
Lipschitz Extensions for Node-Private Graph Statistics
and the Generalized Exponential Mechanism

Sofya Raskhodnikova, Adam Smith

Computer Science and Engineering Department
Pennsylvania State University

University Park, PA USA
{sofya,asmith}@cse.psu.edu

Abstract— Lipschitz extensions were proposed as a tool
for designing differentially private algorithms for approx-
imating graph statistics. However, efficiently computable
Lipschitz extensions were known only for 1-dimensional
functions (that is, functions that output a single real value).
We study efficiently computable Lipschitz extensions for
multi-dimensional (that is, vector-valued) functions on
graphs. We show that, unlike for 1-dimensional functions,
Lipschitz extensions of higher-dimensional functions on
graphs do not always exist, even with a non-unit stretch.
We design Lipschitz extensions with small stretch for the
sorted degree list and degree distribution of a graph,
viewed as functions from the space of graphs equipped
with the node distance into real space equipped with �1.
Our extensions are from the space of bounded-degree
graphs to the space of arbitrary graphs. The extensions
use convex programming and are efficiently computable.

We also develop a new tool for employing Lipschitz
extensions in differentially private algorithms that operate
with no prior knowledge of the graph (and, in particular,
no knowledge of the degree bound). Specifically, we gener-
alize the exponential mechanism, a widely used tool in data
privacy. The exponential mechanism is given a collection of
score functions that map datasets to real values. It returns
the name of the function with nearly minimum value
on the dataset. Our generalized exponential mechanism
provides better accuracy than the standard exponential
mechanism when the sensitivity of an optimal score
function is much smaller than the maximum sensitivity
over all score functions.

We use our Lipschitz extensions and the generalized
exponential mechanism to design a node differentially
private algorithm for approximating the degree distribu-
tion of a sensitive graph. Our algorithm is much more
accurate than those from previous work. In particular,
our algorithm is accurate on all graphs whose degree
distributions decay at least as fast as those of “scale-
free” graphs. Using our methodology, we also obtain
more accurate node-private algorithms for 1-dimensional
statistics.

The authors were supported by NSF awards CDI-0941553 and
IIS-1447700, a Google Faculty Award, Boston University’s Hariri
Institute for Computing and RISCS Center and, while visiting the
Harvard Center for Research on Computation and Society, by a
Simons Investigator grant to Salil Vadhan.

I. INTRODUCTION

The area of differential privacy studies how to output

aggregate information about a database while protecting

privacy of individuals whose information it contains.

Many datasets can be represented as graphs, where

nodes correspond to individuals and edges capture rela-

tionships between them. There are two natural variants

of differential privacy that are suitable for graphs: edge
privacy and node privacy. Intuitively, the former protects

relationships among individuals, while the latter protects

each individual, together with all his/her relationships.

Edge privacy has been extensively studied, with algo-

rithms now known for the release of subgraph counts

and related scalar-valued functions [32, 33, 17, 30, 24,

18], the degree distribution [11, 12, 16, 23, 15], cut

densities [10, 3] and the parameters of generative graph

models [30, 18, 24, 15, 35]. Node privacy is a much

stronger guarantee, but is significantly harder to attain

because it guards against larger changes in the input.

Until recently, no known node private algorithms gave

accurate answers on sparse graphs, even for extremely

simple statistics. (Typically, graphs that contain sensitive

information, such as friendships, sexual relationships,

and communication patterns, are sparse.)

In 2013, Blocki et al. [4], Kasiviswanathan et al.

[19], and Chen and Zhou [6] proposed two methods for

obtaining node private algorithms: (i) using projections

whose smooth sensitivity could be bounded (combined

with mechanisms from [32] that are based on smooth

sensitivity), and (ii) computing Lipschitz extensions (and

releasing them via the Laplace mechanism of [9]).

The former method is generic, i.e., works for releasing

any graph statistics, while the latter method requires

designing an efficiently computable Lipschitz extension

for each desired graph statistics. However, the latter

method yielded much more accurate algorithms. In

particular, [19, 6] used it to obtain accurate node-

private algorithms for computing subgraph counts and

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.60

494

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.60

495

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.60

495

related statistics. Subsequently to the initial version

of this paper, Lipschitz extensions were also used to

design node-private algorithms for fitting a large family

of statistical models (graphons and stochastic block

models) to network data [5].

Despite the success of efficiently computable Lip-

schitz extensions, they were known only for 1-

dimensional functions (that is, functions that output a

single real value). We study efficiently computable Lip-

schitz extensions for multi-dimensional (that is, vector-

valued) functions on graphs. In the full version of this

paper, we show that, unlike for 1-dimensional functions,

Lipschitz extensions of higher-dimensional functions on

graphs do not always exist, even with a non-unit stretch.

We design Lipschitz extensions with small stretch for

the sorted degree list and degree distribution of a graph,

viewed as functions from the space of graphs equipped

with the node distance into real space equipped with �1.

Our extensions are from the space of bounded-degree

graphs to the space of arbitrary graphs. The extensions

can be computed in polynomial time.

We also develop a new tool for employing Lipschitz

extensions in differentially private algorithms that op-

erate with no a priori knowledge of the graph. The

algorithms in [4, 19] need a publicly known bound

on the degree of the input graph in order to choose

an appropriate Lipschitz extension. Chen and Zhou

[6] overcome this problem by showing how to choose

the Lipschitz extension for the special case of their

family of Lipschitz extensions for subgraph counts and

related 1-dimensional functions while paying a factor of

O(log n) for n-node graphs in the algorithm’s additive

error. We develop a general method for choosing a

good Lipschitz extension with a smaller loss in accuracy

(specifically, a factor of O(log log n) in the additive

error for subgraph counts). To achieve this, we general-

ize the exponential mechanism of McSherry and Talwar

[29], a widely used tool in data privacy. Our generalized

exponential mechanism provides better accuracy than

the standard exponential mechanism when the sensitiv-

ity of an optimal score function is much smaller than

the maximum sensitivity over all score functions.

We use our Lipschitz extension and the generalized

exponential mechanism to design a node-private al-

gorithm for releasing an approximation to the degree

distribution of a graph. Our algorithm is much more

accurate than those from previous work [19]. In par-

ticular, our algorithm is accurate on all graphs whose

degree distributions decay at least as fast as those of

“scale-free” graphs.

A. Lipschitz Extensions

Lipschitz extensions are basic mathematical objects

studied in functional analysis.

