
Popular Conjectures as a Barrier for
Dynamic Planar Graph Algorithms

Amir Abboud

Department of Computer Science
Stanford University

abboud@cs.stanford.edu

Søren Dahlgaard

Department of Computer Science
University of Copenhagen
soerend@di.ku.dk

Abstract—The dynamic shortest paths problem on planar
graphs asks us to preprocess a planar graph G such that
we may support insertions and deletions of edges in G as
well as distance queries between any two nodes u, v subject
to the constraint that the graph remains planar at all times.
This problem has been extensively studied in both the theory
and experimental communities over the past decades. The best
known algorithm performs queries and updates in Õ(n2/3)
time, based on ideas of a seminal paper by Fakcharoenphol
and Rao [FOCS’01]. A (1 + ε)-approximation algorithm of
Abraham et al. [STOC’12] performs updates and queries in
Õ(

√
n) time. An algorithm with a more practical O(poly logn)

runtime would be a major breakthrough. However, such
runtimes are only known for a (1 + ε)-approximation in a
model where only restricted weight updates are allowed due
to Abraham et al. [SODA’16], or for easier problems like
connectivity.

In this paper, we follow a recent and very active line of work
on showing lower bounds for polynomial time problems based
on popular conjectures, obtaining the first such results for
natural problems in planar graphs. Such results were previously
out of reach due to the highly non-planar nature of known
reductions and the impossibility of “planarizing gadgets”. We
introduce a new framework which is inspired by techniques
from the literatures on distance labelling schemes and on
parameterized complexity.

Using our framework, we show that no algorithm for
dynamic shortest paths or maximum weight bipartite matching
in planar graphs can support both updates and queries in
amortized O(n

1
2
−ε) time, for any ε > 0, unless the classical all-

pairs-shortest-paths problem can be solved in truly subcubic
time, which is widely believed to be impossible. We extend
these results to obtain strong lower bounds for other related
problems as well as for possible trade-offs between query and
update time. Interestingly, our lower bounds hold even in very
restrictive models where only weight updates are allowed.

Keywords-planar graphs; hardness in p; conditional lower
bounds; dynamic distance oracles; all pairs shortest paths;

I. INTRODUCTION

The dynamic shortest paths problem on planar graphs is

to preprocess a planar graph G, e.g. parts of the national

road network, so that we are able to efficiently support the

following two operations:

• At any point, we might insert or remove an edge (u, v)
in G, e.g. in case a road gets congested due to an

accident. Such updates are subjected to the constraint

that the planarity of the graph is not violated. We may

also consider another natural variant in which we are

only allowed to update the weights of existing edges.

• We want to be able to quickly answer queries that ask

for the length of the shortest path between two given

nodes u and v, in the most current graph G.

This is a problem that is very relevant to GPS navigation

and gets solved many times every day on very large graphs.

It is thus a very important question in both theory and

practice whether there exists data structures that can perform

updates and (especially) queries on graphs with n nodes in

polylogarithmic or even no(1) time.

Shortest paths problems on planar graphs provide an ideal

combination of mathematical simplicity and elegance with

faithful modeling of realistic applications of major industrial

interest. The literature on the topic is too massive for us to

survey in this paper: the current draft of the book “Opti-

mization Problems in Planar Graphs” by Klein and Mozes

[1] dedicates four chapters to the algorithmic techniques for

shortest paths by the theory community. While near-optimal

algorithms are known for most variants of shortest paths on

static planar graphs, the dynamic setting has proven much

more challenging.

Since an s, t-shortest path in a planar graph can be found

in near-linear time (linear time for non-negative weights)

[2], [3], there is a naïve algorithm for the dynamic problem

that spends Õ(n) time on queries. After progress on other

related problems on dynamic planar graphs [2], [4]–[9], the

first sublinear bound was obtained in the seminal paper of

Fakcharoenphol and Rao [3], which introduced new tech-

niques that led to major results for other problems like Max

Flow (even on static graphs) [10], [11]. The amortized time

per operation was O(n2/3 log7/3 n) and O(n4/5 log13/5 n)
if negative edges are allowed, and follow up works of

