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Abstract—In this paper, we initiate a principled study of
how the generalization properties of approximate differential
privacy can be used to perform adaptive hypothesis testing,
while giving statistically valid p-value corrections. We do
this by observing that the guarantees of algorithms with
bounded approximate max-information are sufficient to correct
the p-values of adaptively chosen hypotheses, and then by
proving that algorithms that satisfy (ε, δ)-differential privacy
have bounded approximate max-information when their inputs
are drawn from a product distribution. This substantially
extends the known connection between differential privacy
and max-information, which previously was only known to
hold for (pure) (ε, 0)-differential privacy. It also extends our
understanding of max-information as a partially unifying
measure controlling the generalization properties of adaptive
data analyses. We also show a lower bound, proving that
(despite the strong composition properties of max-information),
when data is drawn from a product distribution, (ε, δ)-
differentially private algorithms can come first in a composition
with other algorithms satisfying max-information bounds, but
not necessarily second if the composition is required to itself
satisfy a nontrivial max-information bound. This, in particular,
implies that the connection between (ε, δ)-differential privacy
and max-information holds only for inputs drawn from product
distributions, unlike the connection between (ε, 0)-differential
privacy and max-information.

I. INTRODUCTION

Adaptive Data Analysis refers to the reuse of data to

perform analyses suggested by the outcomes of previously

computed statistics on the same data. It is the common

case when exploratory data analysis and confirmatory data
analysis are mixed together, and both conducted on the

same dataset. It models both well-defined, self-contained

tasks, like selecting a subset of variables using the LASSO

and then fitting a model to the selected variables, and also

much harder-to-specify sequences of analyses, such as those

that occur when the same dataset is shared and reused by

multiple researchers.

Recently two lines of work have arisen, in statistics and

computer science respectively, aimed at rigorous statistical

understanding of adaptive data analysis. By and large, the

goal in the statistical literature (often called “selective” or

“post-selection” inference [1]) is to derive valid hypothesis

tests and tight confidence intervals around parameter values

that arise from very specific analyses, such as LASSO

model selection followed by least squares regression (see

e.g. [2, 3]). In contrast, the second line of work has

aimed for generality (at the possible expense of giving tight

application-specific bounds). This second literature imposes

conditions on the algorithms performing each stage of the

analysis, and makes no other assumptions on how, or in

what sequence, the results are used by the data analyst.

Two algorithmic constraints that have recently been shown

to guarantee that future analyses will be statistically valid

are differential privacy [4, 5] and bounded output descrip-

tion length, which are partially unified by a measure of

information called max-information [6]. This paper falls

into the second line of research—specifically, we extend the

connection made in [4, 5] between differential privacy and

the adaptive estimation of low-sensitivity queries to a more

general setting that includes adaptive hypothesis testing with

statistically valid p-values.

Our main technical contribution is a quantitatively

tight connection between differential privacy and a max-
information. Max-information is a measure of correlation,

similar to Shannon’s mutual information, which allows

bounding the change in the conditional probability of events

relative to their a priori probability. Specifically, we extend a

bound on the max-information of (ε, 0)-differentially private

algorithms, due to [6], to the much larger class of (ε, δ)-
differentially private algorithms.

A. Post-Selection Hypothesis Testing

To illustrate an application of our results, we consider a

simple model of one-sided hypothesis tests on real valued

test statistics. Let X denote a data domain. A dataset x
consists of n elements in X : x ∈ Xn. A hypothesis test is

defined by a test statistic φi : Xn → R, where we use i
to index different test statistics. Given an output a = φi(x),
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together with a distribution P over the data domain, the

p-value associated with a and P is simply the probability

of observing a value of the test statistic that is at least as

extreme as a, assuming the data was drawn independently

from P: pPi (a) = PrX∼Pn [φi(X) ≥ a]. Note that there

may be multiple distributions P over the data that induce

the same distribution over the test statistic. With each test

statistic φi, we associate a null hypothesis H
(i)
0 ⊆ Δ(X ),1

which is simply a collection of such distributions. The p-

values are always computed with respect to a distribution

P ∈ H
(i)
0 , and hence from now on, we elide the dependence

on P and simply write pi(a) to denote the p-value of a test

statistic φi evaluated at a.