Definition I.1 (Lipschitz constant). Let f : X → Y
be a function from a domain X to a range Y with
associated distance measures dX and dY . Function f
has Lipschitz constant c (equivalently, is c-Lipschitz) if
dY (f(x), f(x

′)) ≤ c · dX(x, x′) for all x, x′ ∈ X . The
smallest Lipschitz constant of f is sometimes referred
to as the (global) sensitivity of f .

Definition I.2 (Lipschitz extension). Consider a domain
X and a range Y with associated distance measures
dX and dY , and let Z ⊂ X . Fix constants c > 0 and
s ≥ 1. Given a c-Lipschitz function f : Z → Y , a
function f̂ : X → Y is a Lipschitz extension of f from

Z to X with stretch s if
1) f̂ is an extension of f , that is, f̂(x) = f(x) on all

x ∈ Z and
2) f̂ is s · c-Lipschitz.

If s = 1, then we call f̂ a Lipschitz extension of f from

Z to X (omitting the stretch).

Functional analysts have devoted considerable atten-

tion to determining, for given metric spaces X,Z and Y ,

whether Lipschitz extensions from Z to X with stretch

1 exist for all functions f : Z → Y . In contrast to

this work, the focus in functional analysis is mostly on

continuous function spaces.

We study Lipschitz extensions of multi-dimensional

functions on graphs. Let G denote the set of all finite, la-

beled, and unweighted undirected graphs. Given D ∈ N,

let GD be the set of all D-bounded graphs in G, that is,

graphs of maximum degree at most D. Two graphs are

called (node) neighbors if one can be obtained from the

other by removing a node and its adjacent edges. This

notion of neighbors induces a (node) distance measure

dnode on G. (Analogously, we define the edge distance

measure by allowing two graphs be neighbors if they

differ in exactly one edge.) We consider functions from

G, equipped with dnode, to R
p, equipped with �1. We

refer to p as the dimension of the function.

Lipschitz extensions of real-valued 1-dimensional

functions (with arbitrary domain, not just G) with stretch

1 always exist [28]. We show that it is not true, in

general, for multi-dimensional functions on graphs, even

with non-unit stretch. Our first technical contribution is

the construction of efficiently computable, small-stretch

extensions from GD to G (equipped with dnode) of two

related high-dimensional functions: the sorted degree

list and the degree distribution.

495496496

Lipschitz Extensions as a Privacy Tool: Functions

with low Lipschitz constant can be approximated very

accurately by differentially private algorithms. The

Laplace mechanism [9] can release a differentially

private approximation of f(G) for all functions f :
G → R

p by adding noise proportional to the Lipschitz

constant of f to each coordinate of f(G) and publishing

the result. The difficulty with employing the Laplace

mechanism directly on graph data is that many useful

functions on graphs are highly sensitive to the insertion

or removal of a well-connected vertex. For example,

the number of triangles (i.e., 3-cliques) in an n-node

graph may go up by
(
n
2

)
with the insertion of a single

vertex. The degree distribution of a graph can also

change drastically, shifting up by 1 in every coordinate

(as one vertex can increase the degree of all other

vertices). Therefore, these functions have high sensi-

tivity. Mechanisms based on local notions of sensitivity

(such as smooth sensitivity in [32]) also don’t apply

directly, since these functions are also sensitive in a

local sense (roughly, interesting graphs such as those

with low average degree are “near” other graphs with a

vastly different value of the function).

One can get around the sensitivity issue by first

considering a “nice” subset of the space G where the

function f has low sensitivity [4, 19, 6]. Many functions

of interest have low Lipschitz constant on GD, the set

of bounded-degree graphs. The number of triangles in

a graph, for instance, changes by at most
(
D
2

)
among

node-neighboring graphs of degree at most D, and the

degree list changes by at most 2D in �1. Given a func-

tion f with low Lipschitz constant on “nice” graphs, if

we find an efficiently computable Lipschitz extension f̂
of f to all of G, then we can use the Laplace mechanism

to release f̂(G) with relatively small additive noise. The

lower the stretch of the extension, the lower the noise.

The result is accurate when the input indeed falls into,

or near, the class of “nice” graphs. Interestingly, the

class of “nice” graphs need not contain the input for

the answer to be accurate—in our main application, we

use GD as the set of “nice” graphs, but D is much lower

than the maximum degree of the input (the reduction in

noise compensates for the distortion introduced by the

extension.)

Existence and Computational Complexity of Lip-
schitz Extensions: Motivated by this methodology, we

ask: when do Lipschitz extensions exist, and when do

they admit efficient algorithms? The existence question

has drawn interest from functional analysis and combi-

natorics for nearly a century [28, 20, 34, 26, 14, 27, 1, 2,

21, 31, 22, 25]; see Lee and Naor [22] for an overview.

For any real-valued function f : GD → R, there exists

an extension f̂ : G → R whose node sensitivity is

the same as that of f [28]. Kasiviswanathan et al.

[19] and Chen and Zhou [6] constructed polynomial-
time computable Lipschitz extensions from GD to G of

subgraph counts (such as the number of triangles) and

related 1-dimensional functions on graphs.

Prior constructions of higher-dimensional Lipschitz

extensions focused on extending functions on a metric

space X , where X is given explicitly as input (say, as

a distance matrix) [22, 25]. Such constructions, at best,

run in time polynomial in the size of X . The size of

GD is infinite, and even restricting to graphs on at most

n vertices leaves a set GD
n that is exponentially large in

n. Moreover, generic constructions have stretch at least√
n (since the doubling dimension of GD

n is large).

B. Our Contributions

Lipschitz Extension of the Degree List: Our main

technical contribution is a polynomial-time, constant-

stretch Lipschitz extension of the sorted degree list,
viewed as a function from GD to �∗1, to all of G. Here

�∗1 denotes the �1 metric on the space of finite-length

real sequences, where sequences of different length are

padded with 0’s to compute the distance.

Given any graph G = (V,E), our function f̂D(G)
outputs a nonincreasing real sequence of length |V |. If

the maximum degree of G is D or less, the output is the

sorted list of degrees in G. The output can be thought

of as a list of “fractional degrees”, where “fractional

edges” are real weights in [0, 1] and the “fractional

degree” of a vertex is the sum of the weights of its

adjacent edges. The weights are selected by minimizing

a quadratic function over the polytope of s-t flows in a

directed graph closely related to G. Previous work [19]

had shown that the value of the maximum flow in the

graph has low sensitivity; by introducing the quadratic

penalty, we give a way to select an optimal flow that

changes slowly as the graph itself changes. Introducing

a strongly convex penalty (or regularizer) to make the

solution of an optimization problem stable to changes

in the loss function is common in machine learning. In

our setting, however, it is the constraints of the convex

program that change with data, and not the loss function.

