
Testing Assignments to Constraint Satisfaction Problems

Hubie Chen

University of the Basque Country
and

IKERBASQUE, Basque Foundation for Science
hubie.chen@ehu.es

Matt Valeriote

McMaster University
matt@math.mcmaster.ca

Yuichi Yoshida

National Institute of Informatics
and

Preferred Infrastructure, Inc.
yyoshida@nii.ac.jp

Abstract—For a finite relational structure A, let CSP(A)
denote the CSP instances whose constraint relations are taken
from A. The resulting family of problems CSP(A) has been
considered heavily in a variety of computational contexts. In
this article, we consider this family from the perspective of
property testing: given an instance of a CSP and query access
to an assignment, one wants to decide whether the assignment
satisfies the instance, or is far from so doing. While previous
work on this scenario studied concrete templates or restricted
classes of structures, this article presents comprehensive clas-
sification theorems.

Our first contribution is a dichotomy theorem completely
characterizing the structures A such that CSP(A) is constant-
query testable: (i) If A has a majority polymorphism and a
Maltsev polymorphism, then CSP(A) is constant-query testable
with one-sided error. (ii) Else, testing CSP(A) requires a super-
constant number of queries.

Let ∃CSP(A) denote the extension of CSP(A) to instances
which may include existentially quantified variables. Our
second contribution is to classify all structures A in terms of
the number of queries needed to test assignments to instances
of ∃CSP(A), with one-sided error. More specifically, we show
the following trichotomy (i) If A has a majority polymorphism
and a Maltsev polymorphism, then ∃CSP(A) is constant-query
testable with one-sided error. (ii) Else, if A has a (k+ 1)-ary
near-unanimity polymorphism for some k≥ 2, and no Maltsev
polymorphism then ∃CSP(A) is not constant-query testable
(even with two-sided error) but is sublinear-query testable with
one-sided error. (iii) Else, testing ∃CSP(A) with one-sided error
requires a linear number of queries.

Keywords-Constraint Satisfaction Problems; Property Test-
ing;

I. INTRODUCTION

A. Background

In property testing, the goal is to design algorithms that

distinguish objects satisfying some predetermined property P
from objects that are far from satisfying P. More specifically,

for ε,δ > 0, an algorithm is called an (ε,δ)-tester for a

property P, if given an input I, it accepts with probability

at least 1− δ if the input satisfies P, and it rejects with

probability at least 1−δ if the input I is ε-far from satisfying

P. Roughly speaking, we say that I is ε-far from P if we

must modify at least an ε-fraction of I to make I satisfy

P. When δ = 1/3, we simply call it an ε-tester. A tester is

called a one-sided error tester if it always accepts when I

satisfies P. In contrast, a standard tester is sometimes called a

two-sided error tester. As one motivation of property testing

is to design algorithms that run in time sublinear in the input

size, we assume query access to the input, and we measure

the efficiency of a tester by its query complexity. We refer

to [16], [24], [25] for surveys on property testing.

In constraint satisfaction problems (for short, CSPs), one

is given a set of variables and a set of constraints imposed

on the variables, and the task is to find an assignment of

the variables that satisfies all of the given constraints. By re-

stricting the relations used to specify constraints, it is known

that certain restricted versions of the CSP coincide with

many fundamental problems such as SAT, graph coloring,

and solvability of systems of linear equations. To formally

define these restricted versions of the CSP (and hence, these

problems), we consider relational structures A = (A;Γ),
where A is a finite set and Γ consists of a finite set of finitary

relations over A. In this context, Γ is sometimes referred

to as a constraint language over A and A as a template.

Then, we define CSP(A) to be those instances of the CSP

whose constraint relations are taken from Γ. In recent

years, computational aspects of CSP(A) have been heavily

studied, in the decision setting [19], [9], [2], [5], in counting

complexity [10], [14], in computational learning theory [19],

[13], and in optimization and approximation [23], [26], [12],

[27], [28]. See also the survey by Barto [4] for an overview

of this line of research.

In this paper, we consider the problem family CSP(A)
from the perspective of property testing, in particular, we

consider the task of testing assignments to CSPs. Relative to

a relational structure A, an input consists of a tuple (I ,ε, f),
where I is an instance of CSP(A) with weights on the

variables, ε is an error parameter, and f is an assignment

to I . In the studied model, the tester has full access to I
and query access to f , that is, a variable x can be queried

to obtain the value of f (x). In this sense, assignment testing

lies in the massively parameterized model [22]. We say that

f is ε-far from satisfying I if one must modify at least

an ε-fraction of f (with respect to the weights) to make

f a satisfying assignment of I , and we say that f is ε-
close otherwise. It is always assumed that I has a satisfying

assignment as otherwise we can immediately reject the input

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.63

524

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.63

525

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.63

525

(in this context, one does not care about time complexity).

The objective of assignment testing of CSPs is to correctly

decide whether f is a satisfying assignment of I or is ε-far

from being so with probability at least 2/3. When f does

not satisfy I but is ε-close to satisfying I , we can output

anything.

In assignment testing, we say that the query complex-

ity of a tester is constant/sublinear/linear if it is con-

stant/sublinear/linear in the number of variables of an in-

stance. The main problem addressed in this paper is to

reveal the relationship between a relational structure A and

the number of queries needed to test CSP(A) and a related

problem class ∃CSP(A).

B. Contributions

While previous works on testing assignments to the prob-

lems CSP(A) studied concrete templates A or restricted

classes of structures, this article presents comprehensive

classification theorems.

The first contribution of this paper is a dichotomy theorem

that completely characterizes the constant-query testable

CSPs. Before describing our characterization, we introduce

the algebraic notion of a polymorphism which is key to the

description and obtention of our results. Let R be an r-ary

relation on a set A. A (k-ary) operation f : Ak → A is said to

be a polymorphism of R (or R is preserved by f) if for any

set of k r-tuples (a1
1, . . . ,a

1
r),(a

2
1, . . . ,a

2
r), . . . ,(a

k
1, . . . ,a

k
r)∈R,

the tuple (f (a1
1, . . . ,a

k
1), . . . , f (a1

r , . . . ,a
k
r)) also belongs to R.

An operation f is a polymorphism of a relational structure A
if it is a polymorphism of each of its relations. We define the

algebra of A, denoted by Alg(A), to be the pair (A;Pol(A)),
where Pol(A) is the set of all polymorphisms of A.

Definition I.1. Let A be a nonempty set. A majority op-

eration on A is a ternary operation m : A3 → A such that
m(b,a,a) = m(a,b,a) = m(a,a,b) = a for all a, b ∈ A. A
Maltsev operation on A is a ternary operation p : A3 → A
such that p(b,a,a) = p(a,a,b) = b for all a, b ∈ A. For
k ≥ 2, an operation n : A(k+1) → A is a (k + 1)-ary near

unanimity operation on A if for all a, b∈A, n(b,a,a, . . . ,a)=
n(a,b,a, . . . ,a) = · · · = n(a,a, . . . ,a,b) = a. (Note that a
majority operation is a 3-ary near-unanimity operation.)

Theorem I.2. Let A be a relational structure. The following
dichotomy holds.
(1) If A has a majority polymorphism and a Maltsev

polymorphism, then CSP(A) is constant-query testable
(with one-sided error).

