseitin problem: TSEG ———

Input: Labeling z ∈ Z
E
2 of the edges.

Output: A node v ∈ V containing a parity violation z(v) 
=
�(v).

As a sanity check, we note that on each input z there must

exist at least one node with a parity violation. This follows

from the fact that, since each edge has two endpoints, the

sum
∑

v z(v) is even, whereas we assumed that the sum∑
v �(v) is odd.

Basic properties: The above argument implies more

generally that the set of violations viol(z) := {v ∈ V :
z(v) 
= �(v)} is always of odd size. Conversely, for any

odd-size set S ⊆ V we can design an input z such that

viol(z) = S. To see this, it is useful to understand what

happens when we flip a path in an input z. Formally, suppose

p ∈ Z
E
2 is (an indicator vector of) a path. Define zp as z

with bits on the path p flipped (note that zp = z + p ∈ Z
E
2 ;

however, the notation zp will be more convenient later).

Flipping p has the effect of flipping whether each endpoint

of p is a violation. More precisely, the violated nodes in zp

are related to those in z as follows: (i) if both endpoints of p
are violated in z then the flip causes that pair of violations to

disappear; (ii) if neither endpoint of p is violated in z, then

the flip introduces a pair of new violations; (iii) if precisely

one endpoint of p was violated in z, then the flip moves a

violation from one endpoint of p to the other. By applying

(i)–(iii) repeatedly in a connected graph G, we can design an

input z where viol(z) equals any prescribed odd-size set S.

If z and z′ have the same set of violations, viol(z) =
viol(z′), then their difference q := z − z′ ∈ Z

E
2 satisfies

q(v) = 0 for all v ∈ V . That is, q is an eulerian subgraph of

G. On the other hand, for any eulerian graph q, the inputs z
and zq have the same violations. Consequently, to generate a

random input with the same set of violations as some fixed z,

we need only pick a random eulerian graph q and output zq .

(Eulerian graphs form a subspace of ZE
2 , sometimes called

the cycle space of G.)

B. Communication version

The communication version of the Tseitin problem is

obtained by composing (or lifting) TSEG with a constant-

size two-party gadget g : X × Y → {0, 1}. In the lifted

problem TSEG ◦ gn, where n := |E|, Alice gets x ∈ Xn as

input, Bob gets y ∈ Yn as input, and their goal is to find a

node v ∈ V that is violated for

z := gn(x, y) = (g(x1, y1), . . . , g(xn, yn)).

We define our gadget precisely in the full version [1]. For this

extended abstract—in particular, for the reductions presented

in the next section—the only important property of our gadget

is that |X |, |Y| ≤ O(1).

C. Statement of result

We prove that there is a family of bounded-degree graphs

G such that the (#∃− 1)-game associated with TSEG ◦
gn requires Ω(n/ log n) bits of communication. We prove

our lower bound assuming only that G = (V,E) is well-

connected enough as captured by the following definition

(also used in [17]). A graph G is k-routable iff there is a

set of 2k + 1 nodes T ⊆ V called terminals such that for

any pairing P := {{si, ti} : i ∈ [κ]} (set of pairwise disjoint

pairs) of 2κ terminals (κ ≤ k), there exist κ edge-disjoint

paths (called canonical paths for P) such that the i-th path

connects si to ti. Furthermore, we tacitly equip G with an

arbitrary odd-weight node-labeling.

The following is proved in the full version [1].

Theorem 3. There is a constant-size g such that for every
k-routable graph G with n edges, the (#∃−1)-game for
TSEG ◦ gn requires Ω(k) bits of communication.

If we choose G to be a sufficiently strong expander graph,

we may take k = Θ(n/ log n) as shown by Frieze et al. [29,

30]. Alternative constructions with k = Θ(n/ log n) exist

based on bounded-degree “butterfly” graphs; see [31, §5] for

an exposition.

Corollary 4. There is a constant-size g and an explicit
bounded-degree graph G with n edges such that the (#∃−1)-
game for TSEG ◦ gn requires Ω(n/ log n) bits of communi-
cation.

As a bonus, we also prove that the query complexity of

the (#∃−1)-game for TSEG is Ω(n) on any expander G
(see Section V).

