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Abstract—We present decidability results for a sub-class
of “non-interactive” simulation problems, a well-studied
class of problems in information theory. A non-interactive
simulation problem is specified by two distributions P (x, y)
and Q(u, v): The goal is to determine if two players, Alice
and Bob, that observe sequences Xn and Y n respectively
where {(Xi, Yi)}ni=1 are drawn i.i.d. from P (x, y) can
generate pairs U and V respectively (without communi-
cating with each other) with a joint distribution that is
arbitrarily close in total variation to Q(u, v). Even when
P and Q are extremely simple: e.g., P is uniform on the
triples {(0, 0), (0, 1), (1, 0)} and Q is a “doubly symmetric
binary source”, i.e., U and V are uniform ±1 variables
with correlation say 0.49, it is open if P can simulate Q.

In this work, we show that whenever P is a distribution
on a finite domain and Q is a 2 × 2 distribution, then
the non-interactive simulation problem is decidable: specif-
ically, given δ > 0 the algorithm runs in time bounded by
some function of P and δ and either gives a non-interactive
simulation protocol that is δ-close to Q or asserts that no
protocol gets O(δ)-close to Q. The main challenge to such
a result is determining explicit (computable) convergence
bounds on the number n of samples that need to be drawn
from P (x, y) to get δ-close to Q. We invoke contemporary
results from the analysis of Boolean functions such as the
invariance principle and a regularity lemma to obtain such
explicit bounds.

I. INTRODUCTION

Given a sequence of independent samples

(x1, y1), (x2, y2), . . . from a joint distribution P
on A × B where Alice observes x1, x2, . . . and Bob

observes y1, y2, . . . , what is the largest correlation that

they can extract if Alice applies some function to her

observations and Bob applies some function to his?

The continuous version of this question – where the

extracted correlation is required to be in Gaussian
form – was solved by Witsenhausen in 1975 who gave

(roughly) a poly(|A|, |B|, log(1/δ))-time algorithm that

estimates the best such correlation up to an additive

δ [1]. When the target distribution is Gaussian, the

best possible correlation that is attainable is exactly the

well-known “maximal correlation coeffcient” which was

first introduced by Hirschfeld [2] and Gebelein [3] and

then studied by Rényi [4]. However, when the target

distribution is not Gaussian, the best correlation is not

well-understood and this is the question explored in this

paper. Specifically, we study the Boolean version of this

question where the extracted correlation is required to

be in the form of bits with fixed specified marginals.

We give an algorithm that, given δ > 0, computes the

best such correlation up to an additive δ.
Questions such as the above are well-studied in the

information theory literature under the label of “Non-

Interactive Simulation”. The roots of this exploration go

back to classical works by Gács and Körner [5] and

Wyner [6]. In this line of work, the problem is described

by a source distribution P (X,Y ) and a target distribution

Q(U, V ) and the goal is to determine the maximum rate

at which samples of P can be converted into samples

of Q. (So the goal is to start with n samples from

P and generate R · n samples from Q, for the largest

possible R.) Gács and Körner considered the special case

where Q required the output to be a pair of identical

uniformly random bits, i.e., U = V = Ber(1/2) and

introduced what is now known as the Gács-Körner
common information of P (X,Y ) to characterize the

maximum rate in terms of this quantity. Wyner, on

the other hand considered the “inverse” problem where

X = Y = Ber(1/2) and Q was arbitrary. Wyner

characterized the best possible conversion rate in this

setting in terms of what is now known as the Wyner com-
mon information of Q(U, V ). There is a rich history of

subsequent work (see, for instance, [7] and the references

within) exploring more general settings where neither

P nor Q produces identical copies of some random

variable. In such settings, even the question of when can

the rate be positive is unknown and this is the question

we explore in this paper.
The Non-Interactive Simulation problem is also a

generalization of the Non-Interactive Correlation Dis-

tillation problem which was studied by [8], [9]1. Our

setup can be thought of as a “positive-rate” version of

the setup of Gács and Körner. Namely, for a known

1which considered the problem of maximizing agreement on a single
bit, in various multi-party settings.
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source distribution P (X,Y ), Alice and Bob are given an

arbitrary number of i.i.d. samples and wish to generate

one sample from the distribution Q(U, V ) which is given

by U = V = Ber(1/2). (This is possible if and only if

the Gács-Körner rate is positive.)

Motivation. Our motivation for studying the best dis-

crete correlation that can be produced is twofold. On the

one hand, this question forms part of the landscape of

questions arising from a quest to weaken the assumptions

about randomness when it is employed in distributed

computing. Computational tasks are often solved well if

parties have access to a common source of randomness

and there has been recent interest in cryptography [10],

[11], [12], [13], [14], [15], quantum computing [16],

[17], [18] and communication complexity [19], [20], [21]

to study how the ability to solve these tasks gets affected

by weakening the source of randomness. In this space

of investigations, it is a very natural question to ask how

well one source of randomness can be tranformed to

a different one, and Non-Interactive Simulation studies

exactly this question.