(2) Else, testing CSP(A) requires a super-constant number
of queries.

This theorem generalizes characterizations of constant-

query testable List H-homomorphisms [30] and Boolean

CSPs [7] to general CSPs. In Section III we will describe

the particularly nice structure of relations over templates that

have majority and Maltsev polymorphisms and use this to

prove the theorem. For the moment, let us consider a number

of example templates to which the positive result of this

theorem applies.

Example I.3. The template A over the Boolean domain

{0,1} whose only relation is �= has both majority and

Maltsev polymorphisms. Note that CSP(A) coincides with

the graph 2-coloring problem.

More generally, the template A over a finite domain where

each relation is a bijection on A has both majority and

Maltsev polymorphisms, and instances of CSP(A) for such

templates A coincide with instances of the problem which

is the subject of the unique games conjecture [20]. �
Example I.4. Another class of finite structures that have

both majority and Maltsev polymorphisms are those that

have a discriminator operation as a polymorphism. On a set

A the discriminator operation dA(x,y,z) is the operation such

that if x= y then d(x,y,z)= z and if x �= y, d(x,y,z)= x. From

this definition, it is immediate that dA is a Maltsev operation

on A, and that d(x,d(x,y,z),z) is a majority operation on A.

Any finite product of finite fields will have a discriminator

term operation ([11]) and so any finite relational structure

whose relations are compatible with the operations of such

a ring will have majority and Maltsev polymorphism. �
Example I.5. For p a prime number, let Fp be the field of

size p, and let R be the ring F2×F3×F5. Then as noted in

Example I.4, R has a discriminator term operation. Let R be

the structure with domain R and set of relations Γ consisting

of intersections of the following binary relations on R: For

p = 2, 3, or 5,

• Cp = {((a2,a3,a5),(b2,b3,b5)) | ap = bp},
• For a ∈ Fp, Ea = {((a2,a3,a5),(b2,b3,b5)) | ap = a},
• For b ∈ Fp, Eb = {((a2,a3,a5),(b2,b3,b5)) | bp = b},

So relations in Γ can express that pairs of elements in R are

congruent modulo 2, 3, or 5 in the corresponding coordinate

and/or that a certain coordinate is equal to some fixed value.

These relations are invariant under the discriminator term

operation of R and so according to Theorem I.2, CSP(R)
has constant query complexity. �

Examples of structures that satisfy the first condition of

Theorem I.2 but that do not have a discriminator operation as

a polymorphism can be derived from finite Heyting algebras.

Example I.6. Consider the five-element Heyting algebra M

presented in [18, Figure 1]. (Heyting algebras are bounded

distributive lattices that also have a binary “implication” op-

eration; they serve as algebraic models of propositional intu-

itionistic logic.) This algebra has universe M = {0,a,b,e,1};
the two equivalence relations α and β that partition M
into blocks {{0,a},{b,e,1}} and {{0,b},{a,e,1}} (respec-

tively) are preserved by the operations of the algebra. Since

M has majority and Maltsev term operations (the operations

525526526

(x∧ y)∨ (x∧ z)∨ (y∧ z) and (x → y)→ z)∧ (z → y)→ x)
respectively), then the structure M = (M;α,β) has majority

and Maltsev polymorphisms. The only other non-trivial

binary relation on M that is definable by a primitive-positive

formula over M is α ∩β . �
Bulatov and Marx provide yet another example of a struc-

ture having both a majority and a Maltsev polymorphism,

in [8, Example 1.1].
We next consider existentially quantified CSPs (∃CSPs for

short). The difference between CSPs and ∃CSPs is that, in

an instance of ∃CSP, existentially quantified variables may

appear. So, an instance of ∃CSP may be defined as a primi-

tive positive formula (pp-formula) over a relational structure.

Primitive positive formulas are known as conjunctive queries
in the database theory literature; they are arguably the most

heavily studied class of database queries, and the problem

∃CSP can be associated with the problem of conjunctive
query evaluation.

For a relational structure A = (A;Γ), we define ∃CSP(A)
to be the collection of instances of ∃CSP whose constraint

relations are taken from Γ. Our second contribution is to

provide a complete classification of all structures A in terms

of the number of queries needed to test assignments of

instances of ∃CSP(A) with one-sided error:

Theorem I.7. Let A be a relational structure. Then, the
following trichotomy holds.
(1) If A has a majority polymorphism and a Maltsev poly-

morphism, then ∃CSP(A) is constant-query testable
with one-sided error.

(2) Else, if A has a (k+ 1)-ary near-unanimity polymor-
phism for some k ≥ 2, and no Maltsev polymorphism
then ∃CSP(A) is not constant-query testable (even with
two-sided error) but is sublinear-query testable with
one-sided error.1

(3) Else, testing ∃CSP(A) with one-sided error requires a
linear number of queries.

Let us point out that the problem families CSP(A) and

∃CSP(A) exhibit the same dichotomy for constant-query

testability, and in particular the positive result there is

robust with respect to the introduction of quantifiers. An

implication of Theorem I.7 is this: if the dichotomy for

sublinear-query testability for CSP(A) was not the same as

that for ∃CSP(A), then the positive result for that dichotomy

would not enjoy this robustness property, and hence such a

positive result would have to crucially exploit the absence

of quantifiers. Hence Theorem I.7 reveals information about

the form of a potential trichotomy for CSP(A).

Example I.8. Consider the relational structure A over the

Boolean domain {0,1} whose only relation is ≤. This

1 We remark that the combination of having a (k+1)-ary near unanimity
polymorphism for some k ≥ 2 and a Maltsev polymorphism is equivalent
to having majority and Maltsev polymorphisms [11].

structure is readily verified to have a majority polymor-

phism, and does not have a Maltsev polymorphism: for any

Maltsev operation p, it holds that applying p to the tuples

(1,1),(0,1),(0,0), which are in the relation ≤, yields (1,0),
which is not in the relation ≤. Thus, Theorem I.7 implies

that ∃CSP(A) is not constant-query testable but is sublinear-

query testable with one-sided error. �

Example I.9. We can generalize the previous example as

follows. Let D be any finite set of size greater than or

equal to 2, and consider the dual discriminator operation
Δ defined as follows: Δ(x,y,z) is equal to x if x = y, and

is equal to z otherwise. Consider the relational structure

A with universe D and the following relations: each unary

relation; each graph of a permutation (on D); and, each two-
fan relation. Here, a two-fan relation is a binary relation

R ⊆ D×D such that there exist elements a,b ∈ D where

R = ({a}×π2(R))∪ (π1(R)×{b}). It is straightforward to

verify that Δ is a majority polymorphism of A. On the other

hand, let a,b ∈ D be arbitrary elements, and consider the

relation S = ({a}×D)∪ (D×{b}). The relation S is a two-

fan relation and so is a relation of A, but does not have a

Maltsev polymorphism; we argue this as follows. Let a′ be

an element of D distinct from a, and let b′ be an element of D
distinct from b. We have that the tuples (a′,b),(a,b),(a,b′)
are in S, but if we apply any Maltsev polymorphism p to

them, we obtain (a′,b′) which is not in S. The structure A
thus does not have a Maltsev polymorphism; we obtain by

Theorem I.7 that ∃CSP(A) is not constant-query testable but

is sublinear-query testable with one-sided error. �

C. Proof outline

We now outline our proofs of Theorems I.2 and I.7.

