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Abstract—We prove that there is no fpt-algorithm that can
approximate the dominating set problem with any constant
ratio, unless FPT = W[1]. Our hardness reduction is built on
the second author’s recent W[1]-hardness proof of the biclique
problem [25]. This yields, among other things, a proof without
the PCP machinery that the classical dominating set problem
has no polynomial time constant approximation under the
exponential time hypothesis.
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I. Introduction

The dominating set problem, or equivalently the set cover

problem, was among the first problems proved to be NP-

hard [23]. Moreover, it has been long known that the greedy

algorithm achieves an approximation ratio ≈ lnn [22], [34],

[26], [10], [33]. And after a sequence of papers (e.g. [27],

[32], [18], [1], [12]), this is proved to be best possible. In

particular, Raz and Safra [32] showed that the dominating

set problem cannot be approximated with ratio c · log n for

some constant c ∈ N unless P = NP [32]. Under a stronger

assumption NP �⊆ DTIME
(
nO(log log n)

)
Feige proved that

no approximation within (1 − ε) lnn is feasible [18]. Fi-

nally Dinur and Steuer established the same lower bound

assuming only P �= NP [12]. However, it is important to

note that the approximation ratio lnn is measured in terms

of the size of an input graph G, instead of γ(G), i.e., the

size of its minimum dominating set. As a matter of fact,

the standard examples for showing the Θ(log n) greedy

lower bound have constant-size dominating sets. Thus, the

size of the greedy solutions cannot be bounded by any

function of γ(G). So the question arises whether there is an

approximation algorithm A that always outputs a dominating

set whose size can be bounded by ρ(γ(G)) · γ(G), where

the function ρ : N → N is known as the approximation

ratio of A. The constructions in [18], [1] indeed show

that we can rule out ρ(x) ≤ lnx. For any c < 1/2 and

δc(x) = 1/(log log x)c, in [30] under the assumption that

SAT cannot be solved in time 2O(2log 1−δc(n)n), Nelson proved

that the set cover problem has no approximation within

2log 1−δc(m)m, where m is the number of given sets. This

clearly implies that, under the same assumption, for the

dominating set problem the approximation ratio ρ(γ(G))

cannot be bounded by 2log 1−δc(γ(G))γ(G) either. In particular,

this rules out polylogarithmic approximation. To the best of

our knowledge, it is not known whether this bound is tight.

For instance, it is conceivable that there is no a polynomial

time algorithm that always outputs a dominating set of size

at most 22
γ(G)

.

Other than looking for approximate solutions, parameter-

ized complexity [14], [19], [31], [15], [11] approaches the

dominating set problem from a different perspective. With

the expectation that in practice we are mostly interested in

graphs with relatively small dominating sets, algorithms of

running time 2γ(G) · |G|O(1) can still be considered efficient.

Unfortunately, it turns out that the parameterized dominating

set problem is complete for the second level of the so-

called W-hierarchy [13], and thus fixed-parameter intractable

unless FPT = W[2]. So one natural follow-up question

is whether the problem can be approximated in fpt-time.

More precisely, we aim for an algorithm with running time

f(γ(G)) · |G|O(1) which always outputs a dominating set

of size at most ρ(γ(G)) · γ(G). Here, f : N → N is an

arbitrary computable function. The study of parameterized

approximability was initiated in [6], [8], [16]. Compared to

the classical polynomial time approximation, the area is still

in its very early stage with few known positive and even less

negative results.

Our results. We prove that any constant-approximation of

the parameterized dominating set problem is W[1]-hard.

Theorem I.1. For any constant c ∈ N there is no fpt-
algorithm A such that on every input graph G the algorithm
A outputs a dominating set of size at most c · γ(G), unless
FPT = W[1] (which implies that the exponential time
hypothesis (ETH) fails).

In the above statement, clearly we can replace “fpt-

algorithm” by “polynomial time algorithm,” thereby ob-

taining the classical constant-inapproximability of the dom-

inating set problem. But let us mention that our result

is not comparable to the classical version, even if we

restrict ourselves to polynomial time tractability. The as-

sumption FPT �= W[1] or ETH is apparently much stronger
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than P �= NP, and in fact ETH implies both NP �⊆
DTIME

(
nO(log log n)

)
used in aforementioned Feige’s result

and the assumption in Nelson’s result. But on the other

hand, our lower bound applies even in case that we know

in advance that a given graph has small dominating sets.

Corollary I.2. Let β : N → N be a nondecreasing and
unbounded computable function. Consider the following
promise problem.

MIN-DOMINATING-SETβ

Instance: A graph G with γ(G) ≤ β(|V (G)1|).
Solution: A dominating set D of G.

Cost: |D|.
Goal: min.

Then there is no polynomial time constant approximation al-
gorithm for MIN-DOMINATING-SETβ , unless FPT = W[1].

The proof of Theorem I.1 is crucially built on a recent

result of the second author [25] which shows that the param-

eterized biclique problem is W[1]-hard. We exploit the gap

created in its hardness reduction (see Section II-A for more

details). In the known proofs of the classical inapproxima-

bility of the dominating set problem, one always needs the

PCP theorem in order to have such a gap, which makes those

proofs highly non-elementary. More importantly, it can be

verified that reductions based on the PCP theorem produce

instances with optimal solutions of relatively large size, e.g.,

a graph G = (V,E) with γ(G) ≥ |V |Θ(1). This is inevitable,

since otherwise we might be able to solve every NP-hard

problem in subexponential time. As an example, if it is

possible to reduce an NP-hard problem to the approximation

of MIN-DOMINATING-SETβ for β(n) = log log log n,

then by brute-force searching for a minimum dominating

set, we are able to solve the problem in time nO(log log log n).