On the other hand, from the analysis point of view,

the Non-Interactive Simulation problem forms part of

“tensor power” questions that have been challenging to

analyze computationally. Specifically, in such questions,

the quest is to understand how some quantity behaves

as a function of the dimensionality of the problem as

the dimension tends to infinity. Notable examples of

such problems include the Shannon capacity of a graph
[22], [23] where the goal is to understand how the

independence number of the power of a graph behaves

as a function of the exponent. Some more closely related

examples arise in the problems of local state transforma-

tion of quantum entanglement [24], [25] and the problem

of computing the entangled value of a game (see for eg,

[26] and also the open problem [27]). A more recent

example is the problem of computing the amortized com-

munication complexity of a communication problem.

Braverman-Rao [28] showed that this equals the informa-

tion complexity of the communication problem, however

the task of approximating the information complexity

was only recently shown to be computable [29]. In our

case, the best non-interactive simulation to get one pair

of correlated bits might require many copies of (x, y)
drawn from P and the challenge is to determine how

many copies get us close. Convergence results of this

type are not obvious. Indeed, the task of approximating

the Shannon capacity remains open to this day [30]. Our

work is motivated in part by the quest to understand tools

that can be used to analyze such questions where rate

of convergence to the desired quantity is non-trivial to

bound.

Estimating Binary Correlations: Previous Work and
our Result. In his work generalizing the results of Gács

and Körner, Witsenhausen [1] gave an efficient algorithm

that achieves a quadratic approximation to the Non-

Interactive Simulation problem when Q(U, V ) is the

distribution where U and V are marginally uniform over

±1 and U is an ρ-correlated copy of V , i.e. E[UV ] = ρ
(henceforth, we refer to this distribution as DSBS(ρ)).2

Indeed, Witsenhausen introduced the Gaussian correla-

tion problem as an intermediate step to solving this

problem and his rounding technique to convert the Gaus-

sian random variables into Boolean ones is essentially

the same as that of the Goemans-Williamson algorithm

for approximating maximum cut sizes in graphs [31].

Already implicit from the work of Witsenhausen is that

“maximum correlation” gives a way to upper bound the

best achievable ρ when simulating DSBS(ρ). Recent

works in the information theory community [32], [7],

[33] enhance the collection of analytical tools that can be

used to show stronger impossibility results. While these

works produce stronger bounds, they do not necessarily

converge to the optimal limit and indeed basic questions

about simulation remain open. For instance, till our

work, even the following question was open [34]: If

P is the uniform disribution on {(0, 0), (0, 1), (1, 0)}
and Q = DSBS(.49) (i.e. U, V are uniformly ±1, with

E[UV ] = .49), can P simulate Q arbitrarily well? Our

work answers such questions in principle. (Specifically

we do give a finite time procedure to approximate the

best ρ to within arbitrary accuracy. However, we have

not run this algorithm to determine the answer to this

specific question.)

Below we state our main theorem informally (see

Theorem II.5 for the formal statement).

Theorem I.1 (Informal). There is an algorithm that takes
as inputs a source distribution P , a parameter ρ > 0 and
an error parameter δ > 0, runs in time bounded by some
computable function of P , ρ and δ, and either outputs
a non-interactive protocol that simulates DSBS(ρ) up
to additive δ in total variation distance, or asserts that
there is no protocol that gets O(δ)-close to DSBS(ρ) in
total variation distance.

More generally, the proof techniques extend to de-

ciding the non-interactive simulation problem for an

arbitrary 2× 2 target distribution. In particular, we also

show the following (see Theorem II.3 for the formal

statement).

Theorem I.2 (Informal). There is an algorithm that
takes as inputs a source distribution P , a 2 × 2 target
distribution Q and an error parameter δ > 0, runs in
time bounded by some computable function of P , Q

2Henceforth, we assume that bits are in the set {±1}. By a quadratic
approximation, we mean an algorithm distinguishing between the cases
(i) ρ ≥ 1−η and (ii) ρ < 1−O(

√
η) for any given parameter η > 0.
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and δ, and either outputs a non-interactive protocol that
simulates Q up to additive δ in total variation distance,
or asserts that there is no protocol that gets O(δ)-close
to Q in total variation distance.

The crux of Theorems I.1 and I.2 is to prove com-
putable bounds on the number of copies of (X,Y )
that are needed in order to come δ-close to the target

distribution. We now describe the challenges towards

achieving such bounds, and the techniques we use.

A. Proof Overview

We start by describing some illustrative special cases

of the problem. In the case where P = DSBS(ρ), max-

imal correlation based arguments imply that DSBS(ρ)
is the ‘best’ DSBS distribution that can simulated [1].

Thus, in this case, dictators functions achieve the optimal

strategy. Consider now the case where P is a pair of

ρ-correlated zero-mean unit-variance Gaussians3. Then,

Borell’s isoperimetric inequality implies that the strategy

where each of Alice and Bob outputs the sign of her/his

Gaussian achieves the best possible DSBS [35].

Given the above two examples where a single-copy
strategy is optimal, it is tempting to try to determine

the best DSBS that can be simulated using a single

copy of P and hope that it would be close to the

optimal DSBS (i.e., to the one that can be simulated

using an arbitrary number of copies of P ). But this

approach cannot work as is illustrated by the following

example which shows that using many copies of P
is in some cases actually needed. Consider the source

joint distribution corresponding to the bipartite graph

in Figure 1 with α > 0 being a small parameter (we

interpret the distribution as the one obtained by sampling

a random edge in the graph). This graph is the union of

two components: a low-correlation component which has

probability 1 − α and a perfect-correlation component

which has probability α. If we use a small number of

copies of μ, the corresponding samples will most likely

fall in the low-correlation component, and hence the best

DSBS that can be produced in such a way would have

a small correlation. On the other hand, as the number

of used copies becomes larger than 1/α, with high

probability at least one of the corresponding samples

will fall in the perfect-correlation component, and hence

the resulting DSBS would have correlation very close to

1. As another example, consider the distribution that is

uniform on triples {(0, 0), (0, 1), (1, 0)}. It follows from

[1] that it is possible to simulate DSBS(1/3) using many

copies of this distribution. However, it can be shown that

using only a single copy of this distribution (along with

private randomness), Alice and Bob can at best simulate

DSBS(1/4).