The goal of a hypothesis test is to reject the null hypoth-
esis if the data is not likely to have been generated from the

proposed model, that is, if the underlying distribution from

which the data were drawn was not in H
(i)
0 . By definition,

if X truly is drawn from Pn for some P ∈ H
(i)
0 , then

pi(φi(X)) is uniformly distributed over [0, 1]. A standard

approach to hypothesis testing is to pick a significance level
α ∈ [0, 1] (often α = 0.05), compute the value of the test

statistic a = φi(X), and then reject the null hypothesis

if pi(a) ≤ α. Under this procedure, the probability of

incorrectly rejecting the null hypothesis—i.e., of rejecting

the null hypothesis when X ∼ Pn for some P ∈ H
(i)
0 —is

at most α. An incorrect rejection of the null hypothesis is

called a false discovery.

The discussion so far presupposes that φi, the test statistic

in question, was chosen independently of the dataset X. Let

T denote a collection of test statistics, and suppose that

we select a test statistic using a data-dependent selection

procedure A : Xn → T . If φi = A(X), then rejecting

the null hypothesis when pi(φi(X)) ≤ α may result in a

false discovery with probability much larger than α (indeed,

this kind of naive approach to post-selection inference is

suspected to be a primary culprit behind the prevalence

of false discovery in empirical science [7, 8, 9]). This is

because even if the null hypothesis is true (X ∼ Pn for some

P ∈ H
(i)
0 ), the distribution on X conditioned on φi = A(X)

having been selected need not be Pn. Our goal in studying

valid post-selection hypothesis testing is to find a valid p-

value correction function γ : [0, 1]→ [0, 1], which we define

as follows:

Definition I.1 (Valid p-value Correction Function). A func-
tion γ : [0, 1]→ [0, 1] is a valid p-value correction function

for a selection procedure A : Xn → T if for every
significance level α ∈ [0, 1], the procedure:

1) Select a test statistic φi = A(X) using selection
procedure A.

2) Reject the null hypothesis H
(i)
0 if pi(φi(X)) ≤ γ(α).

has probability at most α of resulting in a false discovery.

1Δ(X ) denotes the set of probability distributions over X .

Necessarily, to give a nontrivial correction function γ, we

will need to assume that the selection procedure A satisfies

some useful property. In this paper, we focus on differential
privacy, which is a measure of algorithmic stability, and

more generally, max-information, which is defined in the

next subsection. Differential privacy is of particular interest

because it is closed under post-processing and satisfies

strong composition properties. This means that, if the test

statistics in T are themselves differentially private, then the

selection procedure A can represent the decisions of a worst-

case data analyst, who chooses which hypothesis tests to run

in arbitrary ways as a function of the outcomes of previously

selected tests.
Finally, we note that, despite the fact that previous works

[4, 5] are explicitly motivated by the problem of false

discovery in empirical science, most of the technical results

to date have been about estimating the means of adaptively

chosen predicates on the data (i.e., answering statistical
queries) [4], and more generally, estimating the values of

low-sensitivity (i.e., Lipschitz continuous) functions on the

dataset [5, 10, 11]. These kinds of results do not apply

to the problem of adaptively performing hypothesis tests

while generating statistically valid p-values, because p-

values are by definition not low-sensitivity statistics. See the

full version for a detailed discussion.
There is one constraint on the selection procedure A that

does allow us to give nontrivial p-value corrections—that

A should have bounded max-information. A condition of

bounded mutual information has also been considered [10]

to give p-value corrections - but as we discuss in the full

version, it is possible to obtain a strictly stronger guarantee

by instead reasoning via max-information. Max-information

is a measure introduced by [6], which we discuss next.

B. Max-Information (and p-values)
Given two (arbitrarily correlated) random variables X ,

Z, we let X ⊗ Z denote a random variable (in a different

probability space) obtained by drawing independent copies

of X and Z from their respective marginal distributions. We

write log to denote logarithms base 2.

Definition I.2 (Max-Information [6]). Let X and Z
be jointly distributed random variables over the domain
(X ,Z). The max-information between X and Z, denoted
by I∞(X;Z), is the minimal value of k such that for every
x in the support of X and z in the support of Z, we have
Pr [X = x|Z = z] ≤ 2kPr [X = x]. Alternatively,

I∞(X;Z) = log sup
(x,z)∈(X ,Z)

Pr [(X,Z) = (x, z)]

Pr [X ⊗ Z = (x, z)]
.