It implies NP ⊆ DTIME
(
nO(log log log n)

)
. Because of this,

Corollary I.2, and hence also Theorem I.1, is unlikely

provable following the traditional approach.

Using a result of Chen et al. [7] the lower bound in

Theorem I.1 can be further sharpened.

Theorem I.3. Assume ETH holds. Then there is no fpt-
algorithm which on every input graph G outputs a domi-
nating set of size at most 4+ε

√
log (γ(G)) · γ(G) for every

0 < ε < 1.

Related work. The existing literature on the dominating

set problem is vast. The most relevant to our work is

the classical approximation upper and lower bounds as

explained in the beginning. But as far as the parameterized

setting is concerned, what was known is rather limited.
Downey et. al proved that there is no additive approxima-

tion of the the parameterized dominating set problem [17].

1Here V (G) denotes the vertex set of G.

In the same paper, they also showed that the independent

dominating set problem has no fpt approximation with any

approximation ratio. Recall that an independent dominating

set is a dominating set which is an independent set at the

same time. With this additional requirement, the problem

is no longer monotone, i.e., a superset of a solution is not

necessarily a solution. Thus it is unclear how to reduce the

independent dominating set problem to the dominating set

problem by an approximation-preserving reduction.

In [9], [21] it is proved under ETH that there is no

c
√

log γ(G)-approximation algorithm for the dominating set

problem2 with running time 2O(γ(G)(log γ(G))d )|G|O(1), where

c and d are some appropriate constants. With the additional

Projection Game Conjecture due to [29] and some of its

further strengthening, the authors of [9], [21] are able to even

rule out γ(G)c-approximation algorithms with running time

almost doubly exponential in terms of γ(G). Clearly, these

lower bounds are against far better approximation ratio than

those of Theorem I.1 and Theorem I.3, while the drawback

is that the dependence of the running time on γ(G) is not

an arbitrary computable function.

Using the so-called linear PCP Conjecture (LPC) Bonnet

et al. showed [4] that the parameterized dominating set

problem has no fpt approximation for some specific constant
ratio. LPC is the statement that 3SAT has a PCP verifier

which only uses log n + O(1) random bits, improving the

classical O(log n) random bits. It is worth noting that the

status of LPC is far from being clear.

The dominating set problem can be understood as a

special case of the weighted satisfiability problem of CNF-

formulas, in which all literals are positive. The weighted

satisfiability problems for various fragments of propositional

logic formulas, or more generally circuits, play very impor-

tant roles in parameterized complexity. In particular, they are

complete for the W-classes. In [8] it is shown that they have

no fpt approximation of any possible ratio, again by using

the non-monotoncity of the problems. Marx strengthened

this result significantly in [28] by proving that the weighted

satisfiability problem is not fpt approximable for circuits of

depth 4 without negation gates, unless FPT = W[2]. Our

result can be viewed as an attempt to improve Marx’s result

to depth-2 circuits, although at the moment we are only able

to rule out fpt approximations with constant ratio.

As far as upper bounds are concerned, there is no known

fpt-algorithm which always computes a dominating set of

size at most ρ(γ(G))·γ(G), where ρ : N→ N is an arbitrary

function.

Organization of the paper. We fix our notations in

Section II. In the same section we also explain the result

in [25] key to our proof. Using a weighted version of the

2The papers actually address the set cover problem, which is equivalent
to the dominating set problem as mentioned in the beginning.
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dominating set problem, we explain the underlying idea of

our gap reduction in Section III. By duplicating vertices, it

is not difficult to remove the weight and obtain a similar

gap reduction for the dominating set problem which might

achieve any constant ratio smaller than 3/2 (see the full

version of the paper). In the case of the clique problem,

once we have inapproximability for a particular constant

ratio, it can be easily improved to any constant by gap-

amplification via graph products. But dominating sets for

general graph products are notoriously hard to understand

(see e.g. [24]). So to prove Theorem I.1, Section IV presents

a modified reduction which contains a tailor-made graph

product. Section V discusses some consequences of our

results. We conclude in Section VI.

II . Preliminaries

We assume familiarity with basic combinatorial optimiza-

tions and parameterized complexity, so we only introduce

those notions and notations central to our purpose. The

reader is referred to the standard textbooks (e.g., [3] and

[14], [19]) for further background.

N and N+ denote the sets of natural numbers (that

is, nonnegative integers) and positive integers, respectively.

For every n ∈ N we let [n] := {1, . . . , n}. R is the

set of real numbers, and R≥1 :=
{
r ∈ R

∣∣ r ≥ 1
}

.

For a function f : A → B we can extend it to sets

and vectors by defining f(S) := {f(x) | x ∈ S} and

f(v) :=
(
f(v1), f(v2), · · · , f(vk)

)
, where S ⊆ A and

v = (v1, v2, · · · , vk) ∈ Ak for some k ∈ N+. For a vector

v = (v1, v2, . . . , vk) ∈ Ak and � ∈ [k] we use v(�) to denote

v�.

Graphs G = (V,E) are always simple, i.e., undirected

and without loops and multiple edges. Here, V is the vertex

set and E the edge set, respectively. The size of G is |G| :=
|V | + |E|. A subset D ⊆ V is a dominating set of G, if

for every v ∈ V either v ∈ D or there exists a u ∈ D
with {u, v} ∈ E. In the second case, we might say that

v is dominated by u, and this can be easily generalized to

v dominated by a set of vertices. The domination number
γ(G) of G is the size of a smallest dominating set. The

classical minimum dominating set problem is to find such a

dominating set:

MIN-DOMINATING-SET

Instance: A graph G.