Klein [12], Italiano et al. [13], and Kaplan et al. [14]

reduced the runtime to O(n2/3 log5/3 n) for both queries and

updates (even allowing negative weights), and most recently,

Gawrychowski and Karczmarz [15] reduced it further to

O(n2/3 log5/3 n
log4/3 logn

). In fact these algorithms give a trade-off

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.58

476

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.58

477

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.58

477

on the update and query time of Õ(n/
√
r) and Õ(r), for all

r. The problem has also been extensively studied from an

engineering viewpoint on real-world transportation networks

(see [16] for a survey). State of the art algorithms [17]–

[21] are able to exploit structure of road networks and

process updates to networks with tens of millions of nodes

in milliseconds.

In a recent SODA’16 paper, Abraham et al. [22] study

worst case bounds under a restricted but realistic model

of dynamic updates in which a base graph G is given

and one is allowed to perform only weight updates subject

to the following constraint: For any updated graph G′ it

must hold that dG(u, v) ≤ dG′(u, v) ≤ M · dG(u, v) for

all u, v and some parameter M . (Note that this will hold

if, for example, the weight of each edge only changes to

within a factor of M .) In this model, the authors obtain

a (1 + ε)-approximation algorithm that maintains updates

in O(polylogn ·M4/ε3) time. Without this restriction, the

best known (1 + ε)-approximation algorithms use Õ(
√
n)

updates [9], [23]. Thus, when M is small, this model

allows for a major improvement over the above results

which require polynomial time updates. But is it enough

to allow for exact algorithms with subpolynomial updates?

Such a result would explain the impressive experimental

performance of state of the art algorithms.

On the negative side, Eppstein showed that

Ω(logn/ log log n) time is required in the cell probe

model [24] for planar connectivity (and therefore also

shortest path). However, an unconditional logω(1) n lower

bound is far beyond the scope of current techniques (see

[25]). In recent years, much stronger lower bounds were

obtained for dynamic problems under certain popular

conjectures [26]–[32]. For example, Roditty and Zwick

[26] proved an n2−o(1) lower bound for dynamic single

source shortest paths in general graphs under the following

conjecture.

Conjecture 1 (APSP Conjecture). There exists no algorithm
for solving the all pairs shortest paths (APSP) problem in
general weighted (static) graphs in time O(n3−ε) for any
ε > 0.

However, the reductions used in these results produce

graphs that are fundamentally non-planar, such as dense

graphs on three layers, and popular approaches for making

them planar, e.g. by replacing each edge crossing with a

small “planarizing gadget”, are provably impossible (this

was recently shown for matching [33] and is easier to show

for problems like reachability and shortest paths). Due to

this and other challenges no (conditional) polynomial lower

bounds were known for any natural problem on (static or

dynamic) planar graphs.

On a more general note, an important direction for future

research on the fine-grained complexity of polynomial time

problems (a.k.a. Hardness in P) is to understand the com-

plexity of fundamental problems on restricted but realistic

classes of inputs. A recent result along these lines is the

observation that the n2−o(1) lower bound for computing

the diameter of a sparse graph [34] holds even when the

treewidth of the graph is O(log n) [35]. In this paper, we take

a substantial step in this direction, proving the first strong

(conditional) lower bounds for natural problems on planar

graphs.

A. Our Results

We present the first conditional lower bounds for natural

problems on planar graphs using a new framework based

on several ideas for conditional lower bounds on dynamic

graphs combined with ideas from parameterized complexity

[36], [37] and labeling schemes [38]. We believe that this

framework is of general interest and might lead to more

interesting results for planar graphs. Our framework shows

an interesting connection between dynamic problems and

distance labeling and also slightly improves the result of

[38] providing a tight lower bound for distance labeling in

weighted planar graphs (this is discussed in Section I-B).

Our first result is a conditional polynomial lower bound

for dynamic shortest paths on planar graphs. Like several

recent results [31], [32], [39]–[42], our lower bound is based

on the APSP conjecture. Perhaps the best argument for this

conjecture is the fact that it has endured decades of extensive

algorithmic attacks. Moreover, due to the known subcubic
equivalences [39], [41], [42], the conjecture is false if and
only if several other fundamental graph and matrix problems

can be solved substantially faster.