IV. REDUCTIONS

The goal of this section is to show, via reductions, that a

lower bound on the (#∃−1)-game for TSEG ◦ gn (where

G = (V,E) is of bounded degree and n := |E|) translates

directly into a lower bound on the extension complexity of

PK for an O(n)-node bounded-degree graph K.
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A. Definition: Monotone CSP-SAT

We start by describing a way of representing constraint

satisfaction problems (CSP) as a monotone function; this

was introduced in [17] and further studied by Oliveira [32,

Chapter 3]. The function is defined relative to some finite

alphabet Σ and a fixed constraint topology determined by

a bipartite graph H := (L ∪ R,E). The left nodes L are

thought of as variables (taking values in Σ) and the right

nodes R correspond to constraints. For a constraint c ∈ R,

let var(c) ⊆ L denote the variables involved in c. Let d
denote the maximum degree of a node in R. The function

SAT = SATΣ,H : {0, 1}m → {0, 1}, where m ≤ |R| · |Σ|d,

is now defined as follows. An input x ∈ {0, 1}m defines a

CSP instance by specifying, for each c ∈ R, a truth table

Σvar(c) → {0, 1} that records which assignments to the

variables var(c) satisfy c. Then SAT(x) := 1 iff there is some

global assignment L → Σ that satisfies all the constraints

as specified by x. This is monotone: if we flip any 0 into a

1 in the truth table of a constraint, we are only making the

constraint easier to satisfy.

B. From Tseitin to CSP-SAT

For completeness, we present the reduction (due to [17,

§5.1]) from the search problem TSEG ◦gn to the KW+-game

for SAT = SATX ,H : {0, 1}m → {0, 1}. Here the alphabet

is X and the bipartite graph H is defined on E(G) ∪ V (G)
such that there is an edge (e, v) ∈ E(H) iff v ∈ e. Note

that m ≤ O(n) provided that |X | ≤ O(1) and that G is of

bounded degree.

On input (x, y) to TSEG ◦ gn the two players proceed as

follows:

• Alice maps her x ∈ XE(G) into a CSP whose sole

satisfying assignment is x. Namely, for each constraint

v ∈ V (G), the truth table X var(v) → {0, 1} is all-0

except for a unique 1 in position x|var(v) (restriction of

x to coordinates in var(v)).

• Bob maps his y ∈ YE(G) into an unsatisfiable CSP.

Namely, for each constraint v ∈ V (G), the truth

table tv : X var(v) → {0, 1} is given by tv(x̂) := 1
iff (g(x̂e, ye))e∈var(v) ∈ {0, 1}var(v) is a partial edge-

labeling of G that does not create a parity violation

on v.

Let us explain why Bob really produces a 0-input of SAT.

Suppose for contradiction that there is an x̂ ∈ XE(G) that

satisfies all of Bob’s constraints: tv(x̂|var(v)) = 1 for all v.

By definition, this means that z := gn(x̂, y) is an input to

TSEG without any violated nodes—a contradiction.

This reduction is parsimonious: it maps witnesses to

witnesses in 1-to-1 fashion. Indeed, a node v is violated

for TSEG ◦ gn if and only if Alice’s truth table for v has its

unique 1 in a coordinate where Bob has a 0. In conclusion,

the (#∃−1)-game associated with (the KW+-game for) SAT

is at least as hard as the (#∃−1)-game for TSEG ◦ gn.

C. From CSP-SAT to independent sets

As a final step, we start with SAT = SATΣ,H : {0, 1}m →
{0, 1} and construct an m-node graph K such that a slack

matrix of the independent set polytope PK embeds the (#∃−
1)-game for SAT (restricted to minterms). Let H := (L ∪
R,E) (as above) and define n := |R| (above we had n = |L|,
but in our case |L| = Θ(|R|) anyway).

The m-node graph K is defined as follows (this is

reminiscent of a reduction from [33]).

• The nodes of K are in 1-to-1 correspondence with

the input bits of SAT. That is, for each constraint c ∈
R we have |Σvar(c)| many nodes in K labeled with

assignments var(c)→ Σ.

• There is an edge between any two nodes whose

assignments are inconsistent with one another. (Here

φi : var(ci)→ Σ, i ∈ {1, 2}, are inconsistent iff there

is some e ∈ var(c1)∩var(c2) such that φ1(e) 
= φ2(e).)
In particular, the truth table of each constraint becomes

a clique.