A has majority and Maltsev polymorphisms ⇒
∃CSP(A) is constant-query testable.: We first look at (1) of

Theorem I.2 and I.7. As ∃CSPs are a generalization of CSPs,

it suffices to consider ∃CSPs. Let (I ,ε, f) be an input of

the assignment testing of ∃CSP(A). First, we preprocess I
so that it becomes 2-consistent (see Section II for the formal

definition). Using the 2-consistency of I and the majority

polymorphism of A we can assume that for each variable x
of I , the set of allowed values for x forms a domain Ax
that is the universe of an algebra Ax that is a factor (i.e., a

homomorphic image of a subalgebra) of Alg(A), the algebra

of polymorphisms of A. Also, we can assume that for each

pair of variables x, y of I there is a unique binary constraint

of I with scope (x,y) and constraint relation Rxy, with

Rxy the universe of some subdirect subalgebra of Ax×Ay.

Furthermore these are the only constraints of I .

In order to test whether f satisfies I , we use three types

of reductions: a factoring reduction, a splitting reduction,

and an isomorphism reduction. Each reduction produces an

instance I ′ and an assignment f ′ such that f ′ satisfies I ′
if f satisfies I , and f ′ is Ω(ε)-far from satisfying I ′ if f

526527527

is ε-far from satisfying I . For simplicity, we focus on how

we create a new instance I ′ here.

The objective of the factoring reduction is to factor, for

each variable x of I , the domain Ax by any congruence θ
of Ax (i.e., an equivalence relation on Ax that is compatible

with the operations of Ax) for which none of the constraint

relations of I distinguish between θ -related values of Ax.

After ensuring that all of the domains Ax of I cannot

be factored, we then employ a splitting reduction to ensure

that for each variable x of I the algebra Ax is subdirectly

irreducible, i.e., cannot be represented as a subdirect product

of non-trivial algebras. For any variable x for which Ax can

be represented as a subdirect product of non-trivial algebras

A
1
x and A

2
x we replace the variable x by the new variables x1

and x2 and the domain Ax by the domains A1
x and A2

x . For any

other variable y of I , we “split” the constraint relation Ryx
(and its inverse Rxy) into two relations Ryx1

and Ryx2
that are

together equivalent to the original one. We then add these

two new relations (and their inverses) to I , along with Ax,

now regarded as a binary relation from the variable x1 to x2.

After performing the splitting reduction and the factoring

reduction, we next define a binary relation ∼ on the set of

variables of I such that x∼ y if and only if the constraint

relation Rxy is the graph of an isomorphism from Ax to Ay.

Using 2-consistency and the fact that the domains of I
are subdirectly irreducible and cannot be factored, it follows

that, unless I is trivial, the relation ∼ will be a non-trivial

equivalence relation. Within each ∼-class, the domains are

isomorphic via the corresponding constraint relations of I ,

and this allows us to produce an isomorphism-reduced in-

stance I ′ by restricting I to a set of variables representing

each of the ∼-classes.

After performing this isomorphism reduction, the re-

sulting instance may have domains which can be further

factored, allowing us to apply the factoring reduction to

produce a smaller instance. We show that if we reach a point

at which none of the three reductions can be applied, the

instance must be trivial, either having just a single variable,

or for which |Ax|= 1 for all variables x. We also show that

this point will be reached after applying the reductions at

most |A|-times.

CSP(A) is constant-query testable ⇒ A has majority
and Maltsev polymorphisms.: Now we look at (2) of The-

orem I.2 and the hardness part of (2) of Theorem I.7. As

∃CSPs are a generalization of CSPs, it suffices to consider

CSPs. We show that if A does not have these two types

of polymorphisms, then we cannot test CSP(A) with a

constant number of queries. We use that having these two

types of polymorphisms is equivalent to A having a Maltsev

polymorphism and that the variety of algebras generated

by Alg(A) is congruence meet semidistributive [17]. The

paper [21] provides a characterization of this condition in

terms of the existence of two special polymorphisms of A.

When the variety generated by Alg(A) is not congruence

meet semidistributive, then it can be easily shown from [7],

[30] that testing CSP(A) requires a linear number of queries.

When A does not have a Maltsev polymorphism, then we

can reduce CSP(A′) to CSP(A), where the structure A′ has

a binary non-rectangular relation. Then, by replacing the 2-

SAT relations with this binary non-rectangular relation, we

can reuse the argument for showing a super-constant lower

bound for 2-SAT in [15] to obtain a super-constant lower

bound for CSP(A).
A has a (k+1)-ary near-unanimity polymorphism, for

some k ≥ 2 ⇒ ∃CSP(A) is sublinear-query testable.: Now

we consider the testability part of (2) of Theorem I.7.

It is known that, if A has a (k + 1)-ary near unanimity

polymorphism, then CSP(A) is sublinear-query testable with

one-sided error in the unweighted case [7]. We slightly

modify their argument so that we can handle weights.

∃CSP(A) is sublinear-query testable with one-sided
error ⇒ A has a (k+1)-ary near unanimity polymorphism,
for some k≥ 2.: Finally, we consider (3) of Theorem I.7. We

use that A has a (k+1)-ary near unanimity polymorphism

for some k ≥ 2 if and only if the variety of algebras

generated by Alg(A) is congruence meet semidistributive

and congruence modular [17], [3]. We already mentioned

that if this variety is not congruence meet semidistributive

then ∃CSP(A) is not sublinear-query testable (even with

two-sided error). To complete the argument we show that

if the variety is not congruence modular then, by building

on ideas developed in [13], we can reduce the problem

of testing assignments of a circuit in monotone NC1 to

∃CSP(A). Note that majority functions are in monotone

NC1 [29], and we can easily show a linear lower bound

for one-sided error testers that test assignments of majority

functions. Hence, we get a linear lower bound for ∃CSP(A).

D. Related work

Assignment testing of CSPs was implicitly initiated

by [15]. There, it was shown that 2-CSPs are testable with

O(
√

n) queries and require Ω(logn/ log logn) queries for

any fixed ε > 0. On the other hand, 3-SAT [6], 3-LIN [6],

and Horn SAT [7] require Ω(n) queries to test.

The universal algebraic approach was first used in [30] to

study the assignment testing of the list H-homomorphism

problem. For graphs G, H, and list constraints Lv ⊆
V (H) (v ∈V (G)), we say that a mapping f : V (G)→V (H)
is a list homomorphism from G to H with respect to the

list constraints Lv (v ∈V (G)) if f (v) ∈ Lv for any v ∈V (G)
and (f (u), f (v)) ∈ E(H) for any (u,v) ∈ E(G). Then, the

corresponding assignment testing problem, parameterized

by a graph H, is the following: The input is a tuple

(G,{Lv}v∈V (H), f ,ε), where G is a (weighted) graph, Lv ⊆
V (H) (v ∈V (G)) are list constraints, f : V (G)→V (H) is a

mapping given as a query access, and ε is an error parameter.

The goal is testing whether f is a list H-homomorphism

from G or ε-far from being so, where ε-farness is defined

527528528

analogously to testing assignments of CSPs. It was shown

in [30] that the algebra (or the variety) associated with the

list H-homomorphism characterizes the query complexity,

and that list H-homomorphism is constant-query (resp.,

sublinear-query) testable if and only if H is a reflexive

complete graph or an irreflexive complete bipartite graph

(resp., a bi-arc graph).