Theorem 1. No algorithm can solve the dynamic APSP
problem in planar graphs on N nodes with amortized query
time q(N) and update time u(N) such that q(N) · u(N) =
O(N1−ε) for any ε > 0 unless Conjecture 1 is false. This
holds even if we only allow weight updates to G.

Thus, under the APSP conjecture, there is no hope for

a very efficient dynamic shortest paths algorithm on planar

graphs with provable guarantees. We show that an algorithm

achieving O(n1/2−ε) time for both updates and queries is

unlikely, implying that the current upper bounds achieving

Õ(n2/3) time are not too far from being conditionally

optimal. Furthermore, our result implies that any algorithm

with subpolynomial query time must have linear update time

(and the other way around). Thus, the naïve algorithm of

simply computing the entire shortest path every time a query

is made is (conditionally) optimal if we want no(1) update

time.

An important property of Theorem 1 is that our reduction

does not even violate planarity with respect to a fixed em-
bedding. Thus, we give lower bounds even for plane graph
problems, which in many cases allow for improved upper

bounds over flexible planar graphs (e.g. for reachability [43],

[44]). Moreover, our graphs are grid graphs which are

477478478

subgraphs of the infinite grid, a special and highly structured

subclass of planar graphs. Finally, as stated in Theorem 1 our

lower bound holds even for the edge weight update model

of Abraham et al. [22], where each edge only ever changes

its weight to within a factor of M > 1. While they obtain

fast polylog(n) time (1+ε)-approximation algorithm in this

model, we show that an exact answer with the same query

time likely requires linear update time and that an algorithm

with O(n1/2−ε) runtime for both is highly unlikely. Thus,

further theoretical restrictions need to be added in order to

explain the impressive performance on real road networks.

We also extend Theorem 1 to the case in which we

only need to maintain one s, t distance (the s, t-shortest

path problem) showing that the product of q(N) and u(N)
has to be N1−o(1) if q(N) ≥ u(N) unless Conjecture 1

is false identically to the bounds for maximum weight

matching discussed below in Theorem 3. While this problem

is equivalent to the APSP version in general (as we may

connect s and t to any two nodes u, v we wish to know the

distance between) this may violate planarity and especially a

fixed embedding. We show that this problem exhibits similar

trade-offs under Conjecture 1 even if we are only allowed to

update weights. Finally, we note that in the case of directed

planar graphs allowing negative edge weights our techniques

can be extended to show the same hardness result for any

approximation under Conjecture 1.

Next, we seek a lower bound for the unweighted version

of the problem, which arguably, is of more fundamental

interest. Typically, a conditional lower bound under the

APSP conjecture for a weighted problem can be modified

into a lower bound for its unweighted version under the

Boolean Matrix Multiplication (BMM) Conjecture [26],

[28], [39], [41], [45]. While for combinatorial algorithms

the complexity of BMM is conjectured to be cubic, it is

known that using algebraic techniques there is an O(nω)
algorithm, where ω < 2.373 [46], [47]. When reducing to

dynamic problems, however, lower bounds under BMM are

often under a certain online version of BMM for which,

Henzinger et al. [30] conjecture that there is no truly

subcubic algorithms, even using algebraic techniques. This

Online Matrix Vector Multiplication (OMv) Conjecture is

stated formally in Section V.

The OMv conjecture implies strong lower bounds for

many dynamic problems on general graphs [30], via ex-

tremely simple reductions [28], [30]. Our next result is a

significantly more involved reduction from OMv to dynamic

shortest paths on planar graphs, giving unweighted versions

of the theorems above. The lower bounds are slightly weaker

but they still rule out algorithms with subpolynomial update

and query times, even in grid graphs. We remark that all

lower bounds under the APSP conjecture in this paper, such

as Theorem 1, also hold under OMv.

Theorem 2. No algorithm can solve the dynamic APSP

problem in unit weight planar graphs on N nodes with
amortized query time q(N) and update time u(N) such that
max(q(N)2·u(N), q(N)·u(N)2) = O(N1−ε) for any ε > 0
unless the OMv conjecture of [30] is false. This holds even
if we only allow weight updates.