(It can be seen that K has bounded degree if H has bounded

left- and right-degree, which it does after our reduction from

Tseitin for a bounded-degree G.)

The key property of this construction is the following:

The minterms of SAT are precisely the (indicator vectors of)
maximal independent sets of K.

Indeed, the minterms x ∈ SAT
−1(1) correspond to CSPs

with a unique satisfying assignment φ : L → Σ; there is a

single 1-entry in each of the n truth tables (so that |x| = n)

consistent with φ. Such an x, interpreted as a subset of nodes,

is independent in K as it only contains nodes whose labels

are consistent with φ. Conversely, because every independent

set x ⊆ V (K) can only contain pairwise consistently labeled

nodes, x naturally defines a partial assignment L′ → Σ for

some L′ ⊆ L. A maximal independent set x corresponds

to picking a node from each of the n constraint cliques

consistent with some total assignment φ : L→ Σ. Hence x
is a 1-input to SAT with unique satisfying assignment φ.

Our goal is now to exhibit a set of valid inequalities for

the independent set polytope PK whose associated slack

matrix embeds the (#∃−1)-game for SAT. Let x ⊆ V (K)
be an independent set and y ∈ SAT

−1(0). We claim that the

following inequalities (indexed by y) are valid:

|x ∩ y| =
∑

i : yi=1

xi ≤ n− 1. (2)

Clearly (2) holds whenever |x| ≤ n−1. Since it is impossible

to have |x| ≥ n + 1, assume that x is maximal: |x| = n.

As argued above, x is a minterm of SAT. Hence (x, y) is a

valid pair of inputs to the KW+-game, and so they admit a

witness: |x∩ ȳ| ≥ 1. Therefore |x∩y| = n−|x∩ ȳ| ≤ n−1.

This shows that (2) is valid. The slack matrix associated with
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inequalities (2) has entries

n− 1− |x ∩ y| = |x ∩ ȳ| − 1,

for any minterm x and any y ∈ SAT
−1(0). But this is just

the (#∃−1)-game for SAT with Alice’s input restricted to

minterms.

D. Proof of Theorem 1

Here we simply string the above reductions together. By

Corollary 4 there is a constant-size g and a bounded-degree

G with n edges such that the (#∃−1)-game for TSEG ◦ gn
requires Ω(n/ log n) bits of communication. By the reduction

of Section IV-B this implies an Ω(n/ log n) lower bound

for the (#∃− 1)-game associated with (the KW+-game

for) a monotone function SAT : {0, 1}O(n) → {0, 1}. As

discussed in Section II-D, the complexity of the (#∃−1)-
game for SAT is affected only by ± log n when restricted

to minterms. Thus the minterm-restricted (#∃−1)-game

for SAT still has complexity Ω(n/ log n). (Alternatively,

one can note that the reduction from Tseitin to CSP-SAT

produced only minterms.) Hence the nonnegative rank of

the matrix for that game is 2Ω(n/ logn). By the reduction of

Section IV-C there is a bounded-degree O(n)-node graph K
and a system of valid inequalities (2) for the independent

set polytope PK such that the slack matrix M(PK ;Q),
where Q is the polyhedron with facets determined by (2),

embeds the matrix for the minterm-restricted (#∃ − 1)-
game for SAT. Thus log rk+(M(PK ;Q)) ≥ Ω(n/ log n).
By Fact 2 we have log xc(PK) = log rk+(M(PK)) ≥
log

(
rk+(M(PK ;Q))− 1

) ≥ Ω(n/ log n).

V. QUERY LOWER BOUND

An alternative approach for proving a lower bound for the

(#∃−1)-game for TSEG ◦ gn is:

1) Prove an appropriate query complexity lower bound for

TSEG.

2) Use a query-to-communication simulation theorem

like [14, 34, 35].

In this section, we carry out the first step by proving an

optimal Ω(n) lower bound (which in particular answers a

question from [15])—this proof is a lot simpler than our

proof for the Ω(n/ log n) communication lower bound in

the full version [1]. Unfortunately, as we discuss below, it is

not known how to perform the second step for constant-size

gadgets g.