Solution: A dominating set D of G.

Cost: |D|.
Goal: min.

The decision version of MIN-DOMINATING-SET has an

additional input k ∈ N. Thereby, we ask for a dominating

set of size at most k instead of γ(G). But it is well known

that two versions can be reduced to each other in polynomial

time. In parameterized complexity, we view the input k as

the parameter and thus obtain the standard parameterization

of MIN-DOMINATING-SET:

p-DOMINATING-SET

Instance: A graph G and k ∈ N.

Parameter: k.

Problem: Decide whether G has a dominat-

ing set of size at most k.

As mentioned in the Introduction, p-DOMINATING-SET is

complete for the parameterized complexity class W[2], the

second level of the W-hierarchy. We will need another

important parameterized problem, the parameterized clique
problem

p-CLIQUE

Instance: A graph G and k ∈ N.

Parameter: k.

Problem: Decide whether G has a clique of

size at most k.

which is complete for W[1]. Recall that a subset S ⊆ V is

a clique in G = (V,E), if for every u, v ∈ S we have either

u = v or {u, v} ∈ E.

Those W-classes are defined by weighted satisfiability

problems for propositional formulas and circuits. As they

will be used only in Section V, we postpone their definition

until then.

Parameterized approximability. We follow the general

framework of [8]. However, to lessen the notational burden

we restrict our attention to the approximation of the domi-

nating set problem.

Definition II.1. Let ρ : N→ R≥1. An algorithm A is a pa-
rameterized approximation algorithm for p-DOMINATING-

SET with approximation ratio ρ if for every graph G and

k ∈ N with γ(G) ≤ k the algorithm A computes a

dominating set D of G such that

|D| ≤ ρ(k) · k.
If the running time of A is bounded by f(k) · |G|O(1) where

f : N → N is computable, then A is an fpt approximation

algorithm.

One might also define parameterized approximation di-

rectly for MIN-DOMINATING-SET by taking γ(G) as the

parameter. The next result shows that essentially this leads

to the same notion.

Proposition II.2 ([8, Proposition 5]). Let ρ : N → R≥1

be a function such that ρ(k) · k is nondecreasing. Then the
following are equivalent.

(1) p-DOMINATING-SET has an fpt approximation algo-
rithm with approximation ratio ρ.
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(2) There exists a computable function g : N → N and
an algorithm A that on every graph G computes a
dominating set D of G with |D| ≤ ρ(γ(G)) · γ(G) in
time g(γ(G)) · |G|O(1).

The Color-Coding.

Lemma II.3 ([2]). For every n, k ∈ N there is a family
Λn,k of polynomial time computable functions from [n] to
[k] such that for every k-element subset X of [n], there is
an h ∈ Λn,k such that h is injective on X . Moreover, Λn,k

can be computed in time 2O(k) · nO(1).

II-A. One side gap for the biclique problem. Our starting

point is the following theorem proved in [25] which states

that, on input a bipartite graph, it is W[1]-hard to distinguish

whether there exist k vertices with large number of common

neighbors or every k-vertex set has small number of common

neighbors.

Theorem II.4 ([25, Theorem 1.3]). There is a polynomial
time algorithm A such that for every graph G with n vertices
and k ∈ N with

⌈
n

6
k+6

⌉
> (k + 6)! and 6 | k + 1 the

algorithm A constructs a bipartite graph H = (A ∪̇ B,E)
satisfying:

(1) if G contains a clique of size k, i.e., Kk ⊆ G, then
there are s vertices in A with at least

⌈
n

6
k+1

⌉
common

neighbors in B;
(2) otherwise Kk � G, every s vertices in A have at most

(k + 1)! common neighbors in B,
where s =

(
k
2

)
.

In our reductions from p-CLIQUE to p-DOMINATING-

SET, we use the following procedure to ensure that the

instance (G, k) of p-CLIQUE satisfies 6 | k + 1.

Preprocessing. On input a graph G and k ∈ N+, if 6 does

not divide k + 1, let k′ be the minimum integer such that

k′ ≥ k and 6 | k′+1. We construct a new graph G′ by adding

a clique with k′−k vertices into G and making every vertex

of this clique adjacent to all other vertices in G. It is easy

to see that k′ ≤ k+5, and G contains a k-clique if and only

if G′ contains a k′-clique. Then we proceed with G ← G′

and k ← k′.

III . Overview of Our Reduction

To give a brief overview of our reduction, let us consider the

weighted version of the minimum dominating set problem.

MIN-WEIGHTED-DOMINATING-SET

Instance: A graph G and w : V (G)→ R ∪ {∞}.
Solution: D ⊆ V (G) is a dominating set of G.

Cost: w(D) :=
∑

v∈D w(v).
Goal: min.

For a given weight function w, let γw(G) be the minimum

weight of a dominating set of G.

We show that approximating the minimum weighted dom-

inating set problem to a ratio close to 2 is W[1]-hard when

parameterized by the total weight of the solution. The start-

ing point is Theorem II.4, which reduces an instance (G, k)
of p-CLIQUE to a bipartite graph H = (A ∪̇ B,E) such

that one of the following conditions is satisfied, depending

on whether (G, k) is a yes instance.

(yes) There are s vertices in A with d common neighbors

in B.

