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Abstract—We study the problem of compressing interactive
communication to its information content I, defined as the
amount of information that the participants learn about each
other’s inputs. We focus on the case when the participants’
inputs are distributed independently and show how to compress
the communication to O(I log2 I) bits, with no dependence
on the original communication cost. This result improves
quadratically on previous work by Kol (STOC 2016) and
essentially matches the well-known lower bound Ω(I).
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I. Introduction

Classic work by Shannon [1], [2] shows how to opti-
mally compress one-way communication to its information
content, achieving in the limit a transmission cost equal to
the entropy of the message. The corresponding problem for
interactive communication has attracted increasing attention
over the past two decades. Consider two computationally
unbounded parties, Alice and Bob, with inputs X ∈ X
and Y ∈ Y , respectively, where X and Y are finite
sets and the pair (X,Y) is distributed according to some
known probability distribution on X × Y . Alice and Bob
exchange messages back and forth according to an agreed-
upon randomized protocol in order to implement some
functionality that depends on both inputs. One distinguishes
between public-coin and private-coin protocols, correspond-
ing to communication with or without a shared source of
random bits. Information complexity theory [3], [4], [5], [6]
studies a protocol’s information cost, defined as the amount
of information that Alice and Bob learn on average about
each other’s inputs from the history of messages exchanged
between them (the protocol transcript). This complexity
measure is quite different from communication cost, studied
in Yao’s communication complexity theory [7] and defined
as the number of bits exchanged between Alice and Bob in
the worst case on any input.

Basic properties of the entropy function ensure that a
protocol’s communication cost is always at least as large as
its information cost, and the gap between the two quantities
can be arbitrary. In this light, it is natural to ask whether
the communication in every protocol π can be compressed
to its information content while approximately preserving

the protocol’s functionality. In more detail, the approximate
simulation of a given protocol π on given inputs X and
Y by another protocol π′ involves running π′ on (X,Y)
and interpreting the resulting transcript as a transcript of
π. Alice and Bob may base their interpretations on their
respective inputs X and Y , potentially arriving at distinct
conclusions. In an accurate simulation, we require that their
interpretations almost always agree and approximately fol-
low the distribution of π’s transcript on the input in question.
Formally, π′ simulates π with error ε if there exist a pair
of “transcript interpretation” functions a : {0, 1}∗ → {0, 1}∗

and b : {0, 1}∗ → {0, 1}∗ for Alice and Bob such that the
random variables (X,Y,Π,Π) and (X,Y, a(X,Π′), b(Y,Π′)) are
at statistical distance at most ε, where Π and Π′ denote the
transcripts of π and π′, respectively, on input (X,Y). The
compression problem for interactive communication is the
problem of simulating, with small error ε, a given protocol π
by a protocol with communication cost as close as possible
to the information cost of π. Apart from its basic importance,
protocol compression is intimately related to direct sum
theorems in communication complexity theory [3], [8], [9].

Protocol compression has been actively studied [10], [6],
[9], [11], [12], [13], [14], [15] over the past two decades.
In a groundbreaking paper, Barak et al. [6] showed how to
compress any protocol with information cost I and com-
munication cost C to a protocol with communication cost√

IC polylog(C). Since the original communication cost C
can be essentially infinite, it is natural to ask if compression
independent of C is a possibility. The influential results of
Braverman [11] and Braverman and Weinstein [12] answer
this question in the affirmative, showing how to compress the
communication in any protocol to 2O(I) bits. Despite much
subsequent research, these two incomparable bounds remain
the strongest results for general protocol compression. On
the lower bounds side, Ganor, Kol, and Raz [16], [17], [18]
prove that Braverman’s 2O(I) compression is in general the
best possible bound that does not depend on the original
communication cost C. It is consistent with our current
knowledge, however, that any protocol can be compressed
to I polylog(C) bits, with only a nominal dependence on the
original communication cost.

In this paper, we focus on the well-studied special
case [6], [19], [20] of the protocol compression problem
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when Alice and Bob’s inputs X and Y are distributed
independently. The resulting joint probability distribution µ
of the inputs is called a product distribution, in reference to
its representation as µ = µX × µY for some distributions
µX and µY on Alice and Bob’s input sets, respectively.
Braverman’s 2O(I) compression [11] of course applies to
this special case as well, whereas Barak et al. [6] are able
to strengthen their compression bound to I polylog(C) bits.
These two bounds have complementary strengths, namely,
independence of C and moderate growth with I. In a re-
markable recent paper, Kol [20] shows how to achieve these
desiderata simultaneously, for a compressed communication
cost of I2 polylog(I) bits. We obtain a quadratic improvement
on Kol’s work, achieving a compressed communication cost
of O(I log2 I) bits and essentially matching the well-known
lower bound of Ω(I).

Theorem 1 (Main result). Let 0 < ε < 1/2 be given. Fix any
public- or private-coin protocol π with input space X ×Y .
Let µ be a product distribution on X ×Y , and let I be the
information cost of π under µ. Then there is a public-coin
protocol π′ that simulates π with error ε under µ and has
worst-case communication cost

O
( I
ε

log2 I
ε

)
.

Theorem 1 improves on previous compression schemes for
product distributions with respect to all parameters. Our
proof is inspired by the work of Barak et al. [6] and
Kol [20], which we will describe shortly and contrast with
our approach.