The β-approximate max-information between X and Z is
defined as

Iβ∞(X;Z) = log sup
O⊆(X×Z),

Pr[(X,Z)∈O]>β

Pr [(X,Z) ∈ O]− β

Pr [X ⊗ Z ∈ O]
.
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We say that an algorithm A : Xn → Y has β-approximate
max-information of k, denoted as Iβ∞(A, n) ≤ k, if
for every distribution S over elements of Xn, we have
Iβ∞(X;A(X)) ≤ k when X ∼ S . We say that an algorithm
A : Xn → Y has β-approximate max-information of k over
product distributions, written Iβ∞,P (A, n) ≤ k, if for every
distribution P over X , we have Iβ∞(X;A(X)) ≤ k when
X ∼ Pn.

It follows immediately from the definition that if an algo-

rithm has bounded max-information, then we can control

the probability of “bad events” that arise as a result of

the dependence of A(X) on X: for every event O, we

have Pr[(X,A(X)) ∈ O] ≤ 2k Pr[X ⊗ A(X) ∈ O] + β.
For example, if A is a data-dependent selection procedure

for selecting a test statistic, we can derive a valid p-value

correction function γ as a function of a max-information

bound on A:

Theorem I.3. Let A : X n → T be a data-dependent algo-
rithm for selecting a test statistic such that Iβ∞,P (A, n) ≤ k.
Then the following function γ is a valid p-value correction
function for A:

γ(α) = max

(
α− β

2k
, 0

)
.

Proof: Fix a distribution Pn from which the dataset X
is drawn. If α−β

2k
≤ 0, then the theorem is trivial, so assume

otherwise. Define O ⊂ Xn×T to be the event that A selects

a test statistic for which the null hypothesis is true, but its

p-value is at most γ(α):

O = {(x, φi) : P ∈ H
(i)
0 and pi(φi(x)) ≤ γ(α)}

Note that the event O represents exactly those outcomes

for which using γ as a p-value correction function results

in a false discovery. Note also that, by definition of the

null hypothesis, Pr[X ⊗ A(X) ∈ O] ≤ γ(α) = α−β
2k

.

Hence, by the guarantee that Iβ∞,P (A, n) ≤ k, we have that

Pr[(X,A(X) ∈ O)] is at most 2k ·
(

α−β
2k

)
+ β = α.

Because of Theorem I.3, we are interested in methods for

usefully selecting test statistics using data dependent algo-

rithms A for which we can bound their max-information.

It was shown in [6] that algorithms which satisfy pure
differential privacy also have a guarantee of bounded max-

information:

Theorem I.4 (Pure Differential Privacy and Max-Informa-

tion [6]). Let A : Xn → Y be an (ε, 0)-differentially private
algorithm. Then for every β ≥ 0:

I∞(A, n) ≤ log(e) · εn, and

Iβ∞,P (A, n) ≤ log(e) ·
(
ε2n/2 + ε

√
n ln(2/β)/2

)

This connection is powerful, because there are a vast col-

lection of data analyses for which we have differentially pri-

vate algorithms— including a growing literature on differen-

tially private hypothesis tests [12, 13, 14, 15, 16, 17, 18, 19].

However, there is an important gap: Theorem I.4 holds only

for pure (ε, 0)-differential privacy, and not for approximate

(ε, δ)-differential privacy. Many statistical analyses can be

performed much more accurately subject to approximate

differential privacy, and it can be easier to analyze private

hypothesis tests that satisfy approximate differential privacy,

because the approximate privacy constraint is amenable to

perturbations using Gaussian noise (rather than Laplace

noise) [19]. Most importantly, for pure differential privacy,

the privacy parameter ε degrades linearly with the number

of analyses performed, whereas for approximate differential

privacy, ε need only degrade with the square root of the

number of analyses performed [20]. Hence, if the connection

between max-information and differential privacy held also

for approximate differential privacy, it would be possible to

perform quadratically more adaptively chosen statistical tests

without requiring a larger p-value correction factor.

C. Our Results

In addition to the framework just described for reasoning

about adaptive hypothesis testing, our main technical

contribution is to extend the connection between differential

privacy and max-information to approximate differential

privacy. We show the following (see Section III for a

complete statement):

Theorem III.1 (Informal). Let A : Xn → Y be an
(ε, δ)-differentially private algorithm. Then,

Iβ∞,P (A, n) = O

(
nε2 + n

√
δ
ε

)
for β = O

(
n
√

δ
ε

)
.