Theorem I.3. There is a Lipschitz extension of the
degree list, viewed as a function taking values in �∗1,
from GD to G with stretch 3/2 that can be computed in
polynomial time.

The sorted degree list has �1 sensitivity 2D on GD.

The extension f̂D(G) has �1 sensitivity at most 3D (the

stretch is thus at most 3/2).

496497497

We use our Lipschitz extension of the sorted degree

list to get a Lipschitz extension of the degree distribution

(a list of counts of nodes of each degree) and the degree

CDF (a list of counts of nodes of at least each given

degree). These functions condense the information to

a D-dimensional vector (regardless of the size of the

graph), making it easier to release with node-privacy.

Generalized Exponential Mechanism for Scores of
Varying Sensitivity: One of the difficulties with using

Lipschitz extensions in differentially private algorithms

is selecting a good class of inputs from which to extend.

For example, to apply our degree distribution extension,

we need to select the degree bound D. More gener-

ally, we are given a collection of possible extensions

f̂1, ..., f̂k, each of which agrees with f on a different

set and has different sensitivity Δi.

We can abstract the task we are faced with as a

private optimization problem: given a set of real-valued
functions q1, ..., qk, the goal is to output the index ı̂
of a function with approximately minimal value on

the dataset x (so that q̂ı(x) ≈ minki=1 qi(x)). (In our

setting, the qi functions are related to the error of the

approximation f̂i on dataset x). Suppose that each qi has

a known Lipschitz constant Δi. The error of an output

ı̂ on input x is the difference q̂ı(x)−minki=1 qi(x).
The exponential mechanism [29] achieves error that

scales with the largest Lipschitz constant. Specifically,

for every β > 0, with probability 1 − β, the output ı̂
satisfies q̂ı(x) ≤ minki=1 qi(x)+Δmax · 2 ln(k/β)

ε where

Δmax = maxki=1 Δi.

In contrast, we give an algorithm whose accuracy

scales with the Lipschitz constant of the optimal score

function Δi∗ where i∗ = argminki=1 qi(x). Our mech-

anism requires as input an upper bound β > 0 on the

desired probability of a “bad” outcome; the algorithm’s

error guarantee depends on this β.

Theorem I.4 (Informal). For all settings of the input
parameters β ∈ (0, 1), ε > 0, the Generalized Exponen-
tial Mechanism is ε-differentially private. For all inputs
x, with probability at least 1− β, the output ı̂ satisfies

q̂ı(x) ≤
k

min
i=1

(
qi(x) + Δi · 4 ln(k/β)

ε

)
.

When the maximum Δi is much larger than the

sensitivity of the optimal score function, this guarantee

is much better than that of the standard exponential

mechanism. For instance, in our setting, the Δi’s grow

exponentially with i (that is, Δi is roughly 2i for

i = 1, ..., k). However, on sparse graphs, the best choice

of Δi is for relatively small i. (Also, the issue is

not merely with the error guarantee. The exponential

mechanism provides bad outputs for many inputs where

the true minimizer has low sensitivity.)

We can use our algorithm for selecting the sensitivity

parameter for the Lipschitz extensions of graph func-

tions in [4, 19, 6] and in this work. (These parameters

are sometimes interpretable as a degree bound, as in

the case of the degree distribution, but not always;

for example, when computing the number of triangles,

the parameter is a bound on the number of triangles

involving any one vertex). This allows the algorithm

to adapt to the specific input. The guarantee we get is

that the error of the overall algorithm on an n-node

graph is at most O(log logn) times higher than one

would get with the best Lipschitz constant. In contrast,

the parameter selection method of Chen and Zhou [6]

provides only a O(log n) guarantee on the error blow-up

and is specific to the extensions they construct.

Differentially Private Algorithms for Releasing the
Degree Distribution: We can combine the Lipschitz

extension of the degree list and the parameter selection

algorithm to get a differentially private mechanism

for releasing the degree distribution of a graph that

automatically adapts to the structure of the graph.

We show that our algorithm provides an accurate

estimate on a large class of graphs, including graphs

with low average degree whose degree distribution has

a heavy tail. We measure accuracy in the �1 norm,

normalized by the number of nodes in the graph—that

is, we deem the algorithm accurate if the total variation

distance between the true degree distribution and the

estimate is small.

This measure goes to 0 for graphs of low average

degree in which the tail of the degree distribution

decreases slightly more quickly than what trivially holds

for all graphs. If d̄ is the average degree in a graph,

Markov’s inequality implies that the fraction of nodes

with degree above t · d̄ is at most 1/t. We assume that

this fraction goes down as 1/tα for a constant α > 1.

The condition is called α-decay [19]. Our assumption is

satisfied by all the well-studied social network models

we know of, including scale-free graphs [7] (which sat-

isfy the assumption with α ∈ (1, 2)). Previous work [19]

provided nontrivial accuracy only for α > 2 (and, in

particular, gave no guarantees for scale-free graphs).

Our algorithm need not be given α or the average

degree of the graph; these are implicitly taken into ac-

count by parameter selection. Incontrast, the algorithm

in [19] requires a lower bound on α as input.

C. Contents of the Short and Full Versions

This short version of the document includes back-

ground information (Section II), proofs of our two

497498498

main technical results: the Lipschitz extension of the

degree list (Section III) and the generalized exponential

mechanism (Section IV) and the statement of the utility

guarantees we obtain for our node-private algorithm for

releasing the degree distribution.

We defer to the full version our lower bounds on

the stretch of extensions from GD to G, our low-

stretch extension of the degree distribution (obtained

from our extension of the degree list) and details on

how to combine the main technical results to design

differentially private algorithms.

II. DEFINITIONS AND BASIC TOOLS

We use [n] to denote the set {1, . . . , n}. For a graph

G = (V,E), the average degree is denoted by d̄(G) =
2|E|/|V |. For simplicity of presentation, we assume that

n = |V |, the number of nodes of the input graph G, is

publicly known. This assumption is justified since, as

we will see, one can get an accurate estimate of |V | by

running a node-private algorithm. The degrees of nodes

in V are denoted by deg1(G), . . . , degn(G). When the

graph referenced is clear, we drop G in the notation.