Testing assignments of Boolean CSPs was studied in [7],

and in that paper relational structures were classified into

three categories: (i) structures A for which CSP(A) is

constant-query testable, (ii) structures A for which CSP(A)
is not constant-query testable but sublinear-query testable,

and (iii) structures A for which CSP(A) is not sublinear-

query testable. They also relied on the fact that algebras (or

varieties) can be used to characterize query complexity.

E. Organization

Section II introduces the basic notions used through-

out this paper. In this extended abstract, we concentrate

on CSPs (instead of ∃CSPs) with majority and Maltsev

polymorphisms, and show their constant-query testability in

Section III. Discussion of our other results are deferred to

the full version.

II. PRELIMINARIES

For an integer k, let [k] denote the set {1, . . . ,k}.
Constraint satisfaction problems: For an integer k≥ 1,

a k-ary relation on a domain A is a subset of Ak. A constraint
language on a domain A is a finite set of relations on A. A

relational structure, or simply a structure A=(A;Γ) consists

of a non-empty set A and a constraint language Γ on A.

For a structure A= (A;Γ), we define the problem CSP(A)
as follows. An instance I = (V,A,C ,w) consists of a set of

variables V , a set of constraints C , and a weight function w
with ∑x∈V w(x) = 1. Here, each constraint C ∈ C is of the

form 〈(x1, . . . ,xk),R〉, where x1, . . . ,xk ∈V are variables, R is

a relation in Γ and k is the arity of R. An assignment for I is

a mapping f : V → A, and f is called a satisfying assignment
if f satisfies all the constraints, that is, (f (x1), . . . , f (xk))∈R
for every constraint 〈(x1, . . . ,xk),R〉 ∈ C .

Algebras and Varieties:: Let A= (A;F) be an algebra.

A set B⊆ A is a subuniverse of A if every operation f ∈ F
restricted to B has image contained in B. For a nonempty

subuniverse B of an algebra A, f |B is the restriction of f
to B. The algebra B= (B,F |B), where F |B = { f |B | f ∈ F}
is a subalgebra of A. Algebras A,B are of the same type if

they have the same number of operations and corresponding

operations have the same arities. Given algebras A,B of

the same type, the product A×B is the algebra with the

same type as A and B with universe A×B and operations

computed coordinate-wise. A subalgebra C of A×B is a

subdirect product of A and B if the projections of C to A and

C to B are both onto. An equivalence relation θ on A is called

a congruence of an algebra A if θ is a subalgebra of A×A.

The collection of congruences of an algebra naturally forms

a lattice under the inclusion ordering, and this lattice is called

the congruence lattice of the algebra. Given a congruence

θ on A, we can form the homomorphic image A/θ , whose

elements are the equivalence classes of A and the operations

are defined so that the natural mapping from A to A/θ is

a homomorphism. An operation f (x1, . . .xn) on a set A is

idempotent if f (a,a, . . . ,a) = a for all a ∈ A, an algebra A

is idempotent if each of its operations is, and a class of

algebras is idempotent if each of its members is. We note

that if A is idempotent, then for any congruence θ of A, the

θ -classes are all subuniverses of A.

A variety is a class of algebras of the same type closed

under the formation of homomorphic images, subalgebras,

and products. For any algebra A, there is a smallest variety

containing A, denoted by V (A) and called the variety gener-
ated by A. It is well known that any variety is generated by

an algebra and that any member of V (A) is a homomorphic

image of a subalgebra of a power of A.

A. Assignment problems

An assignment problem consists of a set of instances,

where each instance I has associated with it a set of

variables V , a domain Av for each variable v ∈ V , and a

weight function w : V → [0,1] with ∑v∈V w(v) = 1. An

assignment of I is a mapping f defined on V with f (x)∈Ax
for each variable x ∈V . Each instance I of an assignment

problem has associated with it a notion of a satisfying
assignment. For two assignments f and g for I , we define

their distance as dist(f ,g) := ∑x∈V : f (x)�=g(x)w(x). We define

distI (f) = ming dist(f ,g), where g is over all satisfying

assignments of I . For ε ∈ [0,1], we say that an assignment

f for I is ε-far from satisfying I if distI (f)> ε . In the

assignment testing problem corresponding to an assignment

problem, we are given an instance I of the assignment

problem and a query access to an assignment f for I ,

that is, we can obtain the value of f (x) by querying x ∈V .

Then, we say that an algorithm is a tester for the assignment

problem if it accepts with probability at least 2/3 when f is

a satisfying assignment of I , and rejects with probability

at least 2/3 when f is ε-far from satisfying I . The query
complexity of a tester is the number of queries to f .

We can naturally view CSP(A) as an assignment problem:

for each instance on a set of (free) variables V , the associated

assignments are the mappings from V to A, and the notion

of satisfying assignments is as described above. Note that

an input to the assignment testing problem corresponding

to CSP(A) is a tuple (I ,ε, f), where I is an instance of

CSP(A), ε is an error parameter, and f is an assignment to

I . In order to distinguish I from the tuple (I ,ε, f), we

always call the former an instance and the latter an input.
1) Gap-preserving local reductions: We will frequently

use the following reduction when constructing algorithms as

well as when showing lower bounds.

528529529

Definition II.1 (Gap-preserving local reduction). Given
assignment problems P and P ′, there is a (randomized)

gap-preserving local reduction from P to P ′ if there exist
a function t(n) and constants c1,c2 satisfying the following:
given a P-instance I of with variable set V and an
assignment f for I , there exist a P ′-instance I ′ with
variable set V ′ and an assignment f ′ for I ′ such that the
following hold:

1) |V ′| ≤ t(|V |).
2) If f is a satisfying assignment of I , then f ′ is a

satisfying assignment of I ′.
3) For any ε ∈ (0,1), if distI (f) ≥ ε , then

Pr[distI ′(f ′) ≥ c1ε] ≥ 9/10 holds, where the
probability is over internal randomness.

4) Any query to f ′ can be answered by making at most
c2 queries to f .

A linear reduction is defined to be a gap-preserving local

reduction for which the function t(n) = O(n), c1 = O(1),
and c2 = O(1).

Lemma II.2 ([30]). Let P and P ′ be assignment problems.
Suppose that there exists an ε-tester for P ′ with query
complexity q(n,ε) for any ε ∈ (0,1), where n is the number
of variables in the given instance of P ′, and that there
exists a gap-preserving local reduction from P to P ′ with a
function t and c1 = c2 = O(1). Then, there exists an ε-tester
for P with query complexity O(q(t(n),O(ε))) for any ε > 0,
where n is the number of variables in the given instance of
P . In particular, linear reductions preserve constant-query
and sublinear-query testability.

III. CONSTANT-QUERY TESTABILITY

In this section, assume that A = (A;Γ) is a structure that

has a majority polymorphism m(x,y,z) and a Maltsev poly-

morphism p(x,y,z). It is known, [11], that this is equivalent

to the variety A generated by the algebra Alg(A) being

congruence distributive and congruence permutable and also

to A having a (k + 1)-ary near unanimity polymorphism

for some k ≥ 2 and a Maltsev polymorphism. This means

that for each algebra B ∈ A , the lattice of congruences of

B satisfies the distributive law and that for each pair of

congruences α and β of B, the relations α ◦ β and β ◦α
are equal. Such varieties are also said to be arithmetic.