(no) Every s vertices in A have at most � common neigh-

bors in B.

Here, s =
(
k
2

)
, and d, � both depend on k with d being far

larger than �, in particular

ε
√
d
 �, (1)

where ε is some small constant.

Our goal is to construct a graph G′ and a weight function

w : V (G′)→ R ∪ {∞} such that, in the cases of (yes), we

have γw(G
′) ≤ (1+ ε)d; otherwise γw(G

′) ≥ (1− ε)2d for

the cases of (no). This reduction is illustrated in Figure 1.

a1

a2

a3

b1

H

A B

G′

w = t

w = ∞
w = 1

a1A1

a2A2

a3A3

...

W1
wb1,1 wb1,2

wb1,3 w
b′1,j

W2

...

Wd wbd,j

w
b′
d
,j′

B1
b1

B2
...

Bd
bd b′d

Figure 1. The fpt-reduction for

MIN-WEIGHTED-DOMINATING-SET creating a gap close

to 2

We partition B into d disjoint subsets B1, . . . , Bd. In the

above (yes) cases, using color-coding, each Bi is supposed

to contain exactly one of the d common neighbors of an s-

vertex set. Moreover, for each i ∈ [d], we introduce a vertex

set Wi whose purpose will become clear shortly.

Let t := d1−1/2s and we assign to the vertices in A
weight t. On the other hand, the vertices in Wi’s have weight

∞, and vertices in Bi’s have weight 1. As a consequence,
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every finite-weighted dominating set contains no vertices

from Wi’s. Finally, we add edges between A and Wi’s, and

between each Wi and Bi in such a way that for every finite-

weighted set D dominating all the vertices in Wi,

(C1) either D contains one vertex in Bi and its s neighbors

in A,

(C2) or D contains at least c (c = 2) vertices in Bi.

To achieve these, again using color-coding, we partition A =⋃̇
i∈[s]Ai such that in the (yes) cases each Ai contains one

of the stated s vertices. For every i ∈ [d] we let

Wi :=
{
wb,j

∣∣ b ∈ Bi and j ∈ [s]
}
.

Then we add edges between every b ∈ Bi and wb′,j provided

b �= b′, and edges between every wb,j and every a ∈ Aj

if {a, b} is an edge in H . Now (C1) and (C2) follow

immediately. In Figure 1, the vertices with red dashed edges

are the case (C1), and the vertices with blue solid edges are

the second case (C2). Now we argue that this construction

produces a desired gap.

Completeness. If there exists a set X ⊆ A with |X| = s
and that X has at least d common neighbors in B, then we

can choose this s-vertex set X and its d common neighbors

as a dominating set. The weight of this dominating set is

st+ d. As d is sufficiently large and t = d1−1/2s = o(d), it

holds that st+ d ≤ (1 + ε)d.

Soundness. Assume every set X ⊆ A with |X| = s has at

most � common neighbors. Let D be a dominating set. Then

we have two possibilities.

– Either there are at least (1− ε)-fraction of i ∈ [d] with

|D ∩Bi| ≥ c = 2, i.e., (C1). Then, the weight of D is

w(D) ≥ (1− ε)2d;

– Or for at least εd distinct i ∈ [d], we use one vertex

vi ∈ D ∩Bi and its s neighbors in D ∩A to dominate

Wi, i.e., (C2). Assume that w(D) ≤ 2d, otherwise we

are done. It follows that |D ∩ A| ≤ 2d/t. Thus, there

are at least εd vertices in D ∩B, each having at least

s neighbors in |D ∩ A| ≤ 2d/t = O(d1/2s). Observe

that the number of s-tuples of D ∩ A is bounded by

(2d/t)s = O(
√
d). By the pigeonhole principle and (1),

at least
εd

O(
√
d)

> ε · Ω(
√
d) > �

vertices in D∩B must be adjacent to the same s-tuples

of D∩A. This contradicts to the fact that every s-vertex

set in A has at most � common neighbors in B.

In order to remove the weight in the above construction,

the natural idea is to make many copies of A and Wi’s.

It is not difficult to check that such duplication indeed

works. The technical part of this paper is to improve

the gap to any constant. Observe that the gap 2 of our

reduction comes from the parameter c in (C2). If for any

constant c ≥ 3, we were able to add edges between A
and Wi and between Wi and Bi such that either (C1) or

(C2) for parameter c holds, then we could establish any

constant-inapproximability of the dominating set problem.

Unfortunately, at the time of writing, we do not know how

to do that. So, in Section IV, we take another approach to

amplify the gap via some special graph products. It is known

that the standard graph product does not always increase

the size of a minimum dominating set polynomially [24].3

This is hardly a surprise, given the sharp (1 − ε) lnn-

approximation lower bound. Otherwise, the greedy lnn-

approximation for the dominating set problem, composed

with any such polynomial-time amplification, would beat

the (1− ε) lnn bound. So, basically we construct a product

directly on the graph G′ after duplicating all the vertices of

A and Wi’s t times. With some careful analysis, it turns out

to suit our purpose nicely.

IV. The Constant-Inapproximbility of
p-DOMINATING-SET

Theorem I.1 is a fairly direct consequence of the following

theorem.

Theorem IV.1 (Main). There is an algorithm A such that
on input a graph G, k ≥ 3, and c ∈ N the algorithm A
computes a graph Gc such that

(i) if Kk ⊆ G, then γ(Gc) < 1.1 · dc;
(ii) if Kk � G, then γ(Gc) > c · dc/3,

where d =
(
30 · c2 · (k + 1)2

)4·k3+3c
. Moreover the running

time of A is bounded by 2k
O(k3+c) · |G|O(c).