A. Background for Protocol Compression

We start with a brief review of relevant terminology
and background; a thorough treatment of these technical
preliminaries is available in Section II. Throughout this
paper, we consider binary strings to be ordered by the prefix
ordering �. The terms minimal and maximal, when applied
to strings, refer to this ordering �. All trees in our work
are binary and finite. We identify the vertices of a tree
with binary strings in the usual manner, namely, the root
corresponds to the empty string ε, and inductively the left
child and right child of a vertex v correspond to the strings
v0 and v1, respectively. A cut in a binary tree is any subset
of the tree’s vertices that intersects every root-to-leaf path in
exactly one vertex. For example, the leaves of the tree form a
cut. More generally, by truncating a given tree arbitrarily and
considering the resulting set of leaves, one obtains a cut in
the original tree. Given our identification of tree vertices with
binary strings, we view cuts as subsets of {0, 1}∗. The floor
of cuts C1 and C2, denoted bC1,C2c, is the set of minimal
elements of C1 ∪ C2. Analogously, the ceiling of cuts C1
and C2, denoted dC1,C2e, is the set of maximal elements of
C1 ∪C2. These definitions generalize in the obvious way to

three or more cuts. For any collection of cuts, their floor and
ceiling are also cuts (see Propositions 3.4 and 3.5 in the full
version of this paper [21]).

Consider a randomized protocol with input space X ×Y .
Assume for simplicity that it is a private-coin protocol,
meaning that Alice and Bob do not have access to a shared
source of random bits. They communicate by sending one
bit at a time. A multibit message corresponds to several
consecutive single-bit transmissions by the same sender. For
any given history of previously transmitted bits, the protocol
specifies which of the participants must send the next bit,
which in turn is a function of the sender’s private random
string, the sender’s input, and the history of previously
transmitted bits. Formally, a private-coin protocol is given by
a finite binary tree and a function π : (A ×X )∪ (B×Y )→
[0, 1], where the sets A and B form a partition of the
tree’s internal vertices. We identify the protocol with its
corresponding function π and use the same symbol for both.
The vertices in A and B are said to be owned by Alice
and Bob, respectively. The execution of π on a fixed pair of
inputs (x, y) corresponds to a random walk on the protocol
tree that starts at the root and proceeds one edge at a time,
as follows. On reaching a vertex v owned by Alice, the
walk proceeds to the left child with probability π(v, x) and
right child with the complementary probability 1 − π(v, x).
Analogously, on reaching a vertex v owned by Bob, the walk
proceeds to the left subtree with probability π(v, y) and right
subtree with probability 1−π(v, y). The walk terminates upon
reaching a leaf vertex, which represents a transcript of the
computation on input (x, y). Given our identification of tree
vertices with binary strings, the transcript on a given input
(x, y) is a random variable with range {0, 1}∗.

In the rest of the introduction, let π be an arbitrary
but fixed private-coin protocol, and let µ be a product
distribution on the protocol’s input space X × Y . Let I
denote the information cost of π with respect to µ. Let X
and Y be a pair of inputs with joint distribution µ, and let
Π be the transcript of π on input (X,Y). For fixed values
x ∈ X and y ∈ Y , define P, Px, Py, and Px,y to be the
probability distributions that govern the random variables
Π, Π | X = x, Π | Y = y, and Π | X = x,Y = y,
respectively. Thus, P, Px, Py, Px,y are probability distributions
on the leaves of the protocol tree. For a leaf or internal vertex
v, we define P(v), Px(v), Py(v), Px,y(v) to be the correspond-
ing probabilities of reaching a leaf in the subtree rooted
at v. With this convention, P, Px, Py, Px,y are nonnegative
functions defined at every vertex of the protocol tree. The
restriction of any one of these functions to a cut of the
protocol tree is a probability distribution. We further use
the shorthands P(v | u), Px(v | u), Py(v | u), Px,y(v | u) to refer
to the probabilities of reaching a leaf in the subtree rooted
at v conditioned on reaching a leaf in the subtree rooted at
u. Using the fact that µ is a product distribution, one easily
verifies the identity P(v)Px,y(v) = Px(v)Py(v) for all x, y, v.
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With this setup in place, we now describe the previous
work by Barak et al. [6] and Kol [20].

B. Sampling Algorithm of Barak et al.

For x ∈X and an internal vertex v, define Dx(v) to be the
Kullback–Leibler divergence between the Bernoulli distribu-
tions (Px(v0 | v), Px(v1 | v)) and (P(v0 | v), P(v1 | v)). Sim-
ilarly, define Dy(v) to be the Kullback–Leibler divergence
between the Bernoulli distributions (Py(v0 | v), Py(v1 | v))
and (P(v0 | v), P(v1 | v)). Let 0 < δ < 1 be a small parameter,
with order of magnitude δ = O(1/ log I). Without loss of
generality [6], we may assume that Dx(v) 6 δ and Dy(v) 6 δ
for all v, x, y. A key notion introduced by Barak et al. is
that of a δ-frontier, defined separately for Alice and Bob.
Alice’s δ-frontier Fx,δ is the set of minimal vertices v such
that either v is a leaf or the sum of the Dx values of v’s
proper ancestors is at least δ. Analogously, Bob’s δ-frontier
Fy,δ is the set of minimal vertices v such that either v is a
leaf or the sum of the Dy values of v’s proper ancestors is
at least δ. A moment’s reflection shows that Fx,δ and Fy,δ

are cuts in the protocol tree.
Execution of π on input X,Y corresponds to sampling

a random leaf of the protocol tree according to the prob-
ability distribution PX,Y . Unfortunately, neither Alice nor
Bob knows PX,Y . Indeed, Alice only knows P and PX , and
Bob only knows P and PY . As the technical centerpiece of
their analysis, Barak et al. prove that the restrictions of PX

and PY to the cut bFX,δ,FY,δc are within a multiplicative
constant c0 of P almost at every vertex. We assume in this
overview that the multiplicative bound holds everywhere.
Under this simplifying assumption, the sampling procedure
is as follows. Alice and Bob start by computing their
respective frontiers FX,δ and FY,δ. They then use the shared
randomness to sample a vertex V of the cut bFX,δ,FY,δc

according to the probability distribution P, by sampling a
leaf according to P and sending each other its ancestors
in FX,δ and FY,δ, respectively. To adjust for any multi-
plicative disparity between P and PX,Y , they use rejection
sampling [10], [22], [23], [6], whereby Alice accepts V with
probability PX(V)/c0P(V) and Bob independently accepts V
with probability PY (V)/c0P(V). Conditioned on both parties
accepting, which happens with probability 1/c2

0, the vertex
V is a random element of the cut bFX,δ,FY,δc governed by
the correct probability distribution:

P(V) ·
PX(V)
P(V)

·
PY (V)
P(V)

=
PX(V)PY (V)

P(V)
= PX,Y (V).