3allowing here continuous distributions for the sake of intuition

low-correlation component

probability 1− α

high-correlation component

probability α

Fig. 1. Example source distribution for which many copies need to
be considered.

We now describe at a high level, the main ideas that

give us the computable bound on the number of samples

of the joint distribution that are sufficient to obtain a δ-
approximation to a given DSBS(ρ). First, we observe

that the problem of deciding if one can come δ-close
to simulating DSBS(ρ), is equivalent to checking if

Alice and Bob can non-interactively come up with a

distribution (X,Y ) on [−1, 1] × [−1, 1] such that the

marginals of X and Y have means close to 0, but E[XY ]
is large.

The results on correlation bounds for low-influence

functions (obtained using the invariance principle) [36],

[37], say that if Alice and Bob are using only low-

influential functions, then in fact the correlation that they

get cannot be much better than that obtained by taking

appropriate threshold functions on correlated gaussians.

Moreover, Alice and Bob can in fact simulate correlated

gaussians using only a constant number of samples

from the joint distribution, by applying the maximal

correlation based technique of Witsenhausen [1].

In the general case, we show that we can first convert

Alice and Bob’s functions to have low degree, after

which we apply a regularity lemma (inspired from that

of [38]) to conclude that after fixing a constant number

of coordinates, the restricted function is in fact low-

influential. This reduces the general case to the special

case of having low-influential functions and which is

handled as described in the previous paragraph.

The more general case of simulating arbitrary 2 × 2
distribution also follows a similar outline. For a more

technical overview of the proof, we refer the reader to

Section III-A.

B. Roadmap of the paper

In Section II, we give some of the basic definitions,

etc. Our main theorems are also presented in this section

as Theorems II.3 and II.5. In Section III, we state our

main technical lemma (Theorem III.1), which is used

to prove Theorem II.5. We also give a proof overview

for Theorem III.1. In Sections IV, V, VI and VII, we

state and give some proof overview of the technical
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lemmas involved in proving Theorem III.1. Finally,

in Section VIII, we put together everything to prove

Theorem III.1. We end with some open questions in

Section IX. Additional preliminaries and detailed proofs

are present in the full version [39].

II. PRELIMINARIES

A. Notation

We use script letters A, B, etc. to denote finite sets,

and μ will usually denote a probability distribution. (A×
B, μ) is a joint probability space. We use μA and μB to

denote the marginal distributions of μ. We use letters x,
y, etc to denote elements of A, and bold letters x, y,
etc. to denote elements in An. We use xi, yi to denote

individual coordinates of x, y, respectively.
For a probability space (A, μ), we will use the fol-

lowing definitions and notations borrowed from [40].

(An, μ⊗n) denotes the product space A×A× · · · × A
endowed with the product distribution. Supp(μ)

def
=

{x : μ(x) > 0} is the support of μ. We would generally

assume without loss of generality that Supp(μ) = A.

α(μ)
def
= min {μ(x) : x ∈ Supp(μ)} denotes the mini-

mum non-zero probability of any atom in A under the

distribution μ. L2(A, μ) denotes the space of functions

from A to R. The inner product on L2(A, μ) is denoted

by 〈f, g〉μ := E
x∼μ

[f(x)g(x)]. The �p-norm by
∥∥f∥∥

p
:=[

E
x∼μ

|f(x)|p
]1/p

. Also,
∥∥f∥∥∞ := maxμ(x)>0 |f(x)|. It

is easy to verify that
∥∥f∥∥

p
≤ ∥∥f∥∥

q
for 1 ≤ p ≤ q. For

two distributions μ and ν, dTV(μ, ν) is the total variation

distance between μ and ν.

B. The non-interactive simulation problem

The problem of non-interactive simulation is defined

as follows,

Definition II.1 (Non-interactive simulation [7]). Let
(A × B, μ) and (U × V, ν) be two probability spaces.
We say that the distribution ν can be non-interactively

simulated using distribution μ, if there exists a se-
quence of functions {fn}n∈N and {gn}n∈N such that,
fn : An → U , gn : Bn → V and the distribution
νn ∼ (fn(x), gn(y))μ⊗n over U × V is such that
lim

n→∞ dTV(νn, ν) = 0.

The notion of non-interactive simulation is pictorially

depicted in Figure 2. We formulate a natural gap-version

of the non-interactive simulation problem defined as

follows,

Problem II.2 (GAP-NIS((A × B, μ), (U × V, ν), δ)).
Given probability spaces (A × B, μ) and (U × V, ν),
and an error parameter δ > 0, distinguish between the
following cases:

Alice

Bob

Xn

Y n

U

V

Fig. 2. Non-Interactive simulation as studied in [32], [7]

(i) there exists N , and functions f : AN → U and g :
BN → V , the distribution ν′ = (f(x), g(y))μ⊗N is
such that dTV(ν

′, ν) ≤ δ.
(ii) for all N and all functions f : AN → U and g :

BN → V , the distribution ν′ = (f(x), g(y))μ⊗N is
such that dTV(ν

′, ν) > 8δ. 4

The main result in this paper is the following theorem

showing that the problem of GAP-NIS is decidable when

|U| = |V| = 2.