Proof of Theorem I.3: Suppose for some ε > 0 there

is an fpt-algorithm A(G) which outputs a dominating set of

G of size at most 4+ε
√

log (γ(G)) · γ(G). Of course we can

further assume that ε < 1. Then on input a graph G and

k ∈ N, let

c :=
⌈
k1−ε/5

⌉
= o(k)

and d :=
(
30 · c2 · (k + 1)2

)4·k3+3c
.

We have

4+ε
√

log (1.1 · dc) = O
(

4+ε
√
c · k3 · log k

)
= o

(
k

4
4+ε

)
= o(c).

By Theorem IV.1, we can construct a graph Gc with prop-

erties (i) and (ii) in time

2k
O(k3+c) · |G|O(c) = h(k) · |G|o(k)

for an appropriate computable function h : N → N. Thus,

G contains a clique of size k if and only if A(Gc) returns

3For example, we do not have γ(G2) = (γ(G))2 for every graph G.
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a dominating set of size at most

1.1 · dc · 4+ε
√

log (1.1 · dc) = o (c · dc) < c · dc
3

,

where the inequality holds for sufficiently large k
(
and hence

sufficiently large c · dc).

Therefore we can determine whether G contains a k-

clique in time g(k)·|G|o(k) for some computable g : N→ N.

This contradicts a result in Chen et al. [7, Theorem 4.4]

under ETH.

IV-A. Proof of Theorem IV.1. We start by showing a

variant of Theorem II.4. Besides giving proper colors to all

vertices in the constructed bipartite graphs H , it also creates

an additive gap on the left-hand side A(H) of H .

Theorem IV.2. Let Δ ∈ N+ be a constant and d : N+ →
N+ a computable function. Then there is a 2O(Δs+d(k))) ·
|G|O(1)-time algorithm that on input a graph G and a
parameter k ∈ N with 6 | k+1 constructs a bipartite graph
H =

(
A(H) ∪̇ B(H), E(H)

)
together with two colorings

α : A(H)→ [Δs] and β : B(H)→ [d(k)]

such that:
(H1) if Kk ⊆ G, then there are Δs vertices of distinct

α-colors in A(H) with d(k) common neighbors of
distinct β-colors in B(H);

(H2) if Kk � G, then every Δ(s− 1)+1 vertices in A(H)
have at most (k + 1)! common neighbors in B(H),

where s =
(
k
2

)
.

Proof: Let G be a graph with n vertices and k ∈ N.

Assume without loss of generality⌈
n

6
k+6

⌉
> (k + 6)! and

⌈
n

6
k+1

⌉
≥ d(k).

By Theorem II.4 we can construct in polynomial time a

bipartite graph H0 = (A0 ∪̇ B0, E0) such that for s :=
(
k
2

)
:

– if Kk ⊆ G, then there are s vertices in A0 with at least

d(k) common neighbors in B0;

– if Kk � G, then every s vertices in A0 have at most

(k + 1)! common neighbors in B0.

Define

A1 :=A0 × [Δ], B1 := B0,

E1 :=
{{(u, i), v} ∣∣ (u, i) ∈ A0 × [Δ],

and v ∈ B0, {u, v} ∈ E0

}
.

It is easy to verify that in the bipartite graph (A1 ∪̇ B1, E1)

– if Kk ⊆ G, then there are Δs vertices in A1 with at

least d(k) common neighbors in B2;

– if Kk � G, then every Δ(s − 1) + 1 vertices in A1

have at most (k + 1)! common neighbors in B1.

Applying Lemma II.3 on(
n← |A1|, k ← Δs

)
and

(
n← |B1|, k ← d(k)

)

we obtain two function families ΛA := Λ|A1|,Δs and

ΛB := Λ|B1|,d(k) with the stated properties. Finally the

desired bipartite graph H is defined by
(
(A1 × ΛA ×

ΛB) ∪̇ (B1 × ΛA × ΛB), E)
)

with

E :=
{{

(u, h1, h2),(v, h1, h2)
}

∣∣∣ u ∈ A1, v ∈ B1, h1 ∈ ΛA,

h2 ∈ ΛB , and {u, v} ∈ E1

}
and the colorings

α(u, h1, h2) := h1(u) and β(v, h1, h2) := h2(v). �

Setting the parameters. Let Δ := 2. Recall that k ≥ 3,

s =
(
k
2

) ≥ 3, and c ∈ N+. We first define

d := d(k) :=
(
30 · c2 · (k + 1)2

)4·k3+3c
.

It is easy to check that:

(i) d
1
2− 1

2s > c · sc
(
= c · (k2)c).

(ii) d >
(
3(k + 1)!

)2s
.

(iii) d >
(
10Δs · c2)2Δs

.

Then let

t := c · dc− 1
2Δs .4 (2)

From (ii), (iii), and (2) we conclude

Δsct < 0.1 · dc, c · dc
3t

≤ 2Δs
√
d, and (k+1)! <

2s
√
d

3
. (3)

Moreover by (i) and Δ = 2 we have

c · dc + cΔcscdc−
1
2+

1
2s < 2Δcdc. (4)

Construction of Gc. We invoke Theorem IV.2 to obtain

H = (A ∪̇ B,E), α, and β. Then we construct a new graph

Gc =
(
V (Gc), E(Gc)

)
as follows. First, the vertex set of

Gc is given by

V (Gc) :=
⋃

i∈[d]c
Vi ∪̇ C ∪̇W,

where

Vi :=
{

v ∈ Bc
∣∣ β(v) = i

}
for every i ∈ [d]c,

C :=A× [c]× [t],

W :=
{
wv,j,i

∣∣∣ v ∈ Vi for some i ∈ [d]c,

j ∈ [Δs]c and i ∈ [t]
}
.