It is worth noting several things. First, this bound nearly

matches the bound for max-information over product distri-

butions from Theorem I.4, except Theorem III.1 extends the

connection to the substantially more powerful class of (ε, δ)-
differentially private algorithms. The bound is qualitatively

tight in the sense that despite its generality, it can be used

to nearly recover the tight bound on the generalization

properties of differentially private mechanisms for answering

low-sensitivity queries that was proven using a specialized

analysis in [5] (see the full version for a comparison).

We also only prove a bound on the max-information for

product distributions on the input, and not for all distribu-

tions (that is, we bound Iβ∞,P (A, n) and not Iβ∞(A, n)). A

bound for general distributions would be desirable, since

such bounds compose gracefully [6]. Unfortunately, a bound

for general distributions based solely on (ε, δ)-differential

privacy is impossible: a construction of De [21] implies the

existence of (ε, δ)-differentially private algorithms for which
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the max-information between input and output on arbitrary

distributions is much larger than the bound in Theorem III.1.

One might nevertheless hope that bounds on the max-

information under product distributions can be meaningfully

composed. Our second main contribution is a negative result,

showing that such bounds do not compose when algorithms

are selected adaptively. Specifically, we analyze the adaptive

composition of two algorithms, the first of which has a

small finite range (and hence, by [6], small bounded max-

information), and the second of which is (ε, δ)-differentially

private. We show that the composition of the two algo-

rithms can be used to exactly recover the input dataset, and

hence, the composition does not satisfy any nontrivial max-

information bound.

1) Further Interpretation: Although our presentation thus

far has been motivated by p-values, an algorithm A with

bounded max-information allows a data analyst to treat

any event A(x) that is a function of the output of the

algorithm “as if” it is independent of the dataset x, up

to a correction factor determined by the max-information

bound. Our results thus substantially broaden the class of

analyses for which approximate differential privacy promises

generalization guarantees—this class was previously limited

to estimating the values of low-sensitivity numeric valued

queries (and more generally, the outcomes of low-sensitivity

optimization problems) [5].

Our result also further develops the extent to which

max-information can be viewed as a unifying information

theoretic measure controlling the generalization properties of

adaptive data analysis. Dwork et al. [6] previously showed

that algorithms that satisfy bounded output description

length, and algorithms that satisfy pure differential privacy

(two constraints known individually to imply adaptive gener-

alization guarantees), both have bounded max-information.

Because bounded max-information satisfies strong composi-

tion properties, this connection implies that algorithms with

bounded output description length and pure differentially

private algorithms can be composed in arbitrary order and

the resulting composition will still have strong generalization

properties. Our result brings approximate differential privacy

partially into this unifying framework. In particular, when the
data is drawn from a product distribution, if an analysis that

starts with an (arbitrary) approximate differentially private

computation is followed by an arbitrary composition of

algorithms with bounded max-information, then the resulting

composition will satisfy a max-information bound. However,

unlike with compositions consisting solely of bounded de-

scription length mechanisms and pure differentially private

mechanisms, which can be composed in arbitrary order, in

this case it is important that the approximate differentially
private computation come first. This is because, even if

the dataset x is initially drawn from a product distribution,

the conditional distribution on the data that results after

observing the outcome of an initial computation need not be

a product distribution any longer. In fact, the lower bound

we prove in Section IV is an explicit construction in which

the composition of a bounded description length algorithm,

followed by an approximate differentially private algorithm

can be used to exactly reconstruct a dataset drawn from a

product distribution (which can in turn be used to arbitrarily

overfit that dataset).

Finally, we draw a connection between max-information

and mutual information that allows us to improve on several

prior results that dealt with mutual information [10, 22] . We

present the proof in the full version.

Lemma I.5. Let A : Xn → T be a selection rule.
• If I(X;A(X)) ≤ m and X ∼ S for any distribution

over Xn, then for any k > 0, Iβ(k)∞ (X;A(X)) ≤ k for
β(k) ≤ m+0.54

k .
• If Iβ∞(X;A(X)) ≤ k for β ∈ [0, 0.3], then
I(X;A(X)) ≤ 2k ln(2) + βn log2 |X |+ β ln(1/β).