Theorem II.3 (Decidability of GAP-NIS for binary tar-

gets). Given probability spaces (A×B, μ) and (U×V, ν)
such that |U| = |V| = 2, and an error parameter δ, there
exists an algorithm that runs in time T ((A × B, μ), δ)
(which is an explicitly computable function), and decides
the problem of GAP-NIS((A× B, μ), (U × V, ν), δ).
The run time T ((A× B, μ), δ) is upper bounded by,

exp exp exp

(
poly

(
1

δ
,

1

1− ρ0
, log

(
1

α

)))
where ρ0 = ρ(A,B;μ) is the maximal correlation of
(A × B, μ) (defined in Section II-E) and α

def
= α(μ) is

the minimum non-zero probability in μ.

Doubly Symmetric Binary Source: In order to ease the

presentation of ideas in proving the above theorem, we

restrict to a special case, where the distribution (U×V ; ν)
is a doubly symmetric binary source defined below.

Definition II.4 (Doubly Symmetric Binary Source). The
distribution DSBS(ρ) is the joint distribution on ±1
random variables (U, V ) given by the following table,

V = +1 V = −1
U = +1 (1 + ρ)/4 (1− ρ)/4
U = −1 (1− ρ)/4 (1 + ρ)/4

In particular, E[U ] = E[V ] = 0 and E[UV ] = ρ.

We will prove a special case of Theorem II.3, where

the probability space (U × V , ν) is the distribution

DSBS(ρ) for some ρ (see Theorem II.5 below). Even

though we are proving only this special case, the main

4for sake of definition, the constant 8 could be replaced by any
constant greater than 1. For a minor technical reason however our
decidability results (Theorems II.3 and II.5) will require this constant
to be strictly greater than 2. We choose to go ahead with 8 for
convenience.
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ideas involved here easily generalize to the proof of

Theorem II.3 (proof in the full version [39]).

Theorem II.5 (Decidability of GAP-NIS for DSBS

targets). Given a probability space (A × B, μ), and
parameters ρ and δ, there exists an algorithm that runs in
time T ((A×B, μ), δ) (which is an explicitly computable
function), and decides the problem of GAP-NIS((A ×
B, μ),DSBS(ρ), δ).
The run time T ((A× B, μ), δ) is upper bounded by,

exp exp exp

(
poly

(
1

δ
,

1

1− ρ0
, log

(
1

α

)))
where ρ0 = ρ(A,B;μ) is the maximal correlation of
(A × B, μ) (defined in Section II-E) and α

def
= α(μ) is

the minimum non-zero probability in μ.

We will use GAP-NIS((A× B, μ), ρ, δ) as a shorthand

for GAP-NIS((A × B, μ),DSBS(ρ), δ). Theorem II.5

will follow easily from the main technical lemma (The-

orem III.1). The proof of Theorem II.5, assuming The-

orem III.1 is present in the full version [39].

C. Reformulation of GAP-NIS

With the end goal of proving Theorem II.5, we intro-

duce a new problem of Gap-Balanced-Maximum-Inner-

Product, to which we show a reduction from GAP-NIS.

This new formulation will be better suited for applying

our techniques.

Problem II.6 (GAP-BAL-MAX-IP((A × B, μ), ρ, δ)).
Given a probability space (A×B, μ), and parameters ρ
and δ, distinguish between the following cases:
(i) there exists N , and functions f : AN → [−1, 1]

and g : BN → [−1, 1], satisfying |E[f(x)]| ≤ δ
and |E[g(y)]| ≤ δ, such that the following holds,

E[f(x)g(y)] ≥ ρ− δ

(ii) for all N and all functions f : AN → [−1, 1] and
g : BN → [−1, 1], satisfying |E[f(x)]| ≤ 2δ and
|E[g(y)]| ≤ 2δ, the following holds,

E[f(x)g(y)] < ρ− 4δ

The following proposition gives a reduction from

the problem of GAP-NIS to the problem of

GAP-BAL-MAX-IP (proof in full version [39]).

Proposition II.7. For any probability space (A×B, μ)
and ρ, δ > 0, the following reduction holds,
1) Case (i) of GAP-NIS((A×B, μ), ρ, δ) holds =⇒

Case (i) of GAP-BAL-MAX-IP((A × B, μ), ρ, 2δ)
holds

2) Case (ii) of GAP-NIS((A×B, μ), ρ, δ) holds =⇒
Case (ii) of GAP-BAL-MAX-IP((A× B, μ), ρ, 2δ)
holds

D. Fourier analysis and Hypercontractivity

We will use standard notations in Fourier analysis

for functions in L2(An, μ⊗n), and use standard defini-

tions such as Influence, Variance, etc. We will also use

some concentration bounds based on hypercontractivity.

Owing to space constraints, we present the requisite

preliminaries in the full version [39].