Thus,
⋃

i∈[d]c Vi is the c-fold Cartesian product of B. More-

over, Gc contains the following types of edges.

4Here, we assume dc−
1

2Δs is an integer. Otherwise, let d ← d2Δs

which maintains (i)– (iii).
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(E1) For each i ∈ [d]c, Vi forms a clique.

(E2) Let i ∈ [d]c and v, v′ ∈ Vi. If for all � ∈ [c] we have

v(�) �= v′(�) then {wv,j,i, v′} ∈ E(Gc) for every i ∈ [t]
and j ∈ [Δs]c.

(E3) Let (u, �, i) ∈ C. Then
{
(u, �, i), wv,j,i

} ∈ E(Gc) if

{u, v(�)} ∈ E and j(�) = α(u).
(E4) Let u, u′ ∈ A with u �= u′, � ∈ [c], and i ∈ [t]. Then{

(u, �, i), (u′, �, i)
} ∈ E(Gc).

It is easy to check that Gc can be constructed in time

2k
O(k3+c) · |G|O(c). Theorem IV.1 then follows from the

completeness and the soundness of this reduction.

Lemma IV.3 (Completeness). If G contains k-clique, then
γ(Gc) < 1.1dc.

Lemma IV.4 (Soundness). If G contains no k-clique then
γ(Gc) > c · dc/3.

We first show the easier completeness.

Proof of Lemma IV.3: By (H1) in Theorem IV.2, if

G contains a subgraph isomorphic to Kk, then the bipartite

graph H has a KΔs,d-subgraph K such that α(A ∩ K) =
[Δs] and β(B ∩K) = [d]. Let

D := (B ∩K)c ∪̇ (
(A ∩K)× [c]× [t]

)
.

Obviously, |D| = dc+Δsct < 1.1 ·dc by (3). And (E1) and

(E4) imply that D dominates every vertex in C and every

vertex in Vi for all i ∈ [d]c.

To see that D also dominates W , let wv,j,i be a vertex

in W . First consider the case where v(�) /∈ B ∩ K for all

� ∈ [c]. Since β
(
(B ∩ K)c

)
= [d]c, there exists a vertex

v′ ∈ (B ∩K)c with β(v′) = β(v) and v(�) �= v′(�) for all

� ∈ [c]. Then wv,j,i is dominated by v′ because of (E2).

Otherwise assume v(�) ∈ B∩K for some � ∈ [c], then A∩
K ⊆ NH(v(�)) =

{
u ∈ A

∣∣ {u, v(�)} ∈ E
}

. There exists a

vertex u ∈ A∩K such that α(u) = j(�) and
{

v(�), u
} ∈ E.

By (E3), wv,j,i is adjacent to (u, �, i).

IV-B. Soundness.

Lemma IV.5. Suppose c,Δ, t ∈ N+ and Δ < t. Let V ⊆
[t]c. If there exists a function θ : V → [c] such that for all
i ∈ [c] we have∣∣∣{v(i)

∣∣ v ∈ V and θ(v) = i
}∣∣∣ ≤ t−Δ, (5)

then |V | ≤ tc −Δc.

Proof: When c = 1, we have |V | ≤ t − Δ by (5).

Suppose the lemma holds for c ≤ n and consider c = n+1.

Given V ⊆ [t]n+1 and θ, let

Cn+1 :=
{

v(n+ 1)
∣∣ v ∈ V and θ(v) = n+ 1

}
.

By (5), |Cn+1| ≤ t−Δ. If |Cn+1| < t−Δ, we add
(
t−Δ−

|Cn+1|
)

arbitrary integers from [t] \ Cn+1 to Cn+1. So we

have |Cn+1| = t−Δ. Let A :=
{

v ∈ V
∣∣ v(n+1) ∈ Cn+1

}
and B := V \A. It follows that

|A| ≤ (t−Δ)tc−1, (6)∣∣∣{v(n+ 1)
∣∣ v ∈ B

}∣∣∣ = ∣∣∣{v(n+ 1)
∣∣ v ∈ V and v(n+ 1) /∈

Cn+1

}∣∣∣ ≤ Δ, and θ(v) ∈ [c− 1] for all v ∈ B. Let

V ′ :=
{
(v1, . . . , vn)

∣∣ ∃vn+1 ∈ [t], (v1, . . . , vn, vn+1) ∈ B
}
.

We define a function θ′ : V ′ → [c − 1] as follows. For all

v′ ∈ V ′, choose v ∈ B with the minimum v(c) such that

for all i ∈ [c− 1] it holds v′(i) = v(i). By the definition of

V ′, such a v must exist, and we let θ′(v′) := θ(v). By (5),∣∣∣{v′(i)
∣∣ v′ ∈ V ′ and θ′(v′) = i

}∣∣∣ ≤ t−Δ for all i ∈ [c−1].

Applying the induction hypothesis, we get |V ′| ≤ tc−1 −
Δc−1. Obviously,

|B| ≤ Δ|V ′| ≤ Δtc−1 −Δc. (7)

From (6) and (7), we deduce that |V | = |A| + |B| ≤ (t −
Δ)tc−1 +Δtc−1 −Δc ≤ tc −Δc.