By generating V in this manner, Barak et al. execute the
initial part of π that corresponds to the shaded region of the
protocol tree in Figure 1a. They then run their algorithm
recursively on the protocol subtree rooted at V , eventually
outputting a leaf distributed according to PX,Y . For the cost
analysis, consider the intermediate vertices generated by the
algorithm as it works its way from the root to a leaf. The

path segment between any two of them contributes at least δ
toward the path’s cumulative DX or DY value. By the chain
rule for the Kullback–Leibler divergence, it follows that
the process terminates on average after O(I/δ) = O(I log I)
recursive calls. The communication cost of a single recursive
call is O(log C), where C is the height of the protocol tree
for π. As a result, the overall simulation has communication
cost I polylog(C).

C. Kol’s Sampling Algorithm

The most expensive step in the algorithm of Barak et al. is
the transmission of the intersection points of FX,δ and FY,δ

with the root-to-leaf path sampled according to P. Their im-
plementation involves the exchange of the actual intersection
points, for a communication cost of Θ(log C) bits, which
can be essentially infinite even when the information cost
I is small. Kol [20] proposed an alternate sampling proce-
dure, based on discretization, that ingeniously eliminates the
dependence of the cost on C. Specifically, Kol rounds the
frontiers FX,δ and FY,δ up with respect to a small and fixed
collection of cuts known to both Alice and Bob, resulting
in a pair of approximate frontiers FX,δ and FY,δ. Figure 1b
illustrates Kol’s construction, with the approximate frontiers
shown as dashed lines. Instead of sampling from the cut
bFX,δ,FY,δc as Barak et al. do, Kol samples from the cut
dbFX,δ,FY,δc, bFY,δ,FX,δce. Using the fact that µ is a product
distribution, Kol shows that this new sampling cut coincides
almost always with bFX,δ,FY,δc and therefore enables the
efficient transmission of the intersection points with any
root-to-leaf path.

Assuming for simplicity that Alice and Bob’s frontiers
FX,δ and FY,δ are disjoint, Kol’s complete sampling algo-
rithm is as follows. First, one of the parties is randomly
designated as the leader. Under Alice’s leadership, the
algorithm starts by sampling a root-to-leaf path according
to PX . This step uses the correlated sampling algorithm of
Braverman and Rao [9] for the probability distributions PX

and P, with communication cost O(E KL(PX || P)) 6 O(I) in
expectation. If Bob’s frontier FY,δ precedes Alice’s frontier
FX,δ along the sampled path, they reject the path and go back
to randomly choosing a leader. Otherwise, they compute
the path’s intersection V with the cut bFX,δ,FY,δc, and Bob
performs rejection sampling on V as in the work of Barak
et al. If Bob rejects V, they go back to randomly choosing
a leader; otherwise they accept V and run the algorithm
recursively on the subtree rooted at V . This completes the
description of the algorithm when Alice is the leader. Under
Bob’s leadership, the roles of Alice and Bob, and the roles
of X and Y , are reversed. The cost analysis is similar to
that of Barak et al., with the difference that the expected
cost of a recursive call is now O(I) rather than O(log I).
Since the expected number of recursive calls does not exceed
I polylog(I), the overall algorithm has communication cost
I2 polylog(I).
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Figure 1. The sampling step in the algorithms of (a) Barak et al., (b) Kol, and (c) this work. The shaded area corresponds to the sampling subtree.

D. Our Sampling Algorithm

Kol’s algorithm incurs essentially its entire communica-
tion cost at the beginning of a recursive call, when sam-
pling a root-to-leaf path. The expected communication cost
Θ(I) of this operation far exceeds its expected contribution
Θ(1/ log I) to the cumulative DX or DY value of the path
that the algorithm eventually outputs. There are two reasons
for this inefficiency. First, the portion of the sampled path
beyond the sampling cut is always discarded, forfeiting the
corresponding sampling effort. Second, the entire sampled
path is discarded if the follower’s frontier precedes the
leader’s along that path. We eliminate both sources of
inefficiency and obtain an algorithm in which every step
has communication cost proportional to that step’s expected
contribution to the progress measure.

We address the first problem by sampling the root-to-
leaf path according to a “hybrid” distribution. The portion
of the path up to the leader’s sampling cut is distributed
according to either PX or PY as in Kol’s algorithm, whereas
the rest of the path is distributed according to the publicly
known distribution P. The effect of this modification is
that the segment of the path beyond the leader’s sampling
cut does not contribute to the sampling cost. To address
the second source of inefficiency, we use a sampling cut
different from Kol’s. Let RX ,δ,1/2 denote the set of min-
imal vertices v such that the frontier Fx,δ is encountered
on the path from the root to v for at least half of the
inputs x ∈ X weighted according to µ. Define RY ,δ,1/2
analogously, and abbreviate Rδ,1/2 = bRX ,δ,1/2,RY ,δ,1/2c.
These definitions ensure that for random X and Y, nei-
ther of the frontiers FX,δ or FY,δ is very likely to pre-
cede Rδ,1/2 along a fixed root-to-leaf path. This motivates

the use of dbFX,δ,FY,δ,Rδ,1/2c, bFY,δ,FX,δ,Rδ,1/2ce as the
sampling cut, instead of Kol’s dbFX,δ,FY,δc, bFY,δ,FX,δce.
Figure 1c illustrates the resulting sampling subtree. To
be precise, the sampling cut that we actually use is
dbFX,δ,FX,∆,FY,δ,Rδ,1/2c, bFY,δ,FY,∆,FX,δ,Rδ,1/2ce for a
large parameter ∆ � 1, but the distinction can be ignored
on a first reading.