For instance, Theorem 2 shows that no algorithm is

likely to have O(n
1
3−ε) amortized time for both queries and

updates. It also shows that if we want to have no(1) for one

we likely need n
1
2−o(1) time for the other.

Combined with previous results, our theorems reveal a

mysterious phenomenon: there are two contradicting sepa-

rations between planar graphs and small treewidth graphs, in

terms of the time complexity of dynamic problems related

to shortest paths (under popular conjectures). To illustrate

these separations, consider the dynamic s, t-shortest path

problem and the dynamic approximate diameter problem.

For s, t-shortest path, planar graphs are much harder, they

require n1/3−o(1) update or query time by Theorems 5 and

2 (under OMv), while on small (polylog) treewidth graphs

there is an algorithm achieving polylog updates and queries

[22]. On the other hand, for approximate diameter, planar

graphs are provably easier unless the Strong Exponential

Time Hypothesis (SETH) is false. A naive algorithm, that

runs the known Õ(n) time static algorithm for (1 + ε)
approximate diameter on planar graphs after each update

[48], shatters an n2−o(1) SETH-based lower bound for

a (4/3 − δ) approximation for diameter on graphs with

treewidth O(log n) [28]1.

We demonstrate the potential of our framework to yield

further strong lower bounds for important problems in planar

graphs by proving such a result for another well-studied

problem in the graph theory literature, namely Maximum

Weight Matching.

Maintaining a maximum matching in general dynamic

graphs is a difficult task: the best known algorithm by

Sankowski [49] has an O(n1.495) amortized update time, and

it is better than the simple O(m) algorithm (that looks for an

augmenting path after every update) only in dense graphs.

Recent results show barriers for much faster algorithms via

conjectures like OMv and 3-SUM [28]–[30], [32]. To our

knowledge, this O(m) update time is the best known for pla-

nar graphs and no lower bound is known. Meanwhile, there

has been tremendous progress on approximation algorithms

[50]–[59], both on general and planar graphs, as well as for

the natural Maximum Weight Matching (see the references

in [60] for the history of this variant). Planar graphs have

proven easier to work with in this context: the state of the art

deterministic algorithm for maintaining a (1+ ε)-maximum

matching in general graphs has O(
√
m) update time [61],

1This lower bound follows from observing that the reduction from CNF-
SAT to dynamic diameter [28] produces graphs with logarithmic treewidth.
For more details on an analogous observation w.r.t. the lower bound for
diameter in static graphs, see [35].

478479479

while in planar graphs the bound is O(1) [58].

We show a strong polynomial lower bound for Max

Weight Matching on planar graphs, that holds even for

bipartite graphs with a fixed embedding into the plane and

even in grid graphs. The lower bound is similar to Theorem 1

and shows a trade-off between query and update time.

Theorem 3. No algorithm can solve the dynamic maximum
weight matching problem in bipartite planar graphs on N
nodes with amortized update time u(N) and query time
q(N) such that max(q(N), u(N)) = O(N

1
2−ε) for any ε >

0 unless Conjecture 1 is false. Furthermore, if q(N) ≥ u(N)
the algorithm cannot have q(N) · u(N) = O(N1−ε). This
holds even if the planar embedding of G never changes.

Finally, we use our framework to show lower bounds for

various other problems, like dynamic girth and diameter.

We also argue that our bounds can be turned into worst-

case bounds for incremental and decremental versions of

the same problems.

B. Techniques and relations to distance labeling

To prove the results mentioned above we introduce a

new framework for reductions to optimization problems

on planar graphs. As mentioned, we combine ideas from

previous lower bound proofs for dynamic graph problems

with an approach inspired by the framework of Marx for

hardness of parameterized geometric problem (via the Grid

Tiling problem) [36], [37] and a graph construction from the

research on labelling schemes by Gavoille et al. [38].

Gavoille et al. [38] used a family of grid-like graphs to

prove an (unconditional) lower bound of Ω(
√
n) on the

label size of distance labeling in weighted planar graphs

along with a O(
√
n log n) upper bound. (A full discussion

of distance labeling schemes is outside the scope of this

paper. For details on this we refer to [38], [62], [63]). In

this paper we generalize their family of graphs to a family

of grid graphs capable of representing general matrices with

weights in [poly(n)] via shortest paths distances. Using our

construction with the framework of [38], we obtain a tight
Ω(

√
n log n) lower bound on the size of distance labeling

in weighted planar graphs (and even grid graphs).