We are able to improve on the p-value correction function

implicitely given in [10] given a mutual information bound,

by first converting mutual information to a max-information

bound and applying the p-value correction function from

this paper. Our main theorem Theorem III.1 combined with

Lemma I.5 also obtains an improved bound on the mutual

information of approximate differentially private mecha-

nisms from Proposition 4.4 in [22]. The following corollary

improves the bound from [22] in its dependence on |X | from

|X |2 · log(1/|X |) to log |X |.
Corollary I.6. Let A : Xn → T and X ∼ Pn. If ε ∈
(0, 1/2], δ = Ω

(
εe−2nε2

n2

)
and δ = O( ε

n2 ), we then have

I(X;A(X))

= O

(
nε2 + n

√
δ
ε

(
1 + ln

(
1
n

√
ε
δ

)
+ n log |X |

))
.

D. Other Related Work

Differential Privacy is an algorithmic stability condition

introduced by Dwork et al. [23]. Its connection to adaptive

data analysis was made by Dwork et al. [4] and both

strengthened and generalized by Bassily et al. [5]. Dwork

et al. [6] showed that algorithms with bounded description

length outputs have similar guarantees for adaptive data

analysis, and introduced the notion of max-information.

Cummings et al. [24] give a third method—compression

schemes—which can also guarantee validity in adaptive

data analysis in the context of learning. Computational and

information theoretic lower bounds for adaptively estimating

means in this framework were proven by Hardt and Ullman

[25], and Steinke and Ullman [26].

Russo and Zou [10] show how to bound the bias of

sub-gaussian statistics selected in a data-dependent manner,

in terms of the mutual information between the selection

procedure and the value of the statistics. In particular (using
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our terminology), they show how to give a valid p-value

correction function in terms of this mutual information. In

the full version , we demonstrate that if a bound on the

mutual information between the dataset and the output of

the selection procedure is known, then it is possible to sub-

stantially improve on the p-value correction function given

by [10] by instead using the mutual information bound to

prove a max-information bound on the selection procedure.

[11] study adaptive data analysis in a similar framework to

[10], and give a minimax analysis in a restricted setting.

McGregor et al. [22], and De [21] also study (among

other things) information theoretic bounds satisfied by dif-

ferentially private algorithms. Together, they prove a result

that is analogous to ours, for mutual information—that

while pure differentially private algorithms have bounded

mutual information between their inputs and their outputs,

a similar bound holds for (approximate) (ε, δ)-differentially

private algorithms only if the data is drawn from a product

distribution.

II. PRELIMINARIES

We will use the following vector notation throughout:

x = (x1, · · · , xn), xb
a = (xa, xa+1, · · · , xb), (x−i, t) =

(x1, · · · , xi−1, t, xi+1, · · · , xn). We denote the distribution

of a random variable X as p(X). In our analysis, jointly

distributed random variables (X,Z) will typically be of

the form (X,A(X)) where X ∼ Pn is a dataset of n
elements sampled from domain X , and A : Xn → Y is

a (randomized) algorithm that maps a dataset to some range

Y . We denote by A(X) the random variable that results

when A is applied to a dataset X ∼ Pn (note that here,

the randomness is both over the choice of dataset, and the

internal coins of the algorithm). When the input variable is

understood, we will sometimes simply write A.

It will be useful in our analysis to compare the distri-

butions of two random variables. In the introduction, we

define (approximate-) max-information, and we now give

some other measures between distributions. We first define

indistinguishability, and then differential privacy.

Definition II.1 (Indistinguishability [27]). Two random
variables X,Y taking values in a set D are (ε, δ)-
indistinguishable, denoted X ≈ε,δ Y , if for all O ⊆ D,

Pr [X ∈ O] ≤ eε · Pr [Y ∈ O] + δ and

Pr [Y ∈ O] ≤ eε · Pr [X ∈ O] + δ.

Definition II.2 (Point-wise indistinguishibility [27]). Two
random variables X,Z taking values in a set D are point-
wise (ε, δ)-indistinguishable if with probability 1 − δ over
a ∼ p(X):

e−ε Pr [Z = a] ≤ Pr [X = a] ≤ eε Pr [Z = a] .