Summarizing, our modifications ensure that the sampling
cost of every step in the algorithm is a constant plus a
quantity proportional to the step’s expected contribution to
the progress measure. To prove that the overall sampling cost
is at most I polylog(I), we must further argue that every step
of the algorithm contributes on average 1/ polylog(I) to the
progress measure. The corresponding claims in the work of
Barak et al. and Kol were trivial to prove. In particular, the
leader in Kol’s algorithm is always guaranteed to contribute
at least δ to the progress measure. Our situation is different
because our choice of sampling cut effectively truncates the
tree at Rδ,1/2, making a zero contribution a possibility for
both the leader and the follower. Information-theoretically,
the difficulty is as follows. For any fixed vertex v ∈ Rδ,1/2
and random X and Y, the probability that at least one of the
frontiers FX,δ and FY,δ is encountered on the path from the
root to v is at least 1/2. However, the sampled vertex V in
the sampling cut is neither fixed nor independent of X or
Y . We solve the problem by showing that any correlation
between V and the protocol inputs causes information to be
revealed about X and Y in a way that on average contributes
to the progress measure instead of defeating it. We complete
the proof of our main result with an amortized analysis of
the cost versus progress, which too is more demanding than
in previous work.
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II. Preliminaries

We let log x denote the logarithm of x to base 2. We
adopt the convention that 0/0 = 0, justified throughout this
paper by continuity arguments. For a binary string v, the
shorthand |v| stands for the length of v. We use calligraphic
letters for finite sets (A ,B,C ,X ,Y ), lowercase letters for
set elements (x, y, u, v,w), and uppercase letters for random
variables (X,Y,U,V,W). For a random variable X and an
event E in the probability space, we let X | E denote the
random variable obtained from X by conditioning on E. The
notation X ∼ µ means that the random variable X is governed
by the probability distribution µ. For random variables X
and Y with a certain joint probability distribution, recall that
E[Y | X] is not a specific number but a random variable
defined as a function of X. Specifically, E[Y | X] = f (X)
where f is given by f (x) = E[Y | X = x]. Analogously,
P[E | X] for an event E is not a specific number but a
random variable defined as a function of X.

A. Strings

Recall that {0, 1}∗ and {0, 1}+ refer to the set of binary
strings and the set of nonempty binary strings, respectively.
The empty string is denoted ε. The concatenation of the
strings u and v is denoted uv. Consider the standard partial
order ≺ on {0, 1}∗, whereby u ≺ v if and only if uw = v for
some w , ε. The derived relations �,�,� are given by

u � v ⇔ v ≺ u,

u � v ⇔ v ≺ u or v = u,

u � v ⇔ u ≺ v or v = u.

Strings u and v are called comparable if u � v or u �
v, and incomparable otherwise. In addition to their role as
relational operators, we use ≺,�,�,� as the unary operators

≺v = {u : u ≺ v}, �v = {u : u � v},

�v = {u : u � v}, �v = {u : u � v}.

We refer to the elements of �v and �v as the ancestors of v
and the descendants of v, respectively. Analogously, we call
the elements of ≺v and �v the proper ancestors of v and the
proper descendants of v, respectively. These unary operators
naturally extend from strings to sets of strings, according to

≺V =
⋃
v∈V

≺v, �V =
⋃
v∈V

�v, �V =
⋃
v∈V

�v, �V =
⋃
v∈V

�v.

In their unary capacity, the operators ≺,�,�,� have the
highest precedence.

B. Information Theory

All probability distributions in this work are defined on
finite sets. For a probability distribution p on a set X , its
support is given by supp p = {x ∈ X : p(x) , 0}. For
a subset X ′ ⊆ X , we let p|X ′ denote the probability

distribution induced by p on X ′. For probability distri-
butions p and q on X , their Kullback–Leibler divergence
is given by KL(p || q) =

∑
x∈X p(x) log(p(x)/q(x)). In the

context of the Kullback–Leibler divergence, we frequently
identify a real number 0 6 p 6 1 with the corresponding
Bernoulli distribution (p, 1 − p) and use the shorthand
KL(p || q) = KL((p, 1 − p) || (q, 1 − q)). Another distance
measure for probability distributions is statistical distance,
also known as total variation distance and defined by
TV(p, q) = maxE⊆X |p(E ) − q(E )|. The following fact is
proved in the full version of this paper [21, Fact 2.6].

Fact 2. Let p and q be probability distributions on X such
that p(x) 6 c · q(x) for all x ∈X . Then TV(p, q) 6 1 − 1

c .

In the context of the Kullback–Leibler divergence and sta-
tistical distance, we identify random variables with their
corresponding probability distributions. For example, the
notation TV(X,Y) refers to the statistical distance between
the probability distributions of X and Y.

We use the notation I(X; Y) and I(X; Y | Z) for mutual in-
formation and conditional mutual information, respectively.

C. Communication Protocols

We consider communication between two computationally
unbounded parties, called Alice and Bob, each with an input
from some fixed finite set and with a private source of
random bits. They send messages back and forth according
to an agreed-upon protocol, where each message is a func-
tion of the sender’s input, the sender’s private random bits,
and previously exchanged messages. Formally, a private-
coin communication protocol is a tuple (X ,Y ,T,A ,B, π),
where X and Y are the sets of possible inputs for Alice
and Bob, respectively; T is a finite nonempty binary tree; A
and B are disjoint sets that form a partition of the internal
vertices of T ; and π : (A ×X ) ∪ (B × Y ) → [0, 1] is any
function. The tree T is called the protocol tree. The vertices
of A are said to be owned by Alice, and those of B are
said to be owned by Bob. For brevity, we will identify a
communication protocol with its corresponding function π.