We are now ready to prove the soundness of our reduction.

Proof of Lemma IV.4: Let D be a dominating set of

Gc. Define

a :=
∣∣∣{i ∈ [d]c

∣∣ |D ∩ Vi| ≥ c+ 1
}∣∣∣.

If a > dc/3, then |D| ≥ (c + 1)a > c · dc/3 and we are

done.

So let us consider a ≤ dc/3. Thus, the set

I :=
{

i ∈ [d]c
∣∣ |D ∩ Vi| ≤ c

}
has size |I| ≥ 2dc/3. Let i ∈ I and assume that D ∩ Vi ={

v1, v2, . . . , vc′
}

for some c′ ≤ c. We define a vi ∈ Vi
as follows. If c′ = 0, we choose an arbitrary vi ∈ Vi.

5

Otherwise, let

vi(�) :=

{
v�(�) for all � ∈ [c′];
v1(�) for all c′ < � ≤ c.

Obviously, β(vi) = i.
(E2) implies that for every j ∈ [Δs]c and every i ∈ [t], the

vertex wvi,j,i is not dominated by D∩Vi. Observe that wvi,j,i
cannot be dominated by other D ∩ Vi′ with i′ �= i either, by

(E2) and (E3). Therefore every vertex in the set

W1 :=
{
wvi,j,i

∣∣ i ∈ I , j ∈ [Δs]c, and i ∈ [t]
}

is not dominated by D ∩⋃
i∈[d]c Vi. As a consequence, W1

has to be dominated by or included in D ∩ (C ∪W ).

If |D∩W1| > c·dc/3, then again we are done. So suppose

|D ∩W1| ≤ c · dc/3 and let W2 := W1 \D. It follows that

5Since the coloring β is obtained by the color-coding used in the proof
of Theorem IV.2, for every b ∈ [d] it holds that {v ∈ B | β(v) = b} �= ∅,
hence Vi �= ∅.
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W2 has to be dominated by D ∩ C. Once again we only

need to consider the case |D ∩ C| ≤ c · dc/3, and hence

there is an i′ ∈ [t] such that∣∣∣D ∩ (
A× [c]× {i′})∣∣∣ ≤ c · dc

3t
. (8)

Then we define

Z :=
{
wv,j,i ∈W2

∣∣ i = i′
}

=
{
wvi,j,i′

∣∣ i ∈ I , j ∈ [Δs]c, and wvi,j,i′ /∈ D
}
.

So Z has to be dominated by D∩C, and in particular those

vertices of the form (u, �, i′) ∈ D ∩ C. Moreover,

|Z| ≥ Δcsc|I| − |D ∩W1| ≥ Δcsc|I| − c · dc/3. (9)

Our next step is to upper bound |Z|. To that end, let

X :=
{
u ∈ A

∣∣ (u, �, i′) ∈ D for some � ∈ [c]
}
.

Thus Z is dominated by those vertices (u, �, i′) with u ∈ X .

And by (8)

|X| ≤ c · dc
3t

.

Set

Y :=
{
v ∈ B

∣∣∣ ∣∣NH(v) ∩X
∣∣ > Δ(s− 1)

}
.

Recall that c ·dc/(3t) ≤ 2Δs
√
d by (3). Hence X has at most√

d different subsets of size Δ(s− 1) + 1, i.e.,∣∣∣∣
(

X

Δ(s− 1) + 1

)∣∣∣∣ ≤ |X|Δ(s−1)+1 ≤ |X|Δs ≤
√
d.

We should have

|Y | ≤
√
d · (k + 1)! ≤ d

1
2+

1
2s

3
, (10)

where the second inequality is by (3). Otherwise, by the

pigeonhole principle, there exists a (Δ(s−1)+1)-vertex set

of X ⊆ A(H) having at least |Y |/√d > (k + 1)! common

neighbors in Y ⊆ B(H). However, if G contains no k-

clique, then by (H2) every
(
Δ(s − 1) + 1

)
-vertex set of

A(H) has at most (k + 1)! common neighbors in B(H),
and we obtain a contradiction.

Let

Z1 :=
{
wv,j,i′ ∈ Z

∣∣ there exists an � ∈ [c] with v(�) ∈ Y
}

=
{
wvi,j,i′

∣∣ i ∈ I, j ∈ [Δs]c, wvi,j,i′ /∈ D,

and there exists an � ∈ [c] with vi(�) ∈ Y
}
,

Z2 :=Z \ Z1 =
{
wvi,j,i′

∣∣ i ∈ I, j ∈ [Δs]c, wvi,j,i′ /∈ D,

and vi(�) /∈ Y for all � ∈ [c]
}
.

Moreover, let I1 := {i ∈ I | there exists a wvi,j,i′ ∈ Z1}.
From the definition, we can deduce that

for all i ∈ I1 there exists an � ∈ [c] such that i(�) ∈ β(Y ).

Then |I1| ≤ c|Y |dc−1 and hence

|Z1| ≤ |I1|Δcsc ≤ c|Y |dc−1Δcsc.

To estimate |Z2|, let us fix an i ∈ I and thus fix the tuple

vi ∈ Bc, and consider the set

Ji :=
{

j ∈ [Δs]c
∣∣ wvi,j,i′ ∈ Z2

}
.

Recall that Z is dominated by those vertices (u, �, i′) with

u ∈ X , so for every j ∈ Ji the vertex wvi,j,i′ is adjacent

to some (u, �, i′) in the dominating set D with u ∈ X .