E. Maximal Correlation and Witsenhausen’s rounding

The “maximal correlation coeffcient” was first in-

troduced by Hirschfeld [2] and Gebelein [3] and then

studied by Rényi [4].

Definition II.8 (Maximal correlation). Given a joint
probability space (A × B, μ), we define the maximal
correlation of the joint distribution ρ(A,B;μ) as follows,

ρ(A,B;μ) def
= sup

f :A→R

g:B→R

E
(x,y)∼μ

(f(x)− Ef)(g(y)− Eg)√
Var(f)Var(g)

Maximal correlation has certain properties which im-

ply necessary conditions for when non-interactive simu-

lation is possible (see full version [39] for more details).

In addition, using a result of Witsenhausen [1], we have

the following theorem,

Theorem II.9 (Witsenhausen [1]). For any joint prob-
ability space (A× B, μ), with ρ = ρ(A,B;μ), then the
largest ρ∗ for which (A × B, μ) can non-interactively
simulate DSBS(ρ∗) is bounded as follows,

1− 2 arccos(ρ)

π
≤ ρ∗ ≤ ρ

Note that, maximal correlation is an easily computable

quantity, namely, it is the second largest singular value

of the Markov operator5 corresponding to (A× B, μ).
Remark II.10. The astute reader might have noticed
a strong resemblance between Theorem II.9 and the
random hyperplane rounding of Goemans-Williamson
[31] used in the approximation algorithm for MAX-CUT.
This is not a coincidence and indeed the bounds in
Theorem II.9 come from morally the same technique as
in [31].

III. MAIN TECHNICAL LEMMA AND OVERVIEW

In this section we state the main technical lemma

which will be used to solve GAP-BAL-MAX-IP. We also

give a high level overview of the proof techniques.

Theorem III.1. Given any joint probability space (A×
B, μ) and any δ > 0, there exists n0 = n0((A×B, μ), δ)
such that for any n and any functions f : An → [−1, 1]
and g : Bn → [−1, 1], there exist functions f̃ : An0 →

5The Markov operator corresponding to (A×B, μ) is a |A| × |B|
matrix T which is given by T (x, y) = μ(y|X = x).
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[−1, 1] and g̃ : Bn0 → [−1, 1] such that
∣∣∣E[f̃ ]− E[f ]

∣∣∣ ≤
δ/3,

∣∣E[g̃]− E[g]
∣∣ ≤ δ/3 and

E
(x,y)∼μ⊗n0

[
f̃(x) · g̃(y)

]
≥ E

(x,y)∼μ⊗n
[f(x) · g(y)]− δ

Most importantly, n0 is a computable function in the
parameters of the problem. In particular, one may take,

n0 = exp

(
poly

(
1

δ
,

1

1− ρ
, log

(
1

α

)))

where ρ
def
= ρ(A,B;μ) is the maximal correlation of

(A × B, μ) and α
def
= α(μ) is the minimum non-zero

probability in μ.

A. Proof overview

The proof of Theorem III.1 goes through a series of

intermediate steps, which we describe at a high level

here. At each step we lose only a small amount in the

correlation. The first three steps preserve the marginals

E[f ] and E[g] exactly, while the fourth step incurs a

small additive error in the same. The full proof is

presented in Section VIII.

(I) Smoothing of strategies. We transform f and g into

functions f1, g1 such that f1 and g1 have ‘most’ of

their Fourier mass concentrated on terms of degree

at most d, where d is a constant that depends on the

distribution (A × B, μ) and a tolerance parameter,

but is independent of n. This transformation is

described in Section IV.

(II) Regularity lemma for low degree functions. We first

prove a regularity lemma (similar to the one in [38])

which roughly shows that for any degree-d polyno-

mial, there exists a h-sized subset of variables, such

that under a random restriction of the variables in

this subset, the resulting function on the remaining

variables has low individual influences (i.e. ≤ τ ).
Note that h will be a constant depending on the

degree d and τ , but will be independent of n.
We apply this regularity lemma on the degree-d
truncated versions of both f1 and g1 obtained from

Step (I). We take the union of the subsets obtained

for f1 and g1. We show that with high probability

over random restrictions of the variables in this

subset, the resulting restriction of f1 and g1 on the

remaining variables has low individual influences.

This step is described in Section V.

Note that this step does not change the functions f1
and g1 at all, but we gain some structural knowledge

about the same.

(III) Correlation bounds for low influence functions.
We use results about correlation bounds for low

influential functions [36], [37]. Intuitively, these

results suggest that if the functions f1 and g1
were low influential functions to begin with, then

the correlation E[f1(x)g1(y)] will not be ‘much’

better than the correlation between certain threshold

functions applied on correlated gaussians.

We apply the above correlation bounds for the low

influential functions obtained by restrictions of the

small subset of variables in f1 and g1, to obtain

functions f2 : Ah×R→ [−1, 1] and g2 : Bh×R→
[−1, 1], where Alice and Bob together have access

to h samples from (A × B, μ) and a single copy

of ρ-correlated gaussians, that is, G(ρ)6. Here the

correlation ρ is same as the maximal correlation

ρ(A,B;μ). This step is described in Section VI.

(IV) Simulating correlated gaussians. Finally, Alice and

Bob can non-interactively simulate the distribution

G(ρ) using constantly many samples from (A ×
B, μ). This is done using the technique of Witsen-

hausen [1], which primarily uses a 2-dimensional

central limit theorem. This step is described in

Section VII.