A. Graphs Metrics and Differential Privacy

Suppose that datasets are members of a universe

U equipped with a neighbor relation. For example, if

datasets are graphs, we could use the notion of node

or edge neighbors; for standard datasets (with no rela-

tionship information), two datasets can be considered

neighbors if they are at Hamming distance 1 or if their

set difference has size 1.

Definition II.1 (ε-differential privacy [9]). A random-
ized algorithm A is ε-differentially private (with respect
to the neighbor relation on U) if for all events S in the
output space of A and all neighbors x, x′ ∈ U ,

Pr[A(x) ∈ S] ≤ exp(ε) · Pr[A(x′) ∈ S] .

If U = G with node (respectively, edge) neighbor
relationship, we call a differentially private algorithm
simply node-private (respectively, edge-private).

In this paper, if node or edge privacy is not specified,

we mean node privacy by default.

B. Basic Tools

Laplace Mechanism: In the most basic frame-

work for achieving differential privacy, Laplace noise is

scaled according to the sensitivity of the desired statistic

f , measured with respect to an appropriate metric on

datasets. This technique extends to node private analysis

of graphs as long as we measure sensitivity with respect

to the node distance. Let G denote the set of all graphs.

In the sequel, the sensitivity of f : G → R
p denotes the

smallest Lipschitz constant (Definition I.1) of f , viewed

as a map from (G, dnode) to �p1.

For example, the number of edges in graphs with

at most n nodes has sensitivity n − 1, since adding or

deleting a node and its adjacent edges can add or remove

at most n − 1 edges. In contrast, the number of nodes

has sensitivity 1.

A Laplace random variable with mean 0 and standard

deviation
√
2λ has density h(z) = (1/(2λ))e−|z|/λ. We

denote it by Lap(λ).

Theorem II.2 (Laplace Mechanism [9]). If f : G → R
p

is Δ-Lipschitz (i.e., has sensitivity at most Δ), the
algorithm A(G) = f(G) + Lap(Δ/ε)p (which adds
i.i.d. noise Lap(Δf/ε) to each entry of f(G)) is ε-node
private.

Thus, we can release the number of nodes |V | in

a graph with noise of expected magnitude 1/ε while

satisfying node privacy. Given a public bound n on the

number of nodes, we can release the number of edges

|E| with additive noise of expected magnitude (n−1)/ε.
Exponential Mechanism: Suppose we are given

a collection of functions q1, ..., qk, from the universe

U to R such that the function qi is Δi-Lipschitz for

each i ∈ [k]. Recall that Δmax = maxi∈[k] Δi. The

exponential mechanism [29], denoted by EM, takes a

dataset x ∈ U and returns an index ı̂ for which q̂ı(x)
has nearly minimal value at x, that is, such that q̂ı(x) ≈
mini∈[k] qi(x). The algorithm EM has the following

parameters: ε > 0, score functions qi : U → R for

all i ∈ [k], and Δmax. On input x, the algorithm EM
samples and returns an index i from [k] with probability

proportional to exp
(

ε
2Δmax

qi(x)
)
, normalized so that

probabilities for all i ∈ [k] sum to 1.

Lemma II.3 (Exponential Mechanism [29]). The algo-
rithm EM is ε-differentially private. Moreover, for every
β ∈ (0, 1), with probability at least 1 − β, its output ı̂
satisfies q̂ı(x) ≤ mini

(
qi∈[k](x)

)
+ 2Δmax ln(k/β)

ε .

There is a simple, efficient implementation of the

exponential mechanism that adds exponential noise to

each score function and reports the maximizer of the

noisy scores (see, e.g., [8, Sec. 3.4]).

III. LIPSCHITZ EXTENSIONS OF THE DEGREE LIST

In this section, we give a Lipschitz extension of the

degree list. For an n-node graph G, denote the list of

degrees of G sorted in nonincreasing order by

deg-list(G) = sort(deg1(G), ..., degn(G)).

498499499

We view the degree list as an element of R∗ (the set

of finite sequences of real numbers). We equip the space

with the �1 distance, where the sequences of different

lengths are padded with 0’s to allow comparison. This

representation is convenient for handling node additions

and deletions.

The �1 sensitivity (under node distance) of the degree

list on D-bounded graphs is 2D because the unsorted

degree list has sensitivity 2D and, as Hay et al. [11]

observed, sorting does not increase the �1 distance

between vectors. We construct a 3D-Lipschitz extension

that agrees with deg-list on GD.

Before explaining our construction, we illustrate the

difficulty of the problem with a simpler “straw man”

attempt: suppose that, given the degree list deg-list(G),
we obtain f̂D(G) by rounding all degrees above D
down to D. This will not affect the degrees in a graph

with maximum degree D, but it is not O(D)-Lipschitz:

consider an n-node star graph with one node of degree

n − 1 and n − 1 nodes of degree 1. Rounding results

in f̂(G) = (D, 1,, 1). But the graph has a neighbor

G′ with no edges at all, for which f̂(G′) = (0,, 0).
Vectors f̂(G) and f̂(G′) differ by n + D − 1 in the

�1 norm. Other simple ways of dropping very high-

degree vertices considered in [4, 19] (as part of the

method called “projection”) also yield poor bounds on

the sensitivity of the obtained degree sequence and

result in too much noise being added for privacy.

Like in [19], our starting point is the construction of

the flow graph FG(G) for graph G. In [19], it is shown

that half the value of the maximum flow in FG(G) is

a Lipschitz extension of the number of edges in G. We

will use the flow values on certain edges as a proxy for

degrees of related nodes. The main challenge is that,

whereas the value of the maximum flow in FG(G) is

unique, the flow on specific edges is not.

�

1

3

�

1′

3′

��

�

2

4

2′

4′

�

1

�

⋮ ⋮

Figure 1. Flow graph illustration. Grey boxes indicate capacities.

Definition III.1 (Flow graph). Given a graph G =
(V,E), let V� = {v� | v ∈ V } and Vr = {vr | v ∈ V }
be two copies of V , called the left and the right copies,
respectively. Let D be a natural number less than n. The
flow graph of G with threshold D, a source s, and a
sink t is a directed graph on nodes V�∪Vr∪{s, t} with

the following capacitated edges: edges of capacity D
from the source s to all nodes in V� and from all nodes
in Vr to the sink t, and unit-capacity edges (u�, vr) for
all edges (u, v) of G. The flow graph of G is denoted
FG(G). See Figure 1 for an illustration.