The operational interpretation of a protocol π on a given
pair of inputs x ∈X and y ∈ Y is in terms of a random walk
from the root of the protocol tree to a leaf. Specifically, at an
internal vertex v ∈ A , Alice sends 0 with probability π(v, x)
and sends 1 with the complementary probability 1− π(v, x),
directing the random walk to the left or right subtree,
respectively. At an internal vertex v ∈ B, Bob analogously
sends 0 with probability π(v, y), directing the random walk to
the left subtree, and sends 1 with complementary probability.
A transcript is the complete sequence of bits sent by Alice
and Bob on a given pair of inputs over the course of
the random walk from the root of the protocol tree to a
leaf. Given our identification of tree vertices with binary
strings, we identify the transcript with the leaf reached by
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the random walk. The communication cost of protocol π,
denoted |π|, is the height of the protocol tree, or equivalently
the maximum number of bits exchanged by Alice and Bob
in the worst case on any input. We let V (π) denote the set
of vertices of the protocol tree for π, which includes both
the internal vertices and the leaves. The set of leaves of the
protocol tree is denoted L (π). We regard V (π) and L (π)
as subsets of {0, 1}∗.

A public-coin communication protocol is a probability
distribution over a finite number of private-coin communica-
tion protocols, each with its own protocol tree. In a public-
coin protocol, Alice and Bob use a shared source of random
bits (a “public coin”) to sample a random string R and then
proceed to execute the private-coin protocol that corresponds
to R. The communication cost of a public-coin protocol π,
denoted |π|, is the maximum communication cost of the
associated private-coin protocols. In particular, the length
of the shared random string R does not count toward the
communication cost of a public-coin protocol. The shared
string is, however, always considered to be a part of the
protocol transcript.

D. Information Cost

Fix a private-coin communication protocol π and a prob-
ability distribution µ on the input space of π. Let X and Y
be random variables with joint distribution µ, corresponding
to Alice and Bob’s inputs, and let Π be the transcript of π
on inputs X and Y . The internal information cost of π with
respect to µ is defined as ICµ(π) = I(Π; X | Y) + I(Π; Y | X).
Introduced by Barak et al. [6], this quantity measures the
amount of information that Alice and Bob learn on aver-
age about each other’s inputs by executing the protocol.
A closely related notion is the external information cost,
defined for π with respect to µ as IC∗µ(π) = I(Π; XY). This
alternate quantity was introduced several years earlier by
Chakrabarti et al. [3], with implicit uses in several other
works. External information cost measures the amount of
information that the protocol transcript reveals to an outside
observer about the inputs X and Y .

Theorem 3 (Barak et al. [6]). For any private-coin protocol π
and any probability distribution µ, one has ICµ(π) 6 IC∗µ(π),
with equality for product distributions.

The internal and external information cost of a public-coin
protocol π are defined by conditioning on the shared random
string R. Formally, ICµ(π) = I(Π; X | RY) + I(Π; Y | RX) and
IC∗µ(π) = I(Π; XY | R).

E. Local View of Information Cost

External information cost admits a useful alternate char-
acterization, based on the chain rule for mutual information.
As before, fix a private-coin communication protocol π with
input space X × Y and consider a probability distribution

µ on X × Y . Let X and Y be random variables with joint
distribution µ, and let Π be the transcript of π on input
X,Y . For x ∈ X and y ∈ Y , define P, Px, Py, and Px,y

to be the probability distributions that govern the random
variables Π, Π | X = x, Π | Y = y, and Π | X = x,Y = y,
respectively. Thus, P, Px, Py, Px,y are probability distributions
on the leaves of the protocol tree. For a leaf or internal
vertex v, recall from the Introduction that the shorthands
P(v), Px(v), Py(v), Px,y(v) refer to the probability of reaching
a leaf in the subtree of v. Similarly, P(v | u), Px(v | u), Py(v |
u), Px,y(v | u) refer to the probability of reaching a leaf in the
subtree of v conditioned on reaching a leaf in the subtree of
u. For any vertex v of the protocol tree and inputs x ∈ X
and y ∈ Y , define

D
π,µ
x (v) =

KL(Px(v0 | v) || P(v0 | v)) if v ∈ A ,

0 otherwise,

D
π,µ
y (v) =

KL(Py(v0 | v) || P(v0 | v)) if v ∈ B,

0 otherwise,

where as usual A and B stand for the sets of vertices owned
by Alice and Bob, respectively. These quantities, introduced
by Barak et al. [6], measure the information revealed about
the protocol inputs locally due to the bit transmission at
vertex v. Observe that for an internal vertex v, at most
one of the quantities Dπ,µx (v),Dπ,µy (v) is nonzero, whereas for
every leaf vertex v, both quantities are zero. We abbreviate
D
π,µ
x,y (v) = D

π,µ
x (v) + D

π,µ
y (v) = KL(Px,y(v0 | v) || P(v0 | v)).

For S ⊆ V (π), we define Dπ,µx (S ) =
∑

v∈S D
π,µ
x (v) and

analogously for Dπ,µy (S ) and Dπ,µx,y (S ).

Theorem 4. For any private-coin protocol π and distribution
µ, one has IC∗µ(π) = EDπ,µX,Y (≺Π), where X and Y are random
variables with joint distribution µ, and Π is the protocol
transcript of π on input X,Y.

The lower bound in this theorem was proved in [6]. A proof
of the complete theorem is available in the full version of
this paper [21], along with the following related result.

Theorem 5. For every private-coin protocol π and distribu-
tions µ and µ̃, one has EDπ,µX,Y (≺Π) 6 EDπ,µ̃X,Y (≺Π), where X
and Y are random variables with joint distribution µ, and
Π is the protocol transcript of π on input X,Y.