IV. SMOOTHING OF STRATEGIES

The first step in our approach is to obtain smoothed

versions of the functions f : An → [−1, 1] and g :
Bn → [−1, 1], which have small Fourier tails, without

hurting the correlation by much. In particular, we show

the following lemma (proof in full version [39]).

Lemma IV.1 (Smoothing of strategies). Given any joint
probability space (A × B, μ) and parameters λ, η > 0,
there exists d = d((A × B, μ), λ, η) such that for any
n and any functions f : An → [−1, 1] and g : Bn →
[−1, 1], there exist functions f1 : An → [−1, 1] and g1 :
Bn → [−1, 1] such that E[f1] = E[f ] and E[g1] = E[g],
and∣∣∣ E
(x,y)∼μ⊗n

[f1(x) · g1(y)]− E
(x,y)∼μ⊗n

[f(x) · g(y)]∣∣∣ ≤ λ

such that f1 and g1 have low energy Fourier tails,
namely,∑

|σ|>d

f̂1(σ)
2 ≤ η and

∑
|σ|>d

ĝ1(σ)
2 ≤ η

In particular, one may take d = log η
2 log γ , where γ = 1 −

C (1−ρ)λ
log(1/λ) , and ρ = ρ(A,B;μ).
V. JOINT REGULARITY LEMMA FOR FOURIER

CONCENTRATED FUNCTIONS

The second step in our approach is to apply a regu-
larity lemma on the functions f1 : An → [−1, 1] and

g1 : Bn → [−1, 1] obtained from the previous step

of smoothing. Regularity lemma is a loosely referred

6G(ρ) denotes a 2-dimensional gaussian distribution with mean

[
0
0

]

and covariance matrix

[
1 ρ
ρ 1

]
.
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term which shows that for various types of combina-

torial objects, an arbitrary object can be approximately

decomposed into a constant number of “pseudorandom”

sub-objects.

Our version of the regularity lemma draws inspiration

from that of [38]; in fact our proofs also closely follow

theirs. Formally, we show the following lemma (proof

in full version [39]).

Lemma V.1 (Joint regularity lemma for Fourier-concen-

trated functions). Let (A × B, μ) be a joint probability
space. Let d ∈ N and τ > 0 be any given constant
parameters. There exists an η

def
= η(τ) > 0 and

h
def
= h((A× B, μ), d, τ) such that the following holds:
For all P ∈ L2(An, μ⊗n

A ) and Q ∈ L2(Bn, μ⊗n
B )

satisfying
∑
|σ|>d P̂ (σ)2 ≤ η,

∑
|σ|>d Q̂(σ)2 ≤ η, and

Var[P ] ≤ 1 and Var[Q] ≤ 1: there exists a subset of
indices H ⊆ [n] with |H| ≤ h, such that the restrictions
of the functions P and Q obtained by evaluating the
coordinates in H according to distribution μ, satisfy the
following (where we denote T = [n] \H),

(i) With probability at least 1 − τ over ξ ∼ μ⊗h
A , the

restriction Pξ(xT ) is such that for all i ∈ T , it is
the case that Infi(Pξ(xT )) ≤ τ

(ii) With probability at least 1 − τ over ξ ∼ μ⊗h
B , the

restriction Qξ(xT ) is such that for all i ∈ T , it is
the case that Infi(Qξ(xT )) ≤ τ

In particular, one may take η = τ2/16 and h =

d
τ2 ·

(
C4(α)

α log C4(α)
α·d·τ

)O(d)

which is a constant that

depends on d, τ and α
def
= α(μ), which is the minimum

non-zero probability in μ. See the full version [39] for
the definition of C4(α), which is the hypercontractivity
parameter.

Our regularity lemma draws inspiration from the one

in [38]. In fact, our proof of the above regularity lemma

also closely follows the proof steps in [38]. However

their regularity lemma was much more involved as

they were dealing with low-degree polynomial threshold

functions, whereas we are directly dealing with low-

degree polynomials. In particular, a major difference in

our regularity lemmas is that [38] obtain a (potentially)

adaptive decision tree, whereas we obtain just a single

subset H . Also, our notion of ‘regularity’ is much

simpler in that we only need all influences to be small.

Another aspect of our regularity lemma is that it is robust

enough to also work for Fourier concentrated functions,

as opposed to only low-degree functions (potentially,

[38] could also be modified to have this feature, although

it was not required for their application). Another minor

difference is that our Fourier analysis is for functions in

L2(An, μ⊗n
A ), as opposed to functions on the boolean

hypercube. But this is not really a significant difference

and the proof steps go through as it is, albeit with slightly

different parameters which depend on the hypercontrac-

tivity parameters of the distribution (A, μA).

VI. APPLYING CORRELATION BOUNDS FOR

LOW-INFLUENCE FUNCTIONS

The third step in our approach is to use correlation
bounds for low-influence functions obtained from the

invariance principle [36], [37], to convert the functions

f1 : An → [−1, 1] and g1 : Bn → [−1, 1] into functions

f2 : Ah×R→ [−1, 1] and g2 : Bh×R→ [−1, 1] using
the following lemma (proof in full version [39]).