Our main approach works by reducing from the (min,+)-
Matrix-Multiplication problem which is known to be equiv-

alent to APSP (see [39]): Given two n × n matrices A,B
with entries in [poly(n)], compute a matrix C = A⊕B such

that C[i, j] = mink∈[n] A[i, k] + B[k, j]. By concatenating

grid graphs from the family described above we are able to

represent one of the matrices in the product and we can then

simulate the multiplication process via updates and shortest

paths queries.

In a certain intuitive sense, our connection between dy-

namic algorithms and labeling schemes is the reverse direc-

tion of the one shown by Abraham et al. [23] to obtain their

Õ(
√
N) update time (1 + ε)-approximation algorithm for

dynamic APSP. Their algorithm utilizes a clever upper bound

for the so-called forbidden set distance labeling problem,

while our lower bound constructions have a clever lower

bound for labeling schemes embedded in them.

II. A GRID CONSTRUCTION

In order to reduce to problems on planar graphs we

will need a planar construction, which is able to capture

the complications of problems like OMv and APSP. To do

this we will employ a grid construction based on the one

used in [38] to prove lower bounds on distance labeling

for planar graphs. Our construction takes a matrix as input

and produces a grid graph representing that matrix. We

first present a boolean version similar to the one from

[38] and then modify it to obtain a version taking matrices

with integer entries as input. This modified matrix also

immediately leads to a tight Ω(
√
n log n) lower bound for

distance labeling in planar graphs with weights in [poly(n)]
when combined with the framework of [38].

Definition 1. Let M be a boolean R × C matrix. We will

call the following construction the grid embedding of M :

Let GM be a rectangular grid graph with R rows and

C columns. Denote the node at intersection (i, j) by ui,j

(u1,1 is top-left and uR,C is bottom-right). Add C nodes

a1, . . . , aC and edges (u1,j , aj) above GM . Similarly add

the nodes b1, . . . , bR and edges (ui,C , bi) to the right of

GM . Now subdivide each vertical edge adding the node vi,j
above ui,j , and subdivide each horizontal edge adding the

node wi,j to the right of ui,j . Finally, for each entry of M
such that Mi,j = 1 add the node xi,j and edges (vi,j , xi,j)
and (wi,j , xi,j) to the graph.

The weights of GM are as follows: Each edge

(ui,j , vi+1,j) and (aj , v1,j) has weight 2j − 1. Each edge

(wi,j , ui+1,j) and (wi,C , bi) has weight 2R − 2. The edge

(ui,j , wi,j) has weight 2. All remaining edges have weight

1.

We will call the two-edge path vi,j → xi,j → wi,j a

shortcut from vi,j to wi,j as it has length 1 less than the

path vi,j → ui,j → wi,j . Clearly, the grid embedding of a

R×C matrix has O(RC) nodes. It is also easy to see that

such a grid embedding is a subgraph of a 2R+1× 2C +1
rectangular grid. The construction of Definition 1 for a 3×3
matrix can be seen in Figure 1.

Proposition 1. Let M be a boolean R × C matrix and let
GM be its grid embedding as defined in Definition 1. Then
for any 1 ≤ i ≤ R, 1 ≤ j ≤ C and i < k ≤ R the shortest
path distance from ui,j to bk is exactly

(k − i) · 2j + 2R · (C − j + 1)

if Mk,j = 0 and

(k − i) · 2j + 2R · (C − j + 1)− 1

479480480

1 1 0
0 1 1
0 1 0

1

1

1

3

3

3

5

5

5

1
1

12 4

v3,2

u3,2 w3,2

b1

b2

b3

a1 a2 a3

x3,2

Figure 1. Illustration of the construction of Definition 1. The shortest
path from a2 to b2 is highlighted in red. Most edge weights are omitted
for clarity.

otherwise.

The following useful property of our grid construction

follows.