The result of this section can be interpreted as evidence

that the right bound in Theorem 1 is 2Ω(n) and the right

bound in Corollary 4 is Ω(n), and also as motivation for

further work to improve parameters for simulation theorems.

A. Query-to-communication

The query complexity analogue of nonnegative rank

decompositions (nonnegative combinations of nonnegative

rank-1 matrices) are conical juntas: nonnegative combinations

of conjunctions of literals (input bits or their negations). We

write a conical junta as h =
∑

C wCC where wC ≥ 0
and C ranges over all conjunctions C : {0, 1}n → {0, 1}.
The degree of h is the maximum number of literals in a

conjunction C with wC > 0. Each conical junta naturally

computes a nonnegative function h : {0, 1}n → R≥0. Hence

we may study (#∃− 1)-games in query complexity. In

particular, the query complexity of the (#∃−1)-game for

TSEG is the least degree of a conical junta h that on input z
outputs h(z) = |viol(z)| − 1.

The main result of [14] is a simulation of randomized pro-

tocols (or nonnegative rank decompositions) by conical juntas:

a cost-d protocol for a lifted problem F ◦gn can be simulated

by a degree-O(d) conical junta (approximately) computing F .

While F here is arbitrary, the result unfortunately assumes

that g := IPb is a logarithmic-size, b := Θ(logn), inner-

product function IPb : {0, 1}b × {0, 1}b → {0, 1} given by

IPb(x, y) := 〈x, y〉 mod 2.

Plugging b-bit gadgets into the reductions of Section IV

would blow up the number of input bits of CSP-SAT

exponentially in b. This is not only an artifact of our particular

reduction! Consider more generally any reduction from a

communication search problem S ◦ gn to a KW+-game for a

monotone f : {0, 1}m → {0, 1}. Since the KW+-game has

nondeterministic communication complexity logm (number

of bits the players must nondeterministically guess to find a

witness), the reduction would imply c ≤ logm where c is

the nondeterministic communication complexity of S ◦ gn.

If merely computing g requires b bits of nondeterministic

communication, then clearly c ≥ b so that m ≥ 2b.

B. A linear lower bound

Theorem 5. There is a family of n-node bounded-degree
graphs G such that the (#∃−1)-game for TSEG requires
query complexity Ω(n).

Relation to [15]: An analogue of the (KW/EF) connec-

tion holds for query complexity: if there is a deterministic

decision tree of height d that solves the search problem TSEG,

we can convert this into a degree-(d+O(1)) conical junta for

the associated (#∃−1)-game. Moreover, if we only have a

randomized ε-error decision tree for the search problem, then

the connection gives us a conical junta h that approximately
solves the (#∃−1)-game: h(z) ∈ (|viol(z)|− 1) · (1± ε) for

all z.

Our proof below is robust enough that the Ω(n) bound

holds even for conical juntas that merely approximately solve

the (#∃−1)-game. Hence we get a randomized Ω(n) lower

bound for TSEG, which was conjectured by [15, p. 125]; note

however that the earlier work [17] already got a near-optimal

Ω(n/ log n) bound. In any case, to our knowledge, this is the

first O(1)-vs-Ω(n) separation between certificate complexity

and randomized query complexity for search problems.
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The proof: Fix an n-node bounded-degree expander

G = (V,E). That is, for any subset U ⊆ V of size |U | ≤
n/2, the number of edges leaving U is Θ(|U |). We tacitly

equip G with an arbitrary odd-weight node-labeling. Assume

for the sake of contradiction that there is a conical junta

h =
∑

wCC of degree o(n) for the (#∃−1)-game for TSEG.

Let C be a conjunction with wC > 0. Denote by S ⊆ E the

set of edges that C reads; hence |S| ≤ o(n). Below, we write

G� S for the graph induced on the edges E � S (deleting

nodes that become isolated).

Claim 6. We may assume w.l.o.g. that G� S is connected.

Proof: If G�S is not connected, we may replace C with

a conjunction (actually, a sum of them) that reads more input

variables; namely, we let C read a larger set of edges S′ ⊇ S
including all edges from connected components of G � S
of “small” size ≤ n/2. When adding some small component

K ⊆ E to S′ we note that, because G is expanding, the size

of K is big-O of the size of the edge boundary of K (which

is contained in S). On the other hand, every edge in S lies

on the boundary of at most two components. It follows that

|S′| = O(|S|), i.e., we increased the degree of h only by a

constant factor. Now in G�S′ we have only components of

size > n/2, but there can only be one such component.