Before we define differential privacy, we say that two

databases x,x′ ∈ Xn are neighboring if they differ in at

most one entry. We now define differential privacy in terms

of indistinguishability:

Definition II.3 (Differential Privacy [23, 28]). A randomized
algorithm A : Xn → Y is (ε, δ)-differentially private if for
all neighboring datasets x,x′ ∈ Xn, we have A(x) ≈ε,δ

A(x′).
In the appendix, we give several useful connections be-

tween these definitions along with other more widely known

measures between distributions, e.g., KL-divergence, and

total-variation distance.

III. MAX-INFORMATION FOR (ε, δ)-DIFFERENTIALLY

PRIVATE ALGORITHMS

In this section, we prove a bound on approximate max-

information for (ε, δ)-differentially private algorithms over

product distributions.

Theorem III.1. Let A : Xn → Y be an (ε, δ)-differentially
private algorithm for ε ∈ (0, 1/2] and δ ∈ (0, ε). For β =

e−ε2n +O

(
n
√

δ
ε

)
, we have

Iβ∞,P (A, n) = O

(
ε2n+ n

√
δ
ε

)
.

We will prove Theorem III.1 over the course of this

section, using a number of lemmas. We first set up some

notation. We will sometimes abbreviate conditional proba-

bilities of the form Pr [X = x|A = a] as Pr [X = x|a] when

the random variables are clear from context. Further, for any

x ∈ Xn and a ∈ Y , we define

Z(a,x)
def
= log

(
Pr [A = a,X = x]

Pr [A = a] · Pr [X = x]

)

=
n∑

i=1

log

(
Pr
[
Xi = xi|a,xi−1

1

]
Pr [Xi = xi]

)
(1)

If we can bound Z(a,x) with high probability over

(a,x) ∼ p(A(X),X), then we can bound the approximate

max-information by using the following lemma:

Lemma III.2 ([6, Lemma 18]). If Pr [Z(A(X),X) ≥ k] ≤
β, then Iβ∞(A(X);X) ≤ k.

We next define each term in the sum of Z(a,x) as

Zi(a,x
i
1)

def
= log

Pr
[
Xi = xi|a,xi−1

1

]
Pr [Xi = xi]

. (2)

The plan of the proof is simple: our goal is to apply

Azuma’s inequality to the sum of the Zi’s to achieve a bound

on Z with high probability. Applying Azuma’s inequality

requires both understanding the expectation of each term

Zi(a,x
i
1), and being able to argue that each term is bounded.

Unfortunately, in our case, the terms are not always bounded

– however, we will be able to show that they are bounded
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with high probability. This plan is somewhat complicated by

the conditioning in the definition of Zi(a,x
i
1).

First, we argue that we can bound each Zi with high

probability. This argument takes place over the course of

Claims III.3, III.4, III.5 and III.6.

Claim III.3. If A is (ε, δ)-differentially private and X ∼
Pn, then for each i ∈ [n] and each prefix xi−1

1 ∈ X i−1, we
have:

(A, Xi)|xi−1
1
≈ε,δ A|xi−1

1
⊗Xi.

We now define the following set of “good outcomes and

prefixes” for any δ̂ > 0:

Ei(δ̂) =
{
(a,xi−1

1 ) : Xi ≈3ε,δ̂ Xi|a,xi−1
1

}
(3)

We use a technical lemma from [27] (stated in the full

version ), and Claim III.3 to derive the following result:

Claim III.4. If A is (ε, δ)-differentially private and X ∼
Pn, then for each i ∈ [n] and each prefix xi−1

1 ∈ X i−1 we
have for δ̂ > 0 and δ′

def
= 2δ

δ̂
+ 2δ

1−e−ε :

Pr
[
(A,Xi−1

1 ) ∈ Ei(δ̂)|xi−1
1

]
≥ 1− δ′.

We now define the set of outcome/dataset prefix pairs for

which the quantities Zi are not large:

Fi =
{
(a,xi

1) : |Zi(a,x
i
1)| ≤ 6ε

}
. (4)

Using another technical lemma from [27] (which we state

in the full version), we prove:

Claim III.5. Given (a,xi−1
1 ) ∈ Ei(δ̂) and δ′′

def
= 2δ̂

1−e−3ε we
have:

Pr
[
(A,Xi

1) ∈ Fi|a,xi−1
1

]
≥ 1− δ′′.