We would like our extension function to output the

sorted list of flows leaving the source vertex in some

maximum flow. The challenge is that there may be

many maximum flows. If we select a maximum flow

arbitrarily, then the selected flow may be very sensitive

to changes in the graph, even though its value changes

little. We resolve this by selecting a flow that minimizes

a strictly convex function of the flow values.

Definition III.2 (Lipschitz extension of degree list).
Given a flow f of FG(G), let f(e) denote the flow on an
edge e. Also, let fs• be the vector of flows on the edges
leaving the source s, let f•t be the vector of flows on
the edges entering t, and let fs•,•t be the concatenation
of the two vectors. We use �D2n to denote a vector of
length 2n, where all entries are D. Let Φ(f) be the
squared �2 distance between fs•,•t and �D2n, that is,

Φ(f) = ‖fs•,•t − �D2n‖22
=

∑
v∈V

(
(D − f(s, v�))

2 + (D − f(vr, t))
2
)
.

Let f be the flow that minimizes the objective function
Φ over all feasible flows in FG(G). Define f̂D(G) to
be the sorted list of flows along the edges leaving the
source, that is, f̂D(G) = sort(fs•).

Observe that for each G, there is a unique f̂D(G)
because the objective Φ is strictly convex in the values

fs•,•t. We can approximate f̂D(G) to arbitrary precision

in polynomial time, since it is the minimum of a

strongly convex function over a polytope with poly-

nomially many constraints. The approximation may

slightly increase the sensitivity; in our application, one

can account for this by adding slightly more than 3D/ε
noise in each coordinate.

Theorem I.3 follows from the following theorem.

Theorem III.3. The function f̂D(G) is a Lipschitz
extension of deg-list(G) from GD to G of stretch 3/2.
In other words,

1) If G is D-bounded, then f̂D(G) = deg-list(G).
2) For any two graphs G1, G2 (not necessarily D-

bounded) that are node neighbors,

‖f̂D(G1)− f̂D(G2)‖1 ≤ 3D .

We do not know if the bound 3D in part (2) of the

theorem is tight, even for this particular construction. It

499500500

could be that this extension has stretch 1 (which would

correspond to a bound of 2D on the sensitivity).
Proof of Theorem III.3 (item 1): Suppose G is

D-bounded. The flow f in FG(G) that assigns 1 to all

edges (u�, vr) and deg(v) to all edges (s, v�) and (vr, t)
is feasible. Moreover, for any feasible flow f ′ and any

edge e in FG(G), we have f ′(e) ≤ f(e) because of

capacity constraints on edges between V� and Vr and

flow conservation. Finally, f minimizes Φ since, for x ∈
[0, D], function (D − x)2 is decreasing in x.

There are two distinct notions of optimality of a flow

in FG(G): optimality with respect to Φ, which we call

Φ-optimality, and optimality of the net flow form s to

t, called net flow optimality. Next, we show that Φ-

optimality implies net flow optimality.

Lemma III.4. For every graph G, if f is a feasible flow
for the flow graph FG(G) that minimizes Φ, then f is
a maximum net flow from s to t in FG(G).

Proof: Suppose f is not a maximum net flow. Let

p be a shortest augmenting s-t path and c > 0 be the

minimal residual capacity of an edge in p. Consider the

flow cp that assigns c units of flow to each edge of p
and 0 to all other edges. Since p is a shortest path, it is

simple. Thus, adding cp to f results in a feasible flow,

but does not decrease the flow along any edge leaving

s or entering t. This implies that Φ(f + cp) < Φ(f),
since Φ is strictly decreasing in each argument. That is,

f is not Φ-optimal.
The flow graph FG(G) admits a simple symmetry:

for any flow f , we can obtain a feasible flow π(f)
by swapping the roles of s and t and the roles of

left and right copies of all vertices. That is, we de-

fine π(f)(s, v�) := f(vr, t), π(f)(ur, t) := f(s, u�),
π(f)(u�, vr) := f(v�, ur) for all vertices v, u in G.

Flow f is symmetric if π(f) = f . For every graph

G, there exists a symmetric Φ-optimal flow in FG(G):
given any Φ-optimal flow f ′, the flow f ′′ = 1

2 (f
′ +

π(f ′)) is symmetric, feasible (because the set of feasible

flows is convex) and satisfies Φ(f ′′) ≤ Φ(f ′) by

convexity of Φ.
Proof of Theorem III.3 (item 2): Suppose a graph

G1 on n−1 nodes is obtained by removing a node vnew

and its associated edges from a graph G2 on n nodes.
Let f1, f2 be Φ-optimal symmetric flows for the flow

graphs FG(G1) and FG(G2), respectively.
Observe that f1 is a feasible flow in FG(G2). Con-

sider the flow Δ = f2−f1. Note that Δ is a flow in the

residual graph of flow f1 for FG(G2). It satisfies flow

conservation and capacity constraints, but not necessar-

ily positivity. Since ‖f̂D(G1) − f̂D(G2)‖1 = ‖Δs•‖1,

our goal is to prove ‖Δs•‖1 ≤ 3D.

Next, we decompose Δ into three subflows. A subflow
Δ′ of a flow Δ is a flow that, for all edges e, satisfies

Δ(e) · Δ′(e) ≥ 0 and |Δ′(e)| ≤ |Δ(e)|. We start by

decomposing Δ into subflows that form simple s-t paths

and simple cycles. Then we group them as follows:

• Let Δs be the sum of all flows from the initial

decomposition that form paths and cycles using the

edge (s, vnew
�).

• Let Δt be the sum of all flows from the initial

decomposition that form paths and cycles using the

edge (vnew
r , t), but not (s, vnew

�).
• Let Δ0 be the sum of the remaining flows, i.e.,

Δ0 = Δ−Δs −Δt.

Since, by definition of the subflow decomposition,

‖Δs•‖1 = ‖Δs
s•‖1 + ‖Δt

s•‖1 + ‖Δ0
s•‖1, it remains

to bound the three values in the sum. We do it in the

following three lemmas.

Lemma III.5. ‖Δs
s•‖1 ≤ 2D.

Proof: Recall that Δs can be decomposed into

simple s-t paths and simple cycles that use the edge

(s, vnew
�). Each such path contributes the value of its

flow to ‖Δs
s•‖1, and each such cycle contributes at

most twice the value of its flow. Since the total flow

Δs(s, vnew
�) is at most D, we get that ‖Δs

s•‖1 ≤ 2D.