Lemma VI.1 (Applying correlation bounds for low-in-

fluence functions). Let (A×B, μ) be a joint probability
space. Let γ > 0 be any given constant parameter.
There exists a τ

def
= τ((A × B, μ), γ) > 0 such that

the following holds:
For all functions f1 : An → [−1, 1] and g1 : Bn →

[−1, 1], and a subset H ⊆ [n] with |H| = h, such that
the restrictions of the functions f1 and g1 obtained by
evaluating the coordinates inH according to distribution
μ, satisfy (i) and (ii) as in Lemma V.1 (replacing P and
Q by f1 and g1 respectively).
There exist functions f2 : Ah × R → [−1, 1] and g2 :
Bh × R→ [−1, 1], such that,

E
x∼μ⊗h

A

rA∼N (0,1)

f2(x, rA) = E
x∼μ⊗n

A

f1(x)

E
y∼μ⊗h

B

rB∼N (0,1)

g2(y, rB) = E
y∼μ⊗n

B

g1(y)

and,

E
(x,y)∼μ⊗h

(rA,rB)∼G(ρ)

[f2(x, rA) · g2(y, rB)]

≥ E
(x,y)∼μ⊗n

[f1(x) · g1(y)]− γ

Additionally, f2 and g2 will have the following special
form: there exist functions f ′2 : Ah → R and g′2 : Bh →
R such that,

f2(x, r) =

{
1 r ≥ f ′2(x)
−1 r < f ′2(x)

g2(y, r) =

{
1 r ≥ g′2(y)
−1 r < g′2(y)

Also, one may take τ = γO( log(1/γ) log(1/α)
(1−ρ)γ ), where

ρ = ρ(A,B;μ) and α
def
= α(μ) is the minimum non-

zero probability in μ.

The main technical tool in proving Lemma VI.1

is a result about correlation bounds for low influence

functions (which are generalizations of the ‘Majority is

Stablest’ theorem), which is obtained from the invariance

principle [36], [37].
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VII. SIMULATING CORRELATED GAUSSIANS

In this section, we use the technique due to Witsen-

hausen [1] which shows that for any joint probability

space (A×B, μ) with maximal correlation ρ, Alice and

Bob can non-interactively simulate ρ-correlated gaus-

sians upto arbitrarily small 2-dimensional Kolmogorov
distance. We obtain the following lemma (proof in full

version [39]).

Lemma VII.1 (Witsenhausen’s rounding). Let (A ×
B, μ) be a joint probability space, and let ρ = ρ(A,B;μ)
be its maximal correlation. Let ζ > 0 be any given
parameter. Then, there exists w def

= w((A×B, μ), ζ) ∈ N,
such that the following holds:
For all functions f2 : Ah×R→ [−1, 1] and g2 : Bh×

R→ [−1, 1] having the special form as in Lemma VI.1,
there exist functions f3 : Ah+w → [−1, 1] and g3 :
Bh+w → [−1, 1], such that,∣∣∣∣∣ E

x∼μ
⊗(h+w)
A

f3(x)− E
x∼μ⊗h

A

rA∼N (0,1)

[f2(x, rA)]
∣∣∣∣∣ ≤ ζ

∣∣∣∣∣ E

y∼μ
⊗(h+w)
B

g3(y)− E
x∼μ⊗h

B

rB∼N (0,1)

[g2(y, rB)]
∣∣∣∣∣ ≤ ζ

and,∣∣∣∣∣∣∣∣∣∣
E

(x,y)∼μ⊗(h+w)
[f3(x) · g3(y)]

− E
(x,y)∼μ⊗h

(rA,rB)∼G(ρ)

[f2(x, rA) · g2(y, rB)]

∣∣∣∣∣∣∣∣∣∣
≤ ζ

In particular, one may take w = O
(

1+ρ
α·(1−ρ)3·ζ2

)
, where

α
def
= α(μ) is the minimum non-zero probability in μ.

VIII. PUTTING IT ALL TOGETHER!

In this section we finally use all the lemmas we have

developed to prove Theorem III.1.

Proof of Theorem III.1. Given (A × B, μ) and δ > 0
and functions f : An → [−1, 1] and g : Bn →
[−1, 1], we wish to apply Lemma VI.1 with param-

eter γ = δ/3 followed by Lemma VII.1 with pa-

rameter ζ = δ/3. Lemma VI.1 will dictate a value

τ = τ((A × B, μ), γ). We wish to apply the Joint

regularity lemma (Lemma V.1), with this parameter τ ,
which will dictate a value of η = η(τ). Using this

value of η, and λ = δ/3, we apply the Smoothing

lemma (Lemma IV.1), which will dictate a value of

d = d((A × B, μ), λ, η). We use this d to feed into the

joint regularity lemma (Lemma V.1), to obtain a value of

h. The final value of n0 is the sum of h((A×B, μ), d, τ)
given by the joint regularity lemma (Lemma V.1) and

w((A×B, μ), ζ) given by Witsenhausen’s rounding pro-

cedure (Lemma VII.1). This dependency of parameters

is pictorially described in Figure 3 (the dependencies

on (A × B, μ) are suppressed, for sake of clarity).

It can be shown by putting everything together that

n0 = exp
(
poly

(
1
δ ,

1
1−ρ , log

(
1
α

)))
.

Once we have all the parameters set, we are now able

to apply them to any pair of functions f : An → [−1, 1]
and g : Bn → [−1, 1]. In particular, we proceed as

described in the overview (Section III).