F. Protocol Simulation

Let π be a private- or public-coin communication protocol
with input space X × Y , and let µ be a probability
distribution on X × Y . We say that π′ simulates π with
error ε with respect to µ, denoted

π′ ↪→µ,ε π,

if there are functions a : {0, 1}∗ → {0, 1}∗ and b : {0, 1}∗ →
{0, 1}∗ such that TV((X,Y,Π,Π), (X,Y, a(X,Π′), b(Y,Π′)) 6 ε,

539540540



where X and Y are random variables with joint distribution
µ, and Π and Π′ are the transcripts of π and π′, respectively,
on input X,Y . We remind the reader that for public-coin
protocols, the protocol transcript always includes the shared
random string. The triangle inequality for statistical distance
gives:

Theorem 6. Let π, π′, π′′ be private- or public-coin protocols
with input space X ×Y . Let µ be a probability distribution
on X × Y . Assume that π′′ ↪→µ,ε π

′ and π′ ↪→µ,δ π. Then
π′′ ↪→µ,ε+δ π.

The following well-known result shows that any public-
coin protocol can be faithfully simulated by a private-coin
protocol with no increase in information cost. A proof is
available in the full version of this paper [21, Theorem 2.14].

Theorem 7 (Folklore). Let π be a public-coin protocol with
input space X × Y . Let µ be a probability distribution on
X × Y . Then there is a private-coin protocol π′ such that

π′ ↪→µ,0 π,

ICµ(π′) = ICµ(π),
IC∗µ(π′) = IC∗µ(π).

A private-coin protocol π : (A ×X ) ∪ (B ×Y )→ [0, 1]
is β-balanced if the range of π is contained in the interval
[ 1

2 − β,
1
2 + β]. The following result, obtained by Barak et

al. [6] and revisited recently by Kol [20], shows that any
protocol can be simulated by a β-balanced protocol at the
expense of an infinitesimal increase in information cost.

Theorem 8 (Barak et al., Kol). Let π be a private-coin
protocol with input space X × Y . Let µ be a probability
distribution on X × Y . Then for every β > 0 and ε > 0,
there exists a private-coin β-balanced protocol π′ such that

π′ ↪→µ,ε π,

ICµ(π′) 6 ICµ(π) + ε,

IC∗µ(π′) 6 IC∗µ(π) + ε.

III. Partial Simulation
Let π be a given protocol with information cost I under a

product distribution µ. Recall that the goal of this paper is to
construct a public-coin randomized protocol that accurately
simulates π with respect to µ and has communication cost
O(I log2 I). We start by developing a public-coin randomized
procedure that simulates a nontrivial initial portion of the
protocol π. The complete simulation, analyzed in a later sec-
tion, will involve repeated execution of this partial procedure
until the communication allotment is reached.

Theorem 9 (Partial simulation, σπ,µ,ε). Let 0 < ε < 1/2 be
given. For β = β(ε) > 0 sufficiently small, fix any β-balanced
private-coin protocol π with input space X × Y , and any

product distribution µ on X ×Y . Then there is a public-coin
randomized protocol σπ,µ,ε with input space X ×Y whose
execution allows Alice and Bob to agree on a vertex of the
protocol tree for π, subject to the following properties:∑

w�v

P[W = w | X,Y]
P[Π � w | X,Y]

6 1 + ε ∀v ∈ V (π) (accuracy)

P[W ∈ L (π)] + log
(

1
ε

)
EDπ,µX,Y (≺W) >

1
c

(progress)

C 6 C′ + C′′ + c log
1
ε

E C′ 6 c(EDπ,µX,Y (≺W) + ε EDπ,µX,Y (≺Π))

P[C′′ > 0] 6 ε

 (cost)

where
(i) X,Y are random variables with joint distribution µ;

(ii) Π is the transcript of π on input X,Y;
(iii) W ∈ V (π) is Alice and Bob’s agreed-upon vertex after

executing σπ,µ,ε on input (X,Y), and C ∈ N is the
communication cost of that execution;

(iv) C′,C′′ ∈ N are auxiliary random variables;
(v) W,C,C′,C′′ are completely determined by the tran-

script of σπ,µ,ε ;
(vi) c > 1 is an absolute constant.

The proof of Theorem 9, sketched in the Introduction,
is rather lengthy and technical. It can be found in the full
version of this paper [21, Sections 4.1–4.9].

IV. Complete Simulation

Building on the sampling procedure of the previous sec-
tion, we now prove the main result of this work.

Theorem 10 (Main theorem). Let 0 < ε < 1/2 be given.
Fix any public- or private-coin protocol π with input space
X × Y . Let µ be a product distribution on X × Y , and
abbreviate I = ICµ(π). Then there is a public-coin protocol
π′ with worst-case communication cost

O
( I
ε

log2 I
ε

)
such that π′ ↪→µ,ε π.

The remainder of this section is devoted to the proof of
Theorem 10. Let δ = δ(I, ε) > 0 be an accuracy parameter
to be set later, and let β = β(δ) > 0 be sufficiently small in
the sense of Theorem 9. By Theorems 6–8, we may assume
that π is a private-coin β-balanced protocol. Recall that our
proof strategy in simulating π will be to repeatedly apply
the partial sampling procedure of the previous section until
a communication limit is exceeded. We will argue that the
resulting simulation reaches a leaf with high probability and
that its distribution is statistically close to the distribution of
the transcript of π on the corresponding input.
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A. A Stochastic Process

Let X,Y be a pair of inputs with joint distribution µ. We
define a discrete stochastic process given by the random
variables X,Y, and

(πt, µt,Rt,Mt,Wt,C′t ,C
′′
t ), t = 1, 2, 3, . . . , (1)

where µ1, µ2, µ3, . . . are product distributions on X × Y .
We let π1 = π and µ1 = µ. For t > 1, the random
variables X,Y, πt, µt give rise to Rt,Mt,Wt,C′t ,C

′′
t , πt+1, µt+1

in an inductive manner as follows.