Lemma III.6. ‖Δt
s•‖1 ≤ D.

Proof: Recall that Δt can be decomposed into

simple s-t paths and cycles that use the edge (vnew
r , t),

but not (s, vnew
�). Each such path contributes the value

of its flow to ‖Δs
s•‖1. Any such cycle contributes 0 to

‖Δs
s•‖1 if it does not pass through s. We will show

that no simple cycle in the initial decomposition of Δt

passes through s.
Consider, for the sake of contradiction, a simple cycle

that passes through s in the initial decomposition of Δt.

By definition of Δt, the cycle uses the edge (vnew
r , t).

So, it is of the form s, vi�, . . . , v
new
r , t, vjr , . . . , v

k
� , s for

some nodes i, j, k in G1. Since Δt is a subflow of

δ = f2 − f1 and f1 cannot use the edge (vnew
r , t), the

cycle has positive flow on (vnew
r , t). So, the cycle has

positive flow on s, vi�, . . . , v
new
r , t and negative flow on

s, vk� , . . . , v
j
r , t. But this implies that s, vk� , . . . , v

j
r , t is

an augmenting path in FG(G2) with respect to flow

f2, that is, f2 is not net flow optimal in FG(G2).
By Lemma III.4, it contradicts Φ-optimality of f2 in

FG(G2). Therefore, no simple cycle passes through s
in the initial decomposition of Δt.

Since the total flow Δt(vnew
r , t) is at most D, we get

that ‖Δt
s•‖1 ≤ D.

500501501

Lemma III.7. ‖Δ0
s•‖1 = 0.

Proof: In this proof, to make notation less cum-

bersome, we think of flows for FG(G1) as flows of

FG(G2), i.e., living in a higher-dimensional space than

necessary to represent them.

The flow Δ0 does not use the edges (s, vnew
�) and

(vnew
r , t) since all flow in Δ along (s, vnew

�) and (vnew
r , t)

has been used by Δs+Δt. Recall that Δ0 is a subflow

of f2 − f1, so it must carry nonnegative flow along all

edges that are in FG(G2), but not in FG(G1), that is,

edges adjacent to vnew
� and vnew

r . Consequently, Δ0 has

no flow passing through vnew
� and vnew

r . Therefore, Δ0 is

a feasible flow for the residual graph of f1 in FG(G1).
We conclude that f1 +Δ0 is feasible in FG(G1).

Assume for the sake of contradiction that ‖Δ0
s•‖1 >

0. Then we can use the convexity of Φ to prove the

following inequalities:

〈Δ0
s•,•t , �D2n − (f1)s•,•t〉 ≤ 0. (1)

〈Δ0
s•,•t , �D2n − (f2 −Δ0)s•,•t〉 > 0. (2)

To prove (1), consider the polytope P1 of feasible flows

in FG(G1). Both f1 and f1 + Δ0 are in P1. Let P ′1
be the polytope obtained by projecting P1 onto the

2n coordinates corresponding to flows out of s and

flows into t. Then (f1)s•,•t is the unique vector in

P ′1 corresponding to Φ-optimal flows in FG(G1). Since

Φ is minimized at �D2n, a tiny step from (f1)s•,•t in

the direction of (f1 +Δ0)s•,•t takes us further from
�D2n. In other words, the angle between the vectors
�D2n−(f1)s•,•t and (f1 +Δ0)s•,•t−(f1)s•,•t is at least

90◦, implying (1).

To prove (2), consider the polytope P2 of feasible

flows in FG(G2). Both f2 and f2−Δ0 are in P2. Let P ′2
be the polytope obtained by projecting P2 onto the 2n
coordinates corresponding to flows out of s and into t.
Then (f2)s•,•t is the unique vector in P ′2 corresponding

to Φ-optimal flows in FG(G2). Since Φ is minimized

at �D2n, a tiny step from (f2 −Δ0)s•,•t in the direction

of (f2)s•,•t takes us closer to �D2n. In other words, the

angle between the vectors (f2)s•,•t−(f2 −Δ0)s•,•t and
�D2n − (f2 −Δ0)s•,•t is less than 90◦, implying (2).

Subtracting (1) from (2) and using the fact that Δ =
f2 − f1 = Δs +Δt +Δ0, we get

〈Δ0
s•,•t , �D2n − (f2 −Δ0)s•,•t〉
−〈Δ0

s•,•t , �D2n − (f1)s•,•t〉 > 0;

〈Δ0
s•,•t,−(f2 − f1 −Δ0)s•,•t〉 > 0;

〈Δ0
s•,•t, (Δs +Δt)s•,•t〉 < 0. (3)

But Δ0 and Δs +Δt are both subflows of Δ, so they

cannot have opposite signs on any edge, contradicting

(3). Therefore, ‖Δ0
s•‖1 = 0.

We now complete the proof of Theorem III.3 (Item

2). Recall that Δ = Δs + Δt + Δ0 and that Δs,Δt,
and Δ0 are subflows of Δ. From Lemmas III.5–III.7,

we get ‖f̂D(G1)− f̂D(G2)‖1 = ‖Δs•‖1 = ‖Δs
s•‖1 +

‖Δt
s•‖1 + ‖Δ0

s•‖1 ≤ 3D, as desired.

IV. EXPONENTIAL MECHANISM FOR SCORES WITH

VARYING SENSITIVITY

In this section, we generalize the exponential mech-

anism and prove Theorem I.4. A limitation of the

utility guarantee of the exponential mechanism, stated

in Lemma II.3, is that it depends on the maximum

sensitivity of the score functions qi. In the context

of threshold selection for graph algorithms, such a

guarantee is meaningless for sparse graphs. This poor

utility bound is not merely an artifact of the analysis.

The problem is inherent in the algorithm. For example,

consider the setting with k = 2, where the two score

functions have sensitivity Δ1 = 1 and Δ2
 1. Further,

consider a dataset x with q1(x) = 0 and q2(x) = Δ2/ε.
On input x, the exponential mechanism selects ı̂ = 2
with constant probability, resulting in error of Δ2/ε,
which may be arbitrarily larger than Δ1.

In contrast, we give an algorithm whose error scales

with the sensitivity of the optimal score function Δi∗ ,

where i∗ = argmini∈[k] qi(x). Our mechanism requires

as input an upper bound β on the desired probability of

a bad outcome; the algorithm’s error guarantee depends

on β.