(I) We apply Lemma IV.1 to functions f and g with

parameters λ and η as obtained above. This gives

us a degree d and functions f1 and g1, such that,∑
|σ|>d f̂(σ)

2 < η and
∑
|σ|>d ĝ(σ)

2 < η.
(II) We apply the joint regularity lemma (Lemma V.1)

on functions f1 and g1, with parameters d and τ as

obtained above (note that, the conditions involving

η are satisfied, because we chose precisely this η
to be given to the Smoothing lemma). This gives

us a subset H ⊆ [n] such that |H| ≤ h and with

high probability over restrictions to this subset H ,

the restricted versions of both f1 and g1 have all

individual influences to be at most τ .
(III) We apply the correlation bounds result

(Lemma VI.1) to functions f1 and g1 (note

that all the conditions involving τ are satisfied

already because we chose precisely this τ to be

given to the joint regularity lemma).

This gives us functions f2 : Ah ×R→ [−1, 1] and
g2 : Bh × R → [−1, 1] of the special form as in

Lemma VI.1.

(IV) Functions f2 and g2 are exactly in the form for

which Lemma VII.1 is applicable, which we use

with parameters ζ as obtained above. This gives us

functions f3 : Ah+w → [−1, 1] and g3 : Bh+w →
[−1, 1].

Note that, E f = E f1 = E f2 and
∣∣E f3 − E f2

∣∣ ≤
ζ = δ/3 and similarly E g = E g1 = E g2 and∣∣E g3 − E g2

∣∣ ≤ ζ = δ/3. Moreover, we have from

Lemmas VII.1, VI.1 and IV.1 that,

E
(x,y)∼μ⊗(h+w)

[f3(x) · g3(y)]
≥ E

(x,y)∼μ⊗h

(rA,rB)∼G(ρ)

[f2(x) · g2(y)]− ζ

≥ E
(x,y)∼μ⊗n

[f1(x) · g1(y)]− γ − ζ

≥ E
(x,y)∼μ⊗n

[f(x) · g(y)]− λ− γ − ζ

= E
(x,y)∼μ⊗n

[f(x) · g(y)]− δ

Hence, taking f̃ = f3 and g̃ = g3, proves Theorem III.1.

�
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(A× B, μ), δ

Correlation Bounds
(Lemma VI.1)

γ = δ
3Witsenhausen Rounding

(Lemma VII.1)

ζ = δ
3

Joint Regularity Lemma

(Lemma V.1)

τ = τ(γ)

Smoothing

(Lemma IV.1)

λ = δ
3

η = η(τ)

d = d(λ, η)n0 = h+ w

h = h(d, τ)

w = w(ζ)

Fig. 3. Dependency of parameters in the proof of Theorem III.1

IX. OPEN QUESTIONS

In this work, we proved computable bounds on the

non-interactive simulation of any 2× 2 distribution. We

now conclude with some interesting open questions.

The running time of our algorithm is at least doubly-

exponential in the input size7. It would be very interest-

ing to understand the computational complexity of the

non-interactive simulation problem. We point out that the

question of generating the best DSBS can be thought of

as a tensored version of the following “MIN-BIPARTITE-

BISECTION” problem: We are given a weighted bipartite

graph G = (L∪R,E), and we wish to find a subset S of

L∪R such that S ∩L roughly contains half the vertices

of L, and S ∩ R roughly contains half the vertices of

R, while minimizing the total weight of edges crossing

the cut (S, S). While it follows from [41] that MIN-

BIPARTITE-BISECTION is hard to approximate, the same

is not necessarily true about its tensored version.

Another interesting open question is to generalize our

decidability results to larger alphabets, which seems to

require new technical ideas. Indeed, our proof of Theo-

rems I.1 and I.2 relied on the fact that for (X,Y ) being

correlated random Gaussians, the maximum possible

agreement of any pair of ±1-valued functions f(X) and

g(Y ) is at most that of two appropriate dictator threshold

functions F (X1) and G(Y1) where F only depends on

the marginals of f (i.e., the probability that f takes the

values −1 and +1), and similarly G only depends on the

marginals of g. The analogous statement for the ternary

case is not true. Namely, let f(X), g(Y ) ∈ {0, 1, 2},
and assume that the marginals of f are (1/3, 1/3, 1/3).
Then, depending on whether the marginals of g are

(1/3, 1/3, 1/3) or (1/2, 1/2, 0), the largest agreement of

(f, g) would be achieved by very different functions f ,

7For constant values of δ and ρ, the running time is doubly-
exponential in 2poly(logm). Here we think of the input as a bipartite
graph with m edges. This follows because α ∼ 1/m.

assuming the “Standard Simplex Conjecture” (see [42]

and Proposition 2.10 of [43]). This example shows that

in the ternary case Alice cannot replace f by a function

of a very small number of copies without taking the

marginals of Bob’s function g into account, and this is a

major obstacle in generalizing our approach for proving

Theorems I.1 and I.2 to larger alphabets.

Yet another interesting open question is to generalize

our computability results to more than two players,

which also seems to require new technical ideas.

Finally, it will be very interesting to see if these

techniques could apply to other ‘tensored’ problems.

The most relevant problems seem to be (i) deciding a

quantum version of our problem, namely that of local

state transformation of quantum entanglement [24], [25]

and (ii) approximately computing the entangled value

of a 2-prover 1-round game ([26]; also see the open

problem [27]).
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