An important feature of A (and in fact of any congruence

distributive variety generated by a finite algebra) is that every

subdirectly irreducible member of A has size bounded by

|A| ([11]). We will make use of the fact that an algebra is

subdirectly irreducible if and only if the intersection of all of

its non-trivial congruences is non-trivial. This is equivalent

to the algebra having a smallest non-trivial congruence. In

this section, we will show that CSP(A) is constant-query

testable. Some of the ideas found in this section were

inspired by the paper [8].

For our analysis, it is useful to introduce CSP(V) for

a variety V . An instance of CSP(V) is of the form

(V,{Ax}x∈V ,C ,w). Each Ax is the domain of an algebra,

denoted by Ax, in V , and each constraint in C is of the

form 〈(x1, . . . ,xk),R〉, where R is the domain of a subalgebra

R of Ax1
×·· ·×Axk . In particular, R is also the domain of

an algebra in V . The definitions of 2-consistency and an

assignment testing problem naturally carry over to instances

of CSP(V).
Let I = (V,{Ax}x∈V ,C ,w) be an instance of CSP(A).

Since A is arithmetic, we can assume that each constraint

in C is binary [1]. Hence, we also write

I = (V,{Ax}x∈V ,{Rxy}(x,y)∈V 2 ,w)

or simply I = (V,{Ax},{Rxy},w). Moreover, we can as-

sume that I is 2-consistent because the set of satisfying

assignments does not change after making I 2-consistent.

For x ∈V , Rxx is the equality relation 0Ax on the set Ax, and

for distinct variables x �= y ∈ V , Rxy denotes the (unique)

binary constraint relation from Ax to Ay. We always have

Ryx = R−1
xy = {(b,a) | (a,b) ∈ Rxy} for any x,y ∈V . We note

that by 2-consistency, it follows that for distinct variables x
and y, the relation Rx,y is subdirect in Ax×Ay. Throughout

the remainder of this section, we will assume that any

instance of CSP(A) considered will be 2-consistent and has

only binary constraints.

Since A is assumed to be congruence permutable (then

for any x �= y∈V , the binary relation Rxy is rectangular, that

is, (a,c),(a,d),(b,d) ∈ Rxy implies (b,c) ∈ Rxy. As noted in

Lemma 2.10 of [8], this is equivalent to Rxy being a thick
mapping. This means that there are congruences θxy of Ax
and θyx of Ay such that modulo the congruence θxy× θyx
on Rxy, the relation Rxy is the graph of an isomorphism φxy
from Ax/θxy to Ay/θyx and such that for all a ∈ Ax and

b ∈ Ay, (a,b) ∈ Rxy if and only if φxy(a/θxy) = b/θyx. In this

situation, we say that Rxy is a thick mapping with respect

to θxy, θyx and φxy. For future reference, we note that if

for some variables x �= y, the congruence θxy = 0Ax then the

relation Ryx is the graph of a surjective homomorphism from

Ay to Ax.

A. A factoring reduction

Let I = (V,{Ax},{Rxy},w) be an instance of CSP(A)
and for each x∈V let μx =

∧
y�=x θxy, a congruence of Ax. We

say that Ax is prime if μx is the equality congruence 0Ax and

factorable otherwise. Roughly speaking, if Ax is not prime,

then we can factor Ax by μx without changing the problem,

because no constraint of I distinguishes values within any

μx-class. Formally, we define the factoring reduction as in

Algorithm 1.

Let (I ,ε, f) be an input of CSP(A) and let (I ′,ε ′, f ′) =
FACTOR(I ,ε, f). It is clear that since the instance I of

CSP(A) is assumed to be 2-consistent then the instance

I ′ will also be 2-consistent. Furthermore, the sizes of the

529530530

Algorithm 1
1: procedure FACTOR(I = (V,{Ax},{Rxy},w),ε, f)

2: for x ∈V do Ax ← Ax/μx and f (x)← f (x)/μx.

3: for (x,y) ∈V ×V do
4: Rxy ←{(a/μx,b/μy) | (a,b) ∈ Rxy}.
5: return (I ,ε, f).

domains of I ′ are no larger than the sizes of the domains

of I . Now we show that the factoring reduction is a linear

reduction.

Lemma III.1. Let (I ,ε, f) be an input of CSP(A) and
let (I ′,ε ′, f ′) = FACTOR(I ,ε, f). If (I ′,ε ′, f ′) is testable
with q(ε ′) queries, then (I ,ε, f) is testable with q(O(ε))
queries.

Proof: We show that the factoring reduction is a

linear reduction. Let I = (V,{Ax},{Rxy},w) and I ′ =
(V ′,{A′x}x∈V ,{R′xy},w′) be the original instance and the

reduced instance, respectively.

Note that |V ′| = |V | and we can determine the value of

f ′(x) by querying f (x).
If f satisfies I , then f ′ also satisfies I ′. Suppose that

f ′ is ε-close to satisfying I ′ and let g′ be a satisfying

assignment of I ′ with distI ′(f ′,g′) ≤ ε . Then, we define

g to be any assignment for I such that for x ∈ V , g(x) is

taken to be an arbitrary element in the μx-class g′(x). Then,

g satisfies I and distI ′(f ,g) = distI (f ′,g′)≤ ε .

To summarize, the factoring reduction is a gap-preserving

local reduction with t(n) = n, c1 = 1, and c2 = 1.

B. Reduction to instances with subdirectly irreducible do-
mains

In this section, we provide a reduction that produces

instances whose domains are all subdirectly irreducible.

Suppose that A is a subdirect product of two algebras A1,

A2 from A and that R is a subdirect product of A and B for

some B ∈A . We can project the relation R onto the factors

of A to obtain two new binary relations from A1 to B and

from A2 to B, respectively:

R1 = {(a1,b) | ∃(a1,c2) ∈ A with ((a1,c2),b) ∈ R},
R2 = {(a2,b) | ∃(c1,a2) ∈ A with ((c1,a2),b) ∈ R}.

The following shows that the relation R can be recovered

from the relations R1, R2, and A (considered as a relation

from A1 to A2).

Lemma III.2. For all a1 ∈ A1, a2 ∈ A2, and b ∈ B, the
following are equivalent:
• ((a1,a2),b) ∈ R
• (a1,b) ∈ R1, (a2,b) ∈ R2 and (a1,a2) ∈ A.

Proof: One direction of this claim follows by construc-

tion. For the other, suppose that (a1,b) ∈ R1, (a2,b) ∈ R2

and (a1,a2) ∈ A. Then there are elements ci ∈ Ai, for i = 1,

Algorithm 2
1: procedure SPLIT(I = (V,{Ax},{Rxy},w),ε, f)

2: while there exists x∈V such that Ax is not subdirectly

irreducible or trivial do
3: Replace Ax in I with an isomorphic non-trivial sub-

direct product of A1
x×A

2
x for some quotients A

1
x ,

A
2
x of Ax such that A1

x is subdirectly irreducible.

4: V ← (V \{x})∪{x1,x2}, where x1 and x2 are newly

introduced variables.