Moreover, for every � ∈ [c], in the original graph H the

vertex vi(�) ∈ B has at most Δ(s− 1) neighbors in X , by

the fact that vi(�) /∈ Y and our definition of the set Y .

Define a function θ : Ji → [c] such that for each j ∈ Ji,

if wvi,j,i′ is adjacent to a vertex (u, �, i′) ∈ D with u ∈ X ,

then θ(j) = �. As argued above, such a (u, �, i′) must exist,

and if there are more than one such, choose an arbitrary one.

Let j ∈ Ji and � := θ(j). By (E3), in the graph H the

vertex vi(�) is adjacent to some vertex u ∈ X with α(u) =
j(�). It follows that for each � ∈ [c] we have∣∣∣{ j(�)

∣∣ j ∈ Ji and θ(j) = �
}∣∣∣

≤
∣∣∣{α(u) ∣∣ u ∈ X adjacent to vi(�)

}∣∣∣ ≤ Δ(s− 1).

Applying Lemma IV.5, we obtain∣∣Ji
∣∣ ≤ Δcsc −Δc.

Then ∣∣Z2

∣∣ = ∑
i∈I

∣∣Ji
∣∣ ≤ |I|(Δcsc −Δc).

By (9) and the definition of Z1 and Z2, we should have

Δcsc|I| − c · dc/3 ≤|Z| = |Z1|+ |Z2|
≤c|Y |dc−1Δcsc + |I|(Δcsc −Δc).

That is,

c · dc/3 + c|Y |dc−1Δcsc ≥ Δc|I| ≥ 2Δcdc/3.

Combined with (10), we have

c · dc + cΔcscdc−
1
2+

1
2s ≥ 2Δcdc,

which contradicts the equation (4).

V. Some Consequences

Proof of Corollary I.2: Let c ∈ N+, and assume that

A is a polynomial time algorithm which on input a graph

G = (V,E) with γ(G) ≤ β(|V |) outputs a dominating set

D with |D| ≤ c·γ(G). Without loss of generality, we further

assume that given 0 ≤ k ≤ n it can be tested in time nO(1)

whether k > c · β(n).
Now let G be an arbitrary graph. We first simulate A on

G, and there are three possible outcomes of A.
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– A does not output a dominating set. Then we know

γ(G) > β(|V |). So in time

2O(|V |) ≤ 2O(β−1(γ(G)))

we can exhaustively search for a minimum dominating

set D of G.

– A outputs a dominating set D0 with |D0| > c ·β(|V |).
We claim that again γ(G) > β(|V |). Otherwise, the

algorithm A would have behaved correctly with

|D0| ≤ c · γ(G) ≤ c · β(|V |).
So we do the same brute-force search as above.

– A outputs a dominating set D0 with |D0| ≤ c ·β(|V |).
If |D0| > c · γ(G), then

c · β(|V |) ≥ |D0| > c · γ(G), i.e., β(|V |) > γ(G),

which contradicts our assumption for A. Hence, |D0| ≤
c · γ(G) and we can output D := D0.

To summarize, we can compute a dominating set D with

|D| ≤ c·γ(G) in time f(γ(G))·|G|O(1) for some computable

f : N→ N. This is a contradiction to Theorem I.1.

Now we come to the approximability of the monotone

circuit satisfiability problem.

MONOTONE-CIRCUIT-SATISFIABILITY

Instance: A monotone circuit C.

Solution: A satisfying assignment S of C.

Cost: The weight of |S|.
Goal: min.

Recall that a Boolean circuit C is monotone if it contains

no negation gates; and the weight of an assignment is the

number of inputs assigned to 1.

As mentioned in the Introduction, Marx showed [28] that

MONOTONE-CIRCUIT-SATISFIABILITY has no fpt approx-

imation with any ratio ρ for circuits of depth 4, unless

FPT = W[2].

Corollary V.1. Assume FPT �= W[1]. Then MONOTONE-
CIRCUIT-SATISFIABILITY has no constant fpt approxima-
tion for circuits of depth 2.

Proof: This is an immediate consequence of The-

orem I.1 and the following well-known gap-preserving

reduction from MONOTONE-CIRCUIT-SATISFIABILITY to

MIN-DOMINATING-SET. Let G = (V,E) be a graph. We

define a circuit

C(G) =
∧
v∈V

⎛
⎝Xv ∨

∨
{u,v}∈E

Xu

⎞
⎠ .

There is a one-one correspondence between a dominating

set in G of size k and a satisfying assignment of C(G) of

weight k.

Remark V.2. Of course the constant ratio in Corollary V.1

can be improved according to Theorem I.3.

VI. Conclusions

We have shown that p-DOMINATING-SET has no fpt ap-

proximation with any constant ratio, and in fact with a ratio

slightly super-constant, unless ETH fails. The immediate

question is whether the problem has fpt approximation with

some ratio ρ : N→ N, e.g., ρ(k) = 22
k

. We tend to believe

that it is not the case.

Our proof does not rely on the deep PCP theorem, instead

it exploits the gap created in the W[1]-hardness proof of the

parameterized biclique problem in [25]. In the same paper,

the second author has already proved some inapproxima-

bility result which was shown by the PCP theorem before.

Except for the derandomization using algebraic geometry

in [25] the proofs are mostly elementary. Of course we are

working under some stronger assumptions, i.e., ETH and

FPT �= W[1]. It remains to be seen whether we can take

full advantage of such assumptions to prove lower bounds

matching those classical ones or even improve them as in

Corollary I.2.
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