Claim 7. We may assume w.l.o.g. that C witnesses at least
two fixed nodes with a parity violation (i.e., C reads all the
edge labels incident to the two nodes).

Proof: Suppose for contradiction that C witnesses at

most one violation. Then we may fool C into accepting

an input (and hence h into outputting a positive value on

that input) where the number of violations is 1, which is a

contradiction to the definition of the (#∃−1)-game. Indeed,

let z be some input accepted by C. Then we may modify z
freely on the connected graph G� S (by Claim 6) without

affecting C’s acceptance: we may eliminate pairs of violations

from z by flipping paths (as in Section III) until only one

remains. (This is possible since by definition, all the non-

witnessed violations of z remain in G� S.)
Let μi (i odd) denote the distribution on inputs that have

i violations at a random set of i nodes, and are otherwise

random with this property. We may generate an input from

μi as follows:

1) Choose an i-set Ti ⊆ V of nodes at random.

2) Let z ∈ Z
E
2 be any fixed input with viol(z) = Ti.

3) Let q ∈ Z
E
2 be a random eulerian graph.

4) Output z + q.

Theorem 5 follows from the following lemma. Here we

identify C with the set (subcube) of inputs it accepts.

Lemma 8. μ5(C) ≥ (10/3− o(1)) · μ3(C).

Indeed, consider the expected output value Ezi∼μi [h(zi)].
This should be 2 for i = 3, and 4 for i = 5, i.e., a factor 2
increase. However, the above lemma implies that the output

value gets multiplied by more than a factor 3, which is the

final contradiction.

Proof of Lemma 8: By Claim 7 let {v1, v2} be a pair

of nodes where C witnesses two violations. For i = 3, 5, let

zi ∼ μi and denote by Ti the i-set of its violations. Then

μ3(C) = P[C(z3) = 1]

= P[C(z3) = 1 and T3 ⊇ {v1, v2}]
=

(
n−2
1

)
/
(
n
3

) · P[C(y3) = 1],
(for y3 := (z3 |T3 ⊇ {v1, v2}))

μ5(C) = P[C(z5) = 1]

= P[C(z5) = 1 and T5 ⊇ {v1, v2}]
=

(
n−2
3

)
/
(
n
5

) · P[C(y5) = 1].
(for y5 := (z5 |T5 ⊇ {v1, v2}))

So their ratio is

μ5(C)

μ3(C)
=

10

3
· P[C(y5) = 1]

P[C(y3) = 1]
.

Hence the following claim concludes the proof of Lemma 8.

Claim 9. P[C(y5) = 1]/P[C(y3) = 1] ≥ 1− o(1).

Proof: We can generate y3 and y5 jointly as follows:

y3: Choose v3 ∈ V � {v1, v2} uniformly random and let

x3 be some input with viol(x3) = {v1, v2, v3}. Output

y3 := x3 + q where q is a random eulerian graph.

y5: Continuing from the above, choose {v4, v5} ⊆ V �

{v1, v2, v3} at random. If possible, let p be a path in

G� S joining {v4, v5} (a “good” event), otherwise let

p be any path joining {v4, v5}. Output y5 := x3+p+ q.

It suffices to prove the claim conditioned on any particular v3
(and hence also on x3). By Claim 6 we have P[“good” | v3] =
P
[
v4, v5 ∈ G� S

∣∣ v3
] ≥ 1− o(1) since |S| ≤ o(n). If the

“good” event occurs, then C cannot distinguish between

y3 = x3+q and y5 = x3+p+q so that P[C(y3) = 1 | v3] =
P
[
C(y5) = 1

∣∣ “good”, v3
]
. The claim follows as

P[C(y5) = 1 | v3] ≥ P
[
C(y5) = 1 and “good”

∣∣ v3
]

= P
[
C(y5) = 1

∣∣ “good”, v3
]

· P[“good” | v3]
= P[C(y3) = 1 | v3] · P[“good” | v3]
≥ P[C(y3) = 1 | v3] · (1− o(1)).
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