Corollary 1. Let M and GM be as in Proposition 1. Then
for any 1 ≤ k ≤ R, 1 ≤ j ≤ C, the distance between aj
and bk in GM is exactly determined by whether Mk,j = 1.
In this case the distance is 2R · (C − j + 1) + 2jk − 1 and
it is 2R · (C − j + 1) + 2jk otherwise.

The following generalization for matrices with integer

weights will be useful when reducing from APSP.

Definition 2. Let M be a R×C matrix with integer weights

in {0, . . . , X}. We will call the following construction the

grid embedding of M .

Let GM be the grid embedding from Definition 1 for the

all ones matrix of size R × C and multiply the weight of

each edge by X2. Furthermore, for each edge (vi,j , xi,j)
increase its weight by Mi,j .

Corollary 2. Let M be a R×C matrix with integer weights
in {0, . . . , X} and let GM be its grid embedding. Then for
any 1 ≤ k ≤ R, 1 ≤ j ≤ C, the distance between aj and
bk in GM is exactly

X2 · (2R · (C − j + 1) + 2jk − 1) +Mk,j

Corollary 2 follows from Corollary 1 by observing that

any path from aj to bk not using the shortcut at intersection

(k, j) has distance at least X2 · (2R · (C − j + 1) + 2jk)
and since Mk,j < X2 this distance is longer than using the

shortcut. We remark that it would have been sufficient to

multiply the weights by (X + 1) instead of X2, but we do

so to simplify a later argument.

III. HARDNESS OF DYNAMIC APSP IN PLANAR GRAPHS

We will first show the following, simpler theorem and then

generalize it to show trade-offs between query and update

time.

Theorem 4. No algorithm can solve the dynamic APSP
problem in planar graphs on N nodes with amortized update
and query time O(N

1
2−ε) for any ε > 0 unless Conjecture 1

is false. This holds even if only weight updates are allowed.

The main idea in proving Theorem 4 is to reduce from

the APSP problem by first reducing to (min,+)-Matrix-Mult

and use the grid construction from Section II to represent the

matrices to be multiplied. We then perform several shortest

paths queries to simulate the multiplication process. Below,

we first present a naïve and faulty approach explaining the

main ideas of the reduction. We then show how to mend

this approach giving the desired result.

Attempt 1. Consider the following algorithm for solving an

instance, A⊕B of the (min,+)-Matrix-Mult problem, where

A and B are n×n matrices. We may assume that A and B
have integer weights in {0, . . . , X} for some X = poly(n).

We let the initial graph of the problem be the grid

embedding GB of B according to Definition 2 along with

a special vertex t. Also add the edges (bk, t) for each

1 ≤ k ≤ n. Now we wish to construct C = A ⊕ B one

row at a time. Such a row is a (min,+)-product of a row

in A and the entire matrix B. Thus, for each row, i, of A
we have a phase as follows:

1) For each 1 ≤ k ≤ n update the weight of the edge

(bk, t) to be Ai,k.
2) For each 1 ≤ j ≤ n query the distance between aj

and t.

The idea of each phase is that the distance between aj and

t should correspond to the value of Ci,j = mink Ai,k+Bk,j .

Observe, that the distance from aj to t using the edge (bk, t)
is exactly

X2 · (2n · (n− j + 1) + 2jk − 1) +Bk,j +Ai,k

by Corollary 2. The dominant term in this expression in-

creases with k and thus no matter what Bk,j and Ai,k are

(for k > 1), the shortest path from aj to t will simply pick

k = 1 minimizing the above expression. If we instead set

the weight of each edge (bk, t) to X2 · 2j(n− k)+Ai,k we

get the distance of using this edge to be

X2 · (2n(n+ 1)− 1) +Bk,j +Ai,k .

It follows that the shortest path from aj to t is free to pick

any k while only affecting the Bk,j+Ai,k term, which means

that the shortest distance will be achieved by picking the k
minimizing this term, which would give us exactly X2 ·
(2n(n + 1) − 1) + Ci,j . This approach therefore allows us

to correctly calculate C = A ⊕ B. However, the weight of

the edge (bk, t) now depends on which aj we are querying

implying that we have to update this weight for each aj
leading to a total of O(n3) updates. By using this approach

we are thus not able to make any statement about the time

480481481

required for updates. We may try to assign edges and weights

differently, but such approaches run into similar issues.