We now define the “good” tuples of outcomes and

databases as

Gi(δ̂) =
{
(a,xi

1) : (a,x
i−1
1 ) ∈ Ei(δ̂) & (a,xi

1) ∈ Fi

}
,

(5)

G≤i(δ̂) =
{
(a,xi

1) : (a, x1) ∈ G1(δ̂), · · · , (a,xi
1) ∈ Gi(δ̂)

}
(6)

Claim III.6. If A is (ε, δ)-differentially private and X ∼
Pn, then

Pr
[
(A,Xi

1) ∈ Gi(δ̂)
]
≥ 1− δ′ − δ′′

for δ′ and δ′′ given in Claim III.4 and Claim III.5, respec-
tively.

Having shown a high probability bound on the terms Zi,

our next step is to bound their expectation so that we can

continue towards our goal of applying Azuma’s inequality.

Note a complicating factor – throughout the argument, we

need to condition on the event (A,Xi
1) ∈ Fi to ensure that

Zi has bounded expectation.

We will use the following shorthand notation for condi-

tional expectation:

E
[
Zi(A,Xi

1)|a,xi−1
1 ,Fi

]
def
= E

[
Zi(A,Xi

1)|A = a,Xi−1
1 = xi−1

1 , (A,Xi
1) ∈ Fi

]
,

with similar notation for sets Gi(δ̂),G≤i(δ̂).

Lemma III.7. Let A be (ε, δ)-differentially private and X ∼
Pn. Given (a,xi−1

1 ) ∈ Ei(δ̂), for all ε ∈ (0, 1/2] and δ̂ ∈
(0, ε/15],

E
[
Zi(A,Xi

1)|a,xi−1
1 ,Fi

]
= O(ε2 + δ̂).

Finally, we need to apply Azuma’s inequality to a set

of variables that are bounded with probability 1, not just

with high probability. Towards this end, we define variables

Ti that will match Zi for “good events”, and will be zero

otherwise—and hence, are always bounded:

Ti(a,x
i
1) =

{
Zi(a,x

i
1) if (a,xi

1) ∈ G≤i(δ̂)

0 otherwise
(7)

The next lemma verifies that the variables Ti indeed

satisfy the requirements of Azuma’s inequality:

Lemma III.8. Let A be (ε, δ)-differentially private and X ∼
Pn. The variables Ti defined in (7) are bounded by 6ε with
probability 1, and for any (a,xi−1

1 ) ∈ Y × X i−1 and δ̂ ∈
[0, ε/15],

E
[
Ti(A,Xi

1)|a,xi−1
1

]
= O(ε2 + δ̂/ε), (8)

where the bound does not depend on n or i.

We can then apply Azuma’s inequality to the sum of

Ti(a,x
i
1), where each term will match Zi(a,x

i
1) for most

(a,xi
1) coming from (A(X),Xi

1) for each i ∈ [n]. Note that,

from Lemma III.2, we know that a bound on
∑n

i=1 Zi(a,x
i
1)

with high probability will give us a bound on approximate

max-information. See the full version for a formal analysis.

IV. A COUNTEREXAMPLE TO NONTRIVIAL

COMPOSITION AND A LOWER BOUND FOR

NON-PRODUCT DISTRIBUTIONS

It is known that algorithms with bounded description

length have bounded approximate max-information [6]. In

section III, we showed that (ε, δ)-differentially private al-

gorithms have bounded approximate max-information when

the dataset is drawn from a product distribution. In this sec-

tion, we show that although approximate max-information

composes adaptively [6], one cannot always run a bounded

description length algorithm, followed by a differentially

private algorithm, and expect the resulting composition to

491492492



have strong generalization guarantees. In particular, this

implies that (ε, δ)-differentially private algorithms cannot

have any nontrivial bounded max-information guarantee over

non-product distributions.

Specifically, we give an example of a pair of algorithms

A and B such that A has output description length o(n)
for inputs of length n, and B is (ε, δ)-differentially private,

but the adaptive composition of A followed by B can be

used to exactly reconstruct the input database with high

probability. In particular, it is easy to overfit to the input X
given B(X;A(X)), and hence, no nontrivial generalization

guarantees are possible. Note that this does not contradict

our results on the max-information of differentially private

algorithms for product distributions: even if the database

used as input to A is drawn from a product distribution,

the distribution on the database is no longer a product

distribution once conditioned on the output of A. The

distribution of B’s input violates the hypothesis that is used

to prove a bound on the max-information of B.