Theorem I.4 (Formal). For all parameters β ∈ (0, 1),
ε > 0, the generalized exponential mechanism (Al-
gorithm 1) is ε-differentially private (with respect to
the neighbor relation on U). For all inputs x, with
probability at least 1− β, the output ı̂ satisfies

q̂ı(x) ≤ min
i∈[k]

(
qi(x) + Δi · 4 ln(k/β)

ε

)
. (4)

In particular, our algorithm is competitive with the

sensitivity of the true minimizer i∗ = argmini∈[k] qi(x)
(since the right-hand side of (4) is at most qi∗(x)+Δi∗ ·
4 ln(k/β)

ε). When all the Δi’s are the same, our algorithm

simplifies to running the usual exponential mechanism

with ε′ = ε/2; this justifies the “generalized” name.

The intuition behind the algorithm is as follows: since

the score function qi has different sensitivity for each i,
we would like to find an alternative score function which

is less sensitive. One simple score would be to compute,

for each j, the distance, in the space of datasets, from

the input x to the nearest dataset y in which qj(y) is

501502502

Algorithm 1: Generalized Exponential Mechanism

Input: Dataset x from universe U ,

Parameters: ε > 0 and β ∈ (0, 1),
∀i ∈ [k], a Δi-Lipschitz score qi : U → R.

1 Set t = 2 ln(k/β)
ε ;

2 ∀i ∈ [k], define

si(x)← max
j∈[k]

(qi(x) + tΔi)− (qj(x) + tΔj)

Δi +Δj

/* si is 1-Lipschitz. */
3 Run the exponential mechanism EM(x) with

parameters ε,Δmax = 1, and score functions si,
i.e., sample an index i from [k] with probability

proportional to exp (ε · si(x)/2);
4 return ı̂, the output of EM.

smallest among the values {qi(y)}i∈[k]. (This idea is

inspired by the GWAS algorithms of [13].) This score

has two major drawbacks: first, it is hard to compute

in general; second, more subtly, it will tend to favor

indices j with very high sensitivity (since they become

optimal with relatively few changes to the data).

Instead, we use a substitute measure that (i) is easy

to compute given the scores qi(x) for i ∈ [k] and

(i) appropriately penalizes scores with large sensitivity.

Given a value t > 0 (to be set later), define the

normalized score as

si(x) = max
j∈[k]

(qi(x) + tΔi)− (qj(x) + tΔj)

Δi +Δj

= max
j∈[k]

(
qi(x)− qj(x)

Δi +Δj
+ t · Δi −Δj

Δi +Δj

)
.

The first term inside the maximum on the right-hand

side is an approximation to the Hamming distance from

x to the nearest dataset y where score qj(·) becomes

smaller than qi(·). The second term (containing t and

independent of the dataset) penalizes indices i with

larger sensitivity.

We obtain an index ı̂ by running the usual exponential

mechanism on the normalized scores si. The privacy of

the mechanism follows from the fact that the new scores

have sensitivity at most 1.

Lemma IV.1. For all i ∈ [k] and all t ∈ R, the
normalized score si(·) has sensitivity at most 1.

Proof of Theorem I.4: Regardless of the dataset

x, Algorithm 1 uses t = 2 ln(k/β)/ε. By Lemma IV.1,

each new score si(·) is 1-Lipschitz. Thus, the applica-

tion of the usual exponential mechanism (or its efficient

implementation, “report noisy min”) is ε-differentially

private.

To analyze utility, let m denote the index that mini-

mizes the penalized score qi(x) + tΔi. Then

sm(x) = 0,

since each of the terms in the maximum defining s is

nonpositive for m (and the term for j = m is 0). By the

usual analysis of the exponential mechanism, we have

that with probability at least 1− β,

ŝı(x) ≤ sm(x)︸ ︷︷ ︸
0

+
2 ln(k/β)

ε
.

Now consider an arbitrary index j. Since

ŝı(x) ≥ (q̂ı(x) + tΔı̂)− (qj(x) + tΔj)

Δı̂ +Δj
,

we can multiply by Δı̂ +Δj to obtain:

q̂ı(x) ≤ qj(x) + t (Δj −Δı̂) +
2 ln(k/β)

ε · (Δı̂ +Δj)

= qj(x) + Δj

(
2 ln(k/β)

ε + t
)
+Δı̂

(
2 ln(k/β)

ε − t
)
.

Substituting t = 2 ln(k/β)
ε yields the desired result.

In the full version, we provide several applications of

the generalized exponential mechanism.

V. DEGREE DISTRIBUTIONS AND α-DECAY

Our techniques provide a significantly more accurate

way to release the degree distributions of graphs while

satisfying node privacy. To illustrate this, we study the

accuracy of our method on graphs that satisfy α-decay,

a mild condition on the tail of the degree distribution.

Recall that d̄(G) denotes the average degree of G.

Assumption V.1. Fix α ≥ 1. A graph G satisfies α-

decay if for all real numbers t > 1, PG(t· d̄(G)) ≤ t−α.

All graphs satisfy 1-decay (by Markov’s inequal-

ity). The assumption is nontrivial for α > 1, but it

is nevertheless satisfied by almost all widely studied

classes of graphs. So-called “scale-free” networks (those

that exhibit a heavy-tailed degree distribution) typically

satisfy α-decay for α ∈ (1, 2). Regular graphs satisfy

α-decay for all α > 1.

Kasiviswanathan et al. [19] gave algorithms for re-

leasing the degree distribution using a projection-based

technique. Their algorithm required knowledge of the

decay parameter α (which was used to select the projec-

tion threshold). They bounded the �1 error of their algo-

rithm in estimating the degree distribution, and showed

that it went to 0 as long as α > 2 and d̄ was polylog-

arithmic in n. More precisely, they gave an expected

error bound of E ‖p̂− pG‖1 = Õ
(
d̄

3α
α+1 /

(
ε2n

α−2
α+1

))
.

502503503

Combining the techniques of the previous sections

with some additional tools, we design an algorithm

Acombo which improves on the previous bound.

Theorem V.2. Given inputs G ∈ G and ε > 0, the
algorithm Acombo produces an estimate p̂ such that, if
G satisfies α-decay for α > 1, then

E ‖p̂− pG‖1 = O
(
d̄(G)

2α
α+1 / (εn)

α−1
α+1

)
.

This error is o(1) as n→∞ if d̄(G) = o(εn)
α−1
2α .

ACKNOWLEDGMENTS

We thank Aleksandar Nikolov for helpful discussions

and anonymous referees for useful comments.