(i) Execute the public-coin protocol σπt ,µt ,δ from Theo-
rem 9 on input X,Y . Let Rt and Mt denote the shared
random string and the rest of the protocol transcript,
respectively, from that execution. Let Wt,C′t ,C

′′
t be

the corresponding additional random variables from
Theorem 9, each of which is completely determined
by the tuple (πt, µt,Rt,Mt).

(ii) Define πt+1 to be the private-coin protocol correspond-
ing to the protocol subtree of πt rooted at Wt. Thus,
vertex Wt of the protocol tree for πt corresponds to
vertex ε (the root) of the protocol tree for πt+1.

(iii) Define µt+1 to be the posterior probability distribution
on X ×Y obtained by conditioning µt on the transcript
(Rt,Mt) of protocol σπt ,µt ,δ. Recall that conditioning a
product distribution on a protocol transcript results in a
product distribution. Thus, µt+1 is a product distribution,
maintaining the promised invariant.

We let P denote the resulting infinite sequence (1) of random
variables. For t = 1, 2, 3, . . . , we let P6t denote the restriction
of P to the first t stages of the stochastic process. In other
words, P6t stands for

(π1, µ1,R1,M1,W1,C′1,C
′′
1 ), . . . ,

(πt, µt,Rt,Mt,Wt,C′t ,C
′′
t ), πt+1, µt+1,

where the inclusion of πt+1 and µt+1 is motivated by the fact
that they are fully determined by the previous tuple. In this
notation, µt+1 is the probability distribution that governs the
random variable XY | P6t.

We define the random variable Π as the transcript of π
on input X,Y. More generally, we define Πt as the transcript
of πt on input X,Y. We stress that the inputs X,Y and the
auxiliary random variables Π,Π1,Π2,Π3, . . . are not part of
P and in particular do not appear in any P6t. Observe also
that Πt is independent of P given X,Y, πt.

B. Accuracy Analysis

The focal point of the proof is the random walk ε � W1 �

W1W2 � W1W2W3 � . . . � W1W2 . . .Wt � . . . in the protocol
tree for π. We start by studying how accurately this random
walk models the actual protocol transcript, Π. For a fixed

string w and any t > 1,

P[WtΠt+1 = w | X,Y, P6t−1]

=
∑
v�w

P[Wt =v | X,Y, P6t−1] P[vΠt+1 =w |Wt =v, X,Y, P6t−1]

=
∑
v�w

P[Wt =v | X,Y, P6t−1] P[Πt =w | Πt � v, X,Y, P6t−1]

= P[Πt = w | X,Y, P6t−1]
∑
v�w

P[Wt = v | X,Y, P6t−1]
P[Πt � v | X,Y, P6t−1]

6 (1 + δ) P[Πt = w | X,Y, P6t−1], (2)

where the second step follows from the definition of Πt+1 as
the transcript of πt+1 on input X,Y, with πt+1 in turn obtained
from πt by restricting to the protocol subtree rooted at Wt;
and the final step uses Theorem 9. Rewriting (2),

P[W1W2 . . .WtΠt+1 = w | X,Y, P6t−1]
6 (1 + δ) P[W1W2 . . .Wt−1Πt = w | X,Y, P6t−1].

Passing to expectations with respect to P6t−1,

P[W1W2 . . .WtΠt+1 = w | X,Y]
6 (1 + δ) P[W1W2 . . .Wt−1Πt = w | X,Y],

whence by induction

P[W1W2 . . .WtΠt+1 = w | X,Y]
6 (1 + δ)t P[Π = w | X,Y]. (3)

In view of Fact 2, we arrive at

TV((X,Y,Π), (X,Y,W1W2 . . .WtΠt+1)) 6 1 −
1

(1 + δ)t

6 tδ. (4)

Here, W1W2 . . .WtΠt+1 refers to the concatenation of
W1,W2, . . . ,Wt,Πt+1 rather than to the composite random
variable (W1,W2, . . . ,Wt,Πt+1). This distinction is essential
from the point of view of information-theoretic distance.

C. Expected Information Gain

We will now obtain an upper bound on the progress
measure EDπt ,µt

X,Y (≺Wt), which plays a critical role in relating
the communication requirements of the stochastic process to
the information cost of the original protocol π. Since πt+1 is
the protocol corresponding to the subtree of πt rooted at Wt,

EDπt ,µt
X,Y (≺Wt)

= EDπt ,µt
X,Y (≺(WtΠt+1)) − EDπt+1,µt |Wt

X,Y (≺Πt+1), (5)

where the shorthand µt | v for a string v ∈ {0, 1}∗ refers to
the posterior probability distribution on X × Y obtained
from µt by conditioning on Πt � v. By (2),

E[Dπt ,µt
X,Y (≺(WtΠt+1)) | X,Y, P6t−1]

6 (1 + δ) E[Dπt ,µt
X,Y (≺Πt) | X,Y, P6t−1]
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and hence

EDπt ,µt
X,Y (≺(WtΠt+1)) 6 (1 + δ) EDπt ,µt

X,Y (≺Πt). (6)

We now examine the other expectation on the right-hand
side of (5). We claim that

E[Dπt+1,µt |Wt
X,Y (≺Πt+1) | P6t] > E[Dπt+1,µt+1

X,Y (≺Πt+1) | P6t]. (7)

Conditioning on P6t fixes πt, µt,Wt, µt+1, πt+1, among other
things, which means that the expectation on both sides of
this inequality is with respect to random input X,Y and the
resulting transcript Πt+1 in protocol πt+1. But by definition,
the posterior probability distribution of X,Y conditioned on
P6t is µt+1. The claimed inequality (7) now follows from
Theorem 5. Passing to expectations with respect to P6t, we
conclude that