5: Remove the domain Ax and add the domains A1
x and

A2
x over the variables x1 and x2 respectively.

6: C ←C \{〈(x,x),Rxx〉,〈(x,y),Rxy〉,〈(y,x),Ryx〉}y∈V\{x}.
7: C ← C ∪ {〈(x1,x1), 0Ax1

〉, 〈(x2,x2),0Ax2
〉,

〈(x1,x2),Ax〉, 〈(x2,x1),A−1
x 〉}.

8: C ← C ∪ {〈(x1,y),(Rxy)1〉, 〈(x2,y),(Rxy)2〉,
〈(y,x1),(Rxy)

−1
1 〉, 〈(y,x2),(Rxy)

−1
2 〉}y∈V\{x}.

9: Remove x from the domain of w and add x1 and x2.

10: Set w(x1) =w(x)/2 and w(x2) =w(x)/2.

11: Remove x from the domain of f and add x1 and x2.

12: Set f (x1) ∈ A1
x and f (x2) ∈ A2

x so that

(f (x1), f (x2)) = f (x).
13: return (I ,ε/2|A|, f).

2, with (a1,c2), (c1,a2) ∈ A, ((a1,c2),b), ((c1,a2),b) ∈ R.

Since R is subdirect in A×B and (a1,a2) ∈ A then there

is some d ∈ B with ((a1,a2),d) ∈ R. Applying the major-

ity term of A coordinate-wise to the tuples ((a1,c2),b),
((c1,a2),b), and ((a1,a2),d) from R we produce the tuple

((a1,a2),b) ∈ R, as required.

Lemma III.2 allows us to split a domain of an instance

of CSP(A) into subdirectly irreducible domains. Formally,

we define the splitting reduction as in Algorithm 2.

Let (I ,ε, f) be an input of CSP(A) and let (I ′,ε ′, f ′) =
SPLIT(I ,ε, f). It is clear that, since I is assumed to be a

2-consistent instance of CSP(A) then the splitting reduction

constructs another 2-consistent instance I ′ of CSP(A)
whose domains are all subdirectly irreducible and so have

size bounded by |A| (and are no bigger than the domains of

I). The next lemma shows that if a domain of an instance

I is prime, then after splitting it, the resulting subdirect

factors will also be prime.

Lemma III.3. Let I ′ be the instance of CSP(A) obtained
by splitting a domain Ax of another instance I into two
subdirect factors Ax1

and Ax2
as in the SPLIT procedure. If

the domain Ax is prime in I then the domains Ax1
and Ax2

are prime in I ′.

Proof: Let I = (V,{Ax},{Rxy},w) be given and sup-

pose that the domain Ax is a subdirect product of the

algebras Ax1
and Ax2

. To produce I ′ from I by splitting

Ax, we replace the variable x and the domain Ax with

the variables x1 and x2 and the corresponding domains

Ax1
and Ax2

. For each y ∈ V with x �= y, we replace the

530531531

constraint 〈(x,y),Rxy〉 with the constraints 〈(x1,y),(Rxy)1〉
and 〈(x2,y),(Rxy)2〉 and add the constraint 〈(x1,x2),Ax〉.

If the domain Ax is prime in I then there is k ≥ 1 and

variables yi ∈V \{x}, for 1≤ i≤ k, such that
∧

1≤i≤k θxyi =
0Ax . To show that Ax1

is prime in I ′ it will suffice to show

that
(∧

1≤i≤k θx1yi

)∧θx1x2
= 0Ax1

.

To establish this, suppose that (a1,a′1) belongs to the

left hand side of this equality. We will show that a1 = a′1.

We have that (a1,a′1) ∈ θx1yi for 1 ≤ i ≤ k and (a1,a′1) ∈
θx1x2

. From the latter membership it follows that there

is some c ∈ Ax2
such that (a1,c), (a′1,c) ∈ Ax. From

(a1,a′1) ∈ θx1yi it follows that there is some u ∈ Ayi with

(a1,u), (a′1,u) ∈ (Rxyi)1. We can conclude that there are

d, d′ ∈ Ayi with ((a1,d),u), ((a′1,d
′),u) ∈ Rxyi . We then

have that ((a1,d),(a′1,d
′)) ∈ θxyi . We can now apply the

majority term of A coordinate-wise to the following three

pairs of members of θxyi to establish that ((a1,c),(a′1,c)) ∈
θxyi : ((a1,d),(a′1,d

′)), ((a1,c),(a1,c)), and ((a′1,c),(a
′
1,c)).

We’ve shown that (a1,c) and (a′1,c) are θxyi -related for all

i ≤ k and so we have that (a1,c) = (a′1,c), which implies

that a1 = a′1, as required. Thus Ax1
is prime in I ′ and by

symmetry, Ax2
is also prime.

Now we show that the splitting reduction is a gap-

preserving local reduction.

Lemma III.4. Let (I ,ε, f) be an input of CSP(A) and
let (I ′,ε ′, f ′) = SPLIT(I ,ε, f). If (I ′,ε ′, f ′) is testable
with q(ε ′) queries, then (I ,ε, f) is testable with q(O(ε))
queries.

Proof: We show that the splitting reduction is a linear

reduction.

Let I = (V,{Ax},{Rxy},w) and I ′ =
(V ′,{A′x},{R′xy},w′) be the original instance and the

reduced instance, respectively.

In the reduction, every variable x of V is ultimately

split into variables x1, . . . ,xkx from V ′ and the domain Ax
is replaced by subdirectly irreducible domains A

1
x , . . . ,A

kx
x

corresponding to these variables such that Ax is isomorphic

to a subdirect product of these new domains. Since each

of the domains has size bounded by |A|, then kx ≤ |A| for

all x ∈ V and so after completely splitting Ax into the kx
factors, we have that w(x)≤ 2|A|w′(xi) for each i∈ [kx]. We

also have that ∑i∈[kx]w
′(xi) =w(x) for each x ∈V .

To determine the value of f ′(xi), where xi is added when

splitting the variable x, we only need to know the value of

f (x).
If f satisfies I , then f ′ satisfies I ′ by Lemma III.2.

Suppose that f ′ is ε/(2|A|)-close to satisfying I ′
and let g′ be a satisfying assignment for I ′ with

dist(f ′,g′)≤ ε/(2|A|). Because the tuple (g′(x1), . . . ,g′(xkx))
is in Ax, we can naturally define an assignment g
for I by setting g(x) = (g′(x1), . . . ,g′(xkx)) ∈ Ax.

Then g is a satisfying assignment from Lemma III.2.

Moreover, dist(f ,g) = ∑x∈V :∃i∈[kx],g′(xi)�= f ′(xi)w(x) ≤

∑x∈V ∑i∈[kx]:g′(xi)�= f ′(xi) 2|A|w′(xi) = 2|A|dist(f ′,g′)≤ ε.
To summarize, the splitting reduction is a gap-preserving

local reduction with t(n) = |A|, c1 = 1, and c2 = 2|A|.

C. Isomorphism reduction

By applying the factoring reduction and then the splitting

reduction to an instance of CSP(A) we end up with an

instance whose domains are either trivial or subdirectly

irreducible and prime. For such an instance, we have the

following property.