REFERENCES

[1] K. Ball. Markov chains, Riesz transforms and Lipschitz maps.
Geometric & Functional Analysis, 2(2):137–172, 1992.

[2] Y. Benyamini and J. Lindenstrauss. Geometric nonlinear func-
tional analysis. American Mathematical Society, 1998.

[3] J. Blocki, A. Blum, A. Datta, and O. Sheffet. The Johnson-
Lindenstrauss transform itself preserves differential privacy. In
53rd Symposium on Foundations of Computer Science (FOCS),
pages 410–419, 2012.

[4] J. Blocki, A. Blum, A. Datta, and O. Sheffet. Differentially
private data analysis of social networks via restricted sensitivity.
In Innovations in Theoretical Computer Science (ITCS), pages
87–96, 2013.

[5] C. Borgs, J. T. Chayes, and A. D. Smith. Private graphon
estimation for sparse graphs. In Advances in Neural Information
Processing Systems (NIPS), pages 1369–1377, 2015.

[6] S. Chen and S. Zhou. Recursive mechanism: towards node
differential privacy and unrestricted joins. In International
Conference on Management of Data (SIGMOD), pages 653–
664, 2013.

[7] A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-Law
Distributions in Empirical Data. SIAM Review, 51(4):661–703,
2009.

[8] C. Dwork and A. Roth. The Algorithmic Foundations of
Differential Privacy. Now Publishers Inc., 2014.

[9] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating
noise to sensitivity in private data analysis. In Theory of
Cryptography Conference (TCC), pages 265–284, 2006.

[10] A. Gupta, A. Roth, and J. Ullman. Iterative constructions and
private data release. In 9th Theory of Cryptography Conference
(TCC), pages 339–356, 2012.

[11] M. Hay, C. Li, G. Miklau, and D. Jensen. Accurate estimation
of the degree distribution of private networks. In Int. Conf. Data
Mining (ICDM), pages 169–178, 2009.

[12] M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the ac-
curacy of differentially private histograms through consistency.
PVLDB, 3(1):1021–1032, 2010.

[13] A. Johnson and V. Shmatikov. Privacy-preserving data explo-
ration in genome-wide association studies. In 19th International
Conference on Knowledge Discovery and Data Mining, pages
1079–1087. ACM, 2013.

[14] W. B. Johnson, J. Lindenstrauss, and G. Schechtman. Extensions
of Lipschitz maps into Banach spaces. Israel Journal of
Mathematics, 54(2):129–138, 1986.

[15] V. Karwa and A. Slavkovic. Inference using noisy degrees:
Differentially private β-model and synthetic graphs. Ann.
Statist., 44(1):87–112, 2016.

[16] V. Karwa and A. B. Slavkovic. Differentially private graphical
degree sequences and synthetic graphs. In Privacy in Statistical
Databases (PSD), pages 273–285, 2012.

[17] V. Karwa, S. Raskhodnikova, A. D. Smith, and G. Yaroslavtsev.
Private analysis of graph structure. ACM Trans. Database Syst.,
39(3):22:1–22:33, 2014.

[18] V. Karwa, A. B. Slavkovic, and P. N. Krivitsky. Differentially
private exponential random graphs. In Privacy in Statistical
Databases (PSD), pages 143–155, 2014.

[19] S. P. Kasiviswanathan, K. Nissim, S. Raskhodnikova, and
A. Smith. Analyzing graphs with node-differential privacy.
In Theory of Cryptography Conference (TCC), pages 457–476,
2013.

[20] M. Kirszbraun. Über die zusammenziehende und Lipschitzsche
transformationen. Fundamenta Mathematicae, 22(1):77–108,
1934.

[21] U. Lang, B. Pavlović, and V. Schroeder. Extensions of Lipschitz
maps into hadamard spaces. Geometric & Functional Analysis
GAFA, 10(6):1527–1553, 2000.

[22] J. R. Lee and A. Naor. Extending Lipschitz functions via
random metric partitions. Inventiones mathematicae, 160(1):
59–95, 2005.

[23] B.-R. Lin and D. Kifer. Information preservation in statistical
privacy and Bayesian estimation of unattributed histograms. In
International Conference on Management of Data (SIGMOD),
pages 677–688, 2013.

[24] W. Lu and G. Miklau. Exponential random graph estimation
under differential privacy. In International Conference on
Knowledge Discovery and Data Mining (SIGKDD), pages 921–
930. ACM, 2014.

[25] K. Makarychev and Y. Makarychev. Metric extension operators,
vertex sparsifiers and Lipschitz extendability. In 51th Symposium
on Foundations of Computer Science (FOCS), pages 255–264,
2010.

[26] M. Marcus and G. Pisier. Characterizations of almost surely
continuous p-stable random Fourier series and strongly station-
ary processes. Acta mathematica, 152(1):245–301, 1984.

[27] J. Matoušek. Extension of Lipschitz mappings on metric trees.
Commentationes Mathematicae Universitatis Carolinae, 31(1):
99–104, 1990.

[28] E. J. McShane. Extension of range of functions. Bull. Amer.
Math. Soc., 40(12):837–842, 1934.

[29] F. McSherry and K. Talwar. Mechanism design via differential
privacy. In Symposium on Foundations of Computer Science
(FOCS), pages 94–103, 2007.

[30] D. J. Mir and R. N. Wright. A differentially private estimator
for the stochastic Kronecker graph model. In EDBT/ICDT
Workshops, pages 167–176, 2012.

[31] A. Naor. A phase transition phenomenon between the isometric
and isomorphic extension problems for Hölder functions be-
tween Lp spaces. Mathematika, 48(1/2; ISSU 95/96):253–272,
2001.

[32] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity
and sampling in private data analysis. In Symp. Theory of
Computing (STOC), pages 75–84. ACM, 2007. Full paper:
http://www.cse.psu.edu/∼asmith/pubs/NRS07.

[33] V. Rastogi, M. Hay, G. Miklau, and D. Suciu. Relationship
privacy: output perturbation for queries with joins. In Symp.
Principles of Database Systems (PODS), pages 107–116, 2009.

[34] J. H. Wells and L. R. Williams. Embeddings and extensions
in analysis, volume 84 of Ergebnisse der Mathematik und ihrer
Grenzgebiete. Springer, 1975.

[35] Q. Xiao, R. Chen, and K. Tan. Differentially private network
data release via structural inference. In 20th International
Conference on Knowledge Discovery and Data Mining (KDD),
pages 911–920, 2014.

503504504