EDπt+1,µt |Wt
X,Y (≺Πt+1) > EDπt+1,µt+1

X,Y (≺Πt+1), (8)

which along with (5) and (6) leads to our sought upper bound
on the progress measure in the t-th step of the stochastic
process:

EDπt ,µt
X,Y (≺Wt)

6 (1 + δ) EDπt ,µt
X,Y (≺Πt) − EDπt+1,µt+1

X,Y (≺Πt+1). (9)

As a result,
t∑

i=1

EDπi,µi
X,Y (≺Wi)6

t∑
i=1

(1 + δ)t−i EDπi,µi
X,Y (≺Wi)

6
t∑

i=1

(1 + δ)t−i+1 EDπi,µi
X,Y (≺Πi)

−

t∑
i=1

(1 + δ)t−i EDπi+1,µi+1
X,Y (≺Πi+1)

= (1 + δ)t EDπ1,µ1
X,Y (≺Π1)−EDπt+1,µt+1

X,Y (≺Πt+1)

6 (1 + δ)t EDπ1,µ1
X,Y (≺Π1)

= (1 + δ)t IC∗µ1
(π1)

= (1 + δ)t ICµ1 (π1)
= (1 + δ)tI, (10)

where the second, fifth, and sixth steps use (9), Theorem 4,
and Theorem 3, respectively. An analogous calculation in-
volving a telescoping sum shows that

t∑
i=1

(EDπi,µi
X,Y (≺Wi) + δEDπi,µi

X,Y (≺Πi)) 6 (1 + 2δ)tI. (11)

D. Expected Time to Leaf and Communication Cost

Using the new upper bound (10) on the sum of progress
terms, we now show that the random walk reaches a leaf
reasonably quickly and with high probability has small
communication cost. The first t stages of the stochastic

process fail to reach a leaf with probability given by

P[Wt < L (πt)]
= P[Wi < L (πi) for i = 1, 2, . . . , t]

=

t∏
i=1

P[Wi < L (πi) | Wi−1 < L (πi−1)]

6

1
t

t∑
i=1

P[Wi < L (πi) | Wi−1 < L (πi−1)]

t

6

1 − 1
c

+
log(1/δ)

t

t∑
i=1

E[Dπi,µi
X,Y (≺Wi) | Wi−1 < L (πi−1)]

t

=

1 − 1
c

+
log(1/δ)

t

t∑
i=1

EDπi,µi
X,Y (≺Wi)

P[Wi−1 < L (πi−1)]

t

6

1 − 1
c

+
log(1/δ)

t P[Wt < L (πt)]

t∑
i=1

EDπi,µi
X,Y (≺Wi)

t

6

(
1 −

1
c

+
log(1/δ)

t P[Wt < L (πt)]
· (1 + δ)tI

)t

,

where the third, fourth, and last steps use convexity, The-
orem 9, and (10), respectively, c > 1 being the absolute
constant from Theorem 9. We have shown that

TV((X,Y,W1W2 . . .WtΠt+1), (X,Y,W1W2 . . .Wt))
6 P[Wt < L (πt)]

6 min
06p61

{(
1 −

1
c

+
log(1/δ)

tp
· (1 + δ)tI

)t

+ p
}

6

(
1 −

1
c

+
3 log(1/δ)

tε
· (1 + δ)tI

)t

+
ε

3
,

which along with (4) gives

TV((X,Y,Π), (X,Y,W1W2 . . .Wt))

6

(
1 −

1
c

+
3 log(1/δ)

tε
· (1 + δ)tI

)t

+
ε

3
+ tδ. (12)

We now examine the communication requirements. By The-
orem 9, stages 1, 2, . . . , t of the stochastic process have
communication cost

t∑
i=1

|Mi| 6
t∑

i=1

C′i +

t∑
i=1

C′′i + ct log
1
δ
,

where C′i ,C
′′
i are nonnegative random variables such that

P[
∑t

i=1 C′′i > 0] 6 tδ and

E
 t∑

i=1

C′i

 6 c
t∑

i=1

(EDπi,µi
X,Y (≺Wi) + δEDπi,µi

X,Y (≺Πi))

6 c(1 + 2δ)tI.

by (11). Applying Markov’s inequality,

P
 t∑

i=1

|Mi| >
3
ε
· c(1 + 2δ)tI + ct log

1
δ
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6 P
 t∑

i=1

C′i >
3
ε
· c(1 + 2δ)tI

 + P
 t∑

i=1

C′′i > 0


6
ε

3
+ tδ. (13)

E. Final Communication Protocol

Sections IV-A through IV-D suggest a natural communi-
cation protocol π′ for simulating π. Specifically, Alice and
Bob simulate the stochastic process on their given inputs,
terminating the simulation as soon as they have completed
T stages or exchanged

3
ε
· c(1 + 2δ)T I + cT log

1
δ

(14)

bits of communication (whichever occurs first). The com-
munication transcript (R1,R2,R3, . . . ,M1,M2,M3, . . .) of this
simulation fully determines all the other random variables
in (1), which are never explicitly communicated. Let E be
the event that during the first T stages of the stochastic
process, the communication cost exceeds (14). Then π′

simulates π with respect to µ with error

TV((X,Y,Π), (X,Y,W1W2 . . .WT )) + P[E]

6

(
1 −

1
c

+
3 log(1/δ)

T ε
· (1 + δ)T I

)T

+
2ε
3

+ 2Tδ (15)

by (12) and (13). The communication cost (14) and the
simulation error (15) are bounded by O( I

ε
log2 I

ε
) and ε,

respectively, for δ = Θ( εI )3 and T = Θ( I
ε

log I
ε
). This

completes the proof of Theorem 10.
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