Theorem IV.1. Let X = {0, 1} and Y = {Xn ∪ {⊥}}.
Let X be a uniformly distributed random variable over Xn.
For n > 64e, for every ε ∈

(
0, 1

2

]
, δ ∈

(
0, 1

4

]
, there exists

an integer r > 0 and randomized algorithms A : Xn →
{0, 1}r, and B : Xn × {0, 1}r → Y , such that:

1) r = O

(
log(1/δ) log n

ε

)
and Iβ∞(X;A(X)) ≤ r +

log( 1β ) for all β > 0;
2) for every a ∈ {0, 1}r, B(X, a) is (ε, δ)-differentially

private and Iβ∞(X;B(X, a)) ≤ 1 for all β ≥ 2δ;
3) for every x ∈ Xn, with probability at least 1 −

δ, we have that B(x;A(x))) = x. In particular,
Iβ∞(X,B(X;A(X))) ≥ n− 1 for all 0 < β ≤ 1

2 − δ.

De [21] showed that the mutual information of (ε, δ)-
differentially private protocols can be large: if 1

ε log
(
1
δ

)
=

O(n), then there exists an (ε, δ)-differentially private al-

gorithm B and a distribution S such that for X ∼ S ,

I(X;B(X)) = Ω(n), where I denotes mutual informa-

tion. De’s construction also has large approximate max-

information.

By the composition theorem for approximate max-

information (given in the full version), our construction

implies a similar bound:

Corollary IV.2. There exists an (ε, δ)-differentially private
mechanism C : X n → Y such that Iβ2∞ (C, n) ≥ n− 1− r−
log(1/β1) for all β1 ∈ (0, 1/2− δ) and β2 ∈ (0, 1/2− δ −
β1), where r = O

(
log(1/δ) log(n)

ε

)
.

We adapt ideas from De’s construction in order to prove

Theorem IV.1. In De’s construction, the input is not drawn

from a product distribution—instead, the support of the input

distribution is an error-correcting code, meaning that all

points in the support are far from each other in Hamming

distance. For such a distribution, De showed that adding the

level of noise required for differential privacy does not add

enough distortion to prevent decoding of the dataset.

Our construction adapts De’s idea. Given as input a

uniformly random dataset x, we show a mechanism A which

outputs a short description of a code that contains x. Because

this description is short, A has small max-information. The

mechanism B is then parameterized by this short description

of a code. Given the description of a code and the dataset x,

B approximates (privately) the distance from x to the nearest

codeword, and outputs that codeword when the distance is

small. When B is composed with A, we show that it outputs

the dataset x with high probability.

We define the mechanisms A and B from the theorem

statement in Algorithm 1 and Algorithm 2, respectively.

Brief description of A: For any input x ∈ Xn, mechanism

A returns a vector ax ∈ {0, 1}r such that x ∈ Cax , where

Cax = {c ∈ Xn : Hc = ax} is an affine code with

minimum distance t. We give further details in the full

version of the paper.

Input: x ∈ {0, 1}n
Output: ax ∈ {0, 1}r

1 Return Hx (multiplication in F2).

Algorithm 1: A

Brief description of Bε,δ: For any input x ∈ Xn and

a ∈ {0, 1}r, mechanism Bε,δ first computes dx, which is

the distance of x from f(x), i.e., the nearest codeword to

x in code Ca. Next, it sets d̂x to be dx perturbed with

Laplace noise L ∼ Lap(1/ε). It returns f(x) if d̂x is below

a threshold w
def
=

(
t− 1

4
− log(1/δ)

ε

)
, and ⊥ otherwise.

Input: x ∈ {0, 1}n (private) and a ∈ {0, 1}r(public)

Output: b ∈ Y
1 Compute the distance of x to the nearest codeword in

code Ca. Let dx = min
c∈Ca

(distHamm(x, c)) and

f(x) = arg min
c∈Ca

(distHamm(x, c)) (breaking ties

arbitrarily).

2 Let d̂x = dx + L, where L ∼ Lap(1/ε), and Lap(c)
denotes a random variable having Laplace(0,c)
distribution.

3 if d̂x <

(
t− 1

4
− log(1/δ)

ε

)
then

4 Return f(x).
5 else
6 Return ⊥.

7 end
Algorithm 2: Bε,δ

We prove Theorem IV.1 in the full version.
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