Lemma III.5. Let I = (V,{Ax},{Rxy},w) be an instance
of CSP(A) such that |V |> 1 and such that every domain is
either trivial or is subdirectly irreducible and prime. Then,
for each variable x ∈V , there is at least one variable y �= x
so that θxy = 0Ax and for such variables y, the relation Ryx
is the graph of a surjective homomorphism from Ay to Ax.

Proof: If |Ax| = 1 then the result follows trivially.

Otherwise, we have that the congruence μx =
∧

y�=x θxy of

Ax is equal to 0Ax , since Ax is prime. But, since this algebra

is subdirectly irreducible, it follows that for some y �= x,

θxy = 0Ax . Since Ryx is a thick mapping with θxy = 0Ax it

follows that Ryx is the graph of a surjective homomorphism

from Ay to Ax.

Let I = (V,{Ax},{Rxy},w) be an instance of CSP(A)
with |V | > 1 and with the property that every domain is

either trivial or is subdirectly irreducible and prime. Define

the relation ∼ on V by x∼ y if and only if the relation Rxy
is the graph of an isomorphism from Ax to Ay. Using the 2-

consistency of I , the relation ∼ is naturally an equivalence

relation on V . The following corollary to Lemma III.5

establishes that unless all of the domains of I are trivial,

the relation ∼ is non-trivial.

Corollary III.6. For I = (V,{Ax},{Rxy},w) an instance
of CSP(A) as in Lemma III.5, if x ∈ V is such that the
domain Ax has maximal size and has at least two elements,
then there is some y ∈V with x �= y and x∼ y.

Proof: If Ax has maximal size and has at least two

elements, then let y ∈ V be a variable such that x �= y and

Ryx the graph of a surjective homomorphism from Ay to Ax.

Since Ax has maximal size, it follows that |Ay| = |Ax| and

so Ryx is the graph of an isomorphism from Ay to Ax.

For a variable x ∈ V , let [x] := x/ ∼ denote the ∼-class

of V that x belongs to. Let S ⊆V be an arbitrary complete

system of representatives of this equivalence relation and for

any ∼-class u, let s(u)∈V be the unique element x∈ S such

that x ∈ u. In particular [s(u)] = u holds.

Given an assignment f for I , we can test the input

(I ,ε, f) in two steps. First, we test whether the values of f
in the ∼-classes of V are consistent using a consistency al-

gorithm (Algorithm 3) and then we test the input obtained by

contracting the ∼-classes using Algorithm 4. Explanations

of these two steps are contained in the next two subsections.

531532532

Algorithm 3
1: procedure CONSISTENCY(I ,ε, f)

2: Sample a set U of Θ(1/ε) ∼-classes of I . In each

sampling, u is chosen with probability w(u).
3: for each u ∈U do
4: Sample a set S of Θ(1/ε) variables in u. In each

sampling, a variable x ∈ u is chosen with proba-

bility w(x)/w(u).
5: if there are two variables x,y ∈ S with f (y) �=

Rxy(f (x)) then Reject.

6: Accept.

Algorithm 4
1: procedure ISO(I ,ε, f)

2: for each ∼-class u do
3: Sample a variable x ∈ u with probability

w(x)/w(u), and let xu be the sampled variable.

4: V ′ ←V ′ ∪{u}, A′u ← As(u), and w′(u)←w(u).
5: f ′(u)← Rxus(u)(f (xu)).

6: for each pair (u,u′) of ∼-classes do R′uu′ ← Rxuxu′ .
7: return ((V ′,{A′x},{R′xy},w′),ε/2, f ′).

1) Testing ∼-consistency: We say that the input (I ,ε, f)
is ∼-consistent if, for each x∼ y, (f (x), f (y)) ∈ Rxy.

For a ∼-class u ⊆ V and b ∈ As(u), we define w(u,b) =
∑

y∈u: f (y)=Rs(u)y(b)
w(y) and w(u) = ∑

b∈As(u)

w(u,b).

Note that w(u) is also equal to ∑x∈uw(x), the sum of the

weights of the variables in u.

In order to test ∼-consistency, we run Algorithm 3. We

defer the proof of the following lemma to the full version.

Lemma III.7. Algorithm 3 tests ∼-consistency with query
complexity O(1/ε2).

2) Isomorphism reduction: Using Algorithm 3, we can

reject an input (I ,ε, f) if it is far from satisfying ∼-

consistency. In this subsection we will consider a reduction

from (I ,ε, f) to another input (I ′,ε ′, f ′) assuming that

(I ,ε, f) is close to satisfying ∼-consistency.

Our reduction, as described in Algorithm 4, contracts the

variables in each ∼-class to a single variable from that class.

It should be clear that since the instance I of CSP(A)
is assumed to be 2-consistent, the reduction will produce

another 2-consistent instance I ′ of CSP(A). As the next

lemma shows, unless the domains of I all have size one,

some of the domains of I ′ will no longer be prime.

Lemma III.8. Let (I ,ε, f) be an input of CSP(A) for
which domains of I are either trivial or prime and subdi-
rectly irreducible and let (I ′,ε ′, f ′) = ISO(I ,ε, f). If some
domain of I has more than one element, then any domain
of I ′ of maximal size will not be prime, unless I ′ has only
one variable.

Algorithm 5
1: procedure ISO

′(I ,ε, f)

2: if CONSISTENCY(I ,ε/20, f) rejects then Reject.

3: else return ISO(I ,ε, f).

Proof: Suppose that I ′ has more than one variable.

This is equivalent to there being more than one ∼-class for

I . Let x be a variable of I ′ with |Ax| of maximal size

and let y be any other variable of I ′. Note that according

to the construction of I ′ from I , both x and y are also

variables of I with x �∼ y. Furthermore, |Ax| has maximal

size amongst all of the domains of I and so the relation

Ryx cannot be the graph of a surjective homomorphism from

Ay to Ax. If it were, then it would be the graph of an

isomorphism, contradicting that x �∼ y. Thus the congruence

θxy �= 0Ax . Since Ax is subdirectly irreducible it follows that

μx =
∧

y�=x θxy is also not equal to 0Ax and so Ax is not prime

in I ′.
We defer the proof of the following lemma to the full

version.

Lemma III.9. Let (I ,ε, f) be an input of CSP(A)
and suppose that f is ε/20-close to satisfying I . Let
(I ′,ε ′, f ′) = ISO(I , f). If (I ′,ε ′, f ′) is testable with q(ε ′)
queries, then (I ,ε, f) is testable with q(O(ε)) queries.

Finally, we combine Algorithm 3 and Algorithm 4. to

produce Algorithm 5 and make use of it in the following.

Lemma III.10. Let (I ,ε, f) be an input of CSP(A)
and suppose that ISO(I , f) returned another instance
(I ′,ε ′, f ′). If (I ′,ε ′, f ′) is testable with q(ε ′) queries, then
(I ,ε, f) is testable with q(O(ε)) queries.

Proof: Consider Algorithm 5. If f satisfies I , then

the ∼-consistency test always accepts, and hence we always

accept with probability 2/3 from Lemma III.9. Suppose

that f is ε-far from satisfying I . If f is ε/20-far from

satisfying ∼-consistency, then the ∼-consistency test rejects

with probability at least 2/3. If f is ε/20-close to satisfying

∼-consistency, then we reject with probability at least 2/3

by Lemma III.9.

D. Putting things together

Combining the reductions introduced so far we can design

a shrinking reduction, which shrinks the maximum size of

the domains of an instance of CSP(A).

Lemma III.11. Let (I ,ε, f) be an input of CSP(A), and
suppose that SHRINK(I ,ε, f) returned another instance
(I ′,ε ′, f ′). If we can test (I ′,ε ′, f ′) with q(ε ′) queries,
then we can test (I ,ε, f) with q(O(ε)) queries. Moreover,
the reduction reduces the maximum size of a domain of the
given input, if this maximum is greater than one and the
reduced instance has more than one variable.

532533533

Algorithm 6
1: procedure SHRINK(I ,ε, f)

2: (I ,ε, f)← FACTOR(I ,ε, f).
3: (I ,ε, f)← SPLIT(I ,ε, f).
4: if ISO

′(I ,ε, f) rejects then Reject.

5: else (I ,ε, f)← the output returned by ISO
′.

6: (I ,ε, f)← FACTOR(I ,ε, f).
7: return (I ,ε, f).

Proof: We note that at each step of the algorithm, the

domains of the instances that are produced are no larger than

the domains of the original instance. Furthermore, if any of

the domains of the original instance has size greater than

one, then it follows from Lemma III.8 that the maximal size

of the domains of the output instance will be smaller than

that of the original instance, as long as the output instance

has more than one variable.

Theorem III.12. Let A be a structure that has majority and
Maltsev polymorphisms. Then, CSP(A) is constant-query
testable with one-sided error.

Proof: By applying the shrinking reduction at most |A|
times, we get an instance for which every variable has a

domain of size one or which has only one variable. In either

case, the testing becomes trivial.

ACKNOWLEDGMENT

H. C. is supported by the Spanish Project MINECO COM-

MAS TIN2013-46181-C2-R, Basque Project GIU15/30,

Basque Grant UFI11/45, and KAKENHI No. 24106001.

M. V. is supported by a grant from the Natural Sciences

and Engineering Research Council of Canada. Y. Y. is

supported by JSPS Grant-in-Aid for Young Scientists (B)

(No. 26730009), MEXT Grant-in-Aid for Scientific Re-

search on Innovative Areas (No. 24106003), and JST, ER-

ATO, Kawarabayashi Large Graph Project.

REFERENCES

[1] K. A. Baker and A. F. Pixley, “Polynomial interpolation
and the chinese remainder theorem for algebraic systems,”
Mathematische Zeitschrift, vol. 143, no. 2, pp. 165–174, 1975.

[2] L. Barto, “The collapse of the bounded width hierarchy,”
Journal of Logic and Computation, 2014.

[3] ——, “Finitely related algebras in congruence distributive
varieties have near unanimity terms,” Canadian Journal of
Mathematics, vol. 65, no. 1, pp. 3–21, 2013.

[4] ——, “The constraint satisfaction problem and universal
algebra,” The Bulletin of Symbolic Logic, vol. 21, pp. 319–
337, 9 2015.

[5] L. Barto and M. Kozik, “Constraint satisfaction problems
solvable by local consistency methods,” Journal of the ACM,
vol. 61, no. 1, 2014.

[6] E. Ben-Sasson, P. Harsha, and S. Raskhodnikova, “Some
3CNF properties are hard to test,” SIAM Journal on Com-
puting, vol. 35, no. 1, 2005.

[7] A. Bhattacharyya and Y. Yoshida, “An algebraic characteriza-
tion of testable Boolean CSPs,” in ICALP, 2013, pp. 123–134.

[8] A. Bulatov and D. Marx, “The complexity of global cardinal-
ity constraints,” Logical Methods in Computer Science, vol. 6,
pp. 1–27, 2010.

[9] A. A. Bulatov, “Complexity of conservative constraint sat-
isfaction problems,” ACM Transactions on Computational
Logic, vol. 12, no. 4, 2011.

[10] ——, “The complexity of the counting constraint satisfaction
problem,” Journal of the ACM, vol. 60, no. 5, p. 34, 2013.

[11] S. Burris and H. P. Sankappanavar, A course in universal
algebra, ser. Graduate Texts in Mathematics. Springer-
Verlag, New York-Berlin, 1981, vol. 78.

[12] S. O. Chan, J. R. Lee, P. Raghavendra, and D. Steurer,
“Approximate constraint satisfaction requires large LP relax-
ations,” in FOCS, 2013, pp. 350–359.

[13] H. Chen and M. Valeriote, “Learnability of solutions to
conjunctive queries: The full dichotomy,” in COLT, 2015, pp.
326–337.

[14] M. E. Dyer and D. Richerby, “An effective dichotomy for the
counting constraint satisfaction problem,” SIAM Journal on
Computing, vol. 42, no. 3, pp. 1245–1274, 2013.

[15] E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova, R. Ru-
binfeld, and A. Samorodnitsky, “Monotonicity testing over
general poset domains,” in STOC, 2002, pp. 474–483.

[16] O. Goldreich, Ed., Property Testing, ser. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, vol. 6390.

[17] D. Hobby and R. McKenzie, The structure of finite algebras,
ser. Contemporary Mathematics. American Mathematical
Society, Providence, RI, 1988, vol. 76, revised edition: 1996.

[18] K. Idziak and P. M. Idziak, “Decidability problem for finite
Heyting algebras,” Journal of Symbolic Logic, vol. 53, no. 3,
pp. 729–735, 1988.

[19] P. Idziak, P. Markovic, R. McKenzie, M. Valeriote, and
R. Willard, “Tractability and learnability arising from algebras
with few subpowers,” SIAM Journal on Computing, vol. 39,
no. 7, pp. 3023–3037, 2010.

[20] S. Khot, “On the power of unique 2-prover 1-round games,”
in STOC, 2002, pp. 767–775.

[21] M. Kozik, A. Krokhin, M. Valeriote, and R. Willard, “Char-
acterizations of several Maltsev conditions,” Algebra Univer-
salis, vol. 73, no. 3-4, pp. 205–224, 2015.

[22] I. Newman, “Property testing of massively parametrized prob-
lems - a survey,” Property Testing, vol. 6390, no. Chapter 8,
pp. 142–157, 2010.

[23] P. Raghavendra, “Optimal algorithms and inapproximability
results for every CSP?” in STOC, 2008, pp. 245–254.

[24] D. Ron, “Algorithmic and analysis techniques in property
testing,” Foundations and Trends R© in Theoretical Computer
Science, vol. 5, pp. 73–205, 2010.

[25] R. Rubinfeld and A. Shapira, “Sublinear time algorithms,”
SIAM Journal on Discrete Mathematics, vol. 25, no. 4, pp.
1562–1588, 2011.

[26] J. Thapper and S. Zivny, “The power of linear programming
for valued CSPs,” in FOCS, 2012, pp. 669–678.

[27] ——, “The complexity of finite-valued CSPs,” in STOC,
2013, pp. 695–704.

[28] ——, “Sherali-adams relaxations for valued CSPs,” in ICALP,
2015, pp. 1058–1069.

[29] L. G. Valiant, “Short monotone formulae for the majority
function,” Journal of Algorithms, vol. 5, no. 3, pp. 363–366,
1984.

[30] Y. Yoshida, “Testing list H-homomorphisms,” Computational
complexity, pp. 1–37, 2014.

533534534