Observe that the graph created has N = O(n2) nodes.

Thus, if we were able to perform only O(n2) total queries

and updates the result of Theorem 4 would follow. ♦
In order to circumvent this dependence on j when as-

signing weights to the edges (bk, t) we instead replace t by

another grid whose purpose is to “normalize” the distance

for each aj . By doing this we can connect the grids with

edges whose weight is independent of j. This step deviates

significantly from the construction of [38] and is inspired

by the grid tiling framework of Marx [36], [37].

Proof of Theorem 4: We follow the same approach

as in Attempt 1, but with a few changes. Define the initial

graph G as follows: Let GB be as before and let G′B be the

grid embedding of B mirrored along the vertical axis with

all shortcuts removed. Now for each 1 ≤ k ≤ n add the

edge (bk, b
′
k) and define G to be this graph.

Now we perform a phase for each row i of A as follows:

1) For each 1 ≤ k ≤ n set the weight of the edge (bk, b
′
k)

to be X2 · (2(n+ 1)(n− k)) +Ai,k.
2) For each j query the distance between aj and a′n−j+1.

An example of this construction for n = 3 can be seen in

Figure 2.

From the query between nodes aj and a′n−j+1 above

during phase i we can determine the entry Ci,j of the output

matrix. To see this, consider the distance from aj to a′n−j+1

at the time of query. This path has to go via some edge

(bk, b
′
k). From Corollary 2 we know that this distance is

exactly

dG(aj , a
′
n−j+1) = d(aj , bk) + w(bk, b

′
k) + d(b′k, a

′
n−j+1)

= X2 · 2n(n+ 1) +X2 · 2k(n+ 1)

+X2 · 2(n+ 1)(n− k) +Bk,j +Ai,k −X2

= X2 · 4n(n+ 1)−X2 +Bk,j +Ai,k .

The crucial property that our construction achieves is that

the dominant term of this expression is independent of k.

Thus, the shortest path will choose to go through the edge

(bk, b
′
k) that minimizes Bk,j+Ai,k, implicitly giving us Ci,j .

Subtracting X2 · (4n(n+ 1)− 1) from the queried distance

gives exactly the value of Ci,j and the algorithm therefore

correctly computes C.

Following the analysis from Attempt 1 we have that any

algorithm with an amortized running time of O(N
1
2−ε) for

both updates and queries contradicts Conjecture 1.

A. Trade-offs

Theorem 4 above shows that no algorithm can perform

both updates and queries in amortized time O(N
1
2−ε) unless

Conjecture 1 is false. We will now show how to generalize

these ideas to show Theorem 1.

Proof of Theorem 1: The proof follows the same

structure as the proof for Theorem 4, but instead of reducing

from (min,+)-Matrix-Mult on n × n matrices we reduce

from an unbalanced version.

Let A and B be n×nβ and nβ×nα matrices respectively

for some 0 < α, β ≤ 1. It follows from standard sub-cubic

reductions [39] that this problem takes n1+α+β−o(1) time

unless we can solve the n × n problem (and thus APSP)

faster than n3−o(1). We define the initial graph G from B
in the same manner as in Theorem 4. We then have a phase

for each row i of A as follows:

1) For each 1 ≤ k ≤ nβ set the weight of the edge

(bk, b
′
k) to be X2 · (2(nα + 1)(nβ − k)) +Ai,k.

2) For each 1 ≤ j ≤ nα query the distance between aj
and a′nα−j+1.

The entry Ci,j is exactly the distance dG(aj , a
′
nα−j+1) from

the ith phase minus X2 · (4nβ(nα+1)−1). The correctness

of the above reduction follows directly from the proof of

Theorem 4 as well as Corollary 2.

Now observe that the graph G from the above reduc-

tion has N = Θ(nα+β) nodes and we perform a total

of O(n1+α) queries and O(n1+β) updates2 – that is, at

most O(n) updates per row and O(n) queries per column.

Any algorithm solving this problem must use total time

n1+α+β−o(1) time unless Conjecture 1 is false. It follows

that either updates must take nα−o(1) amortized time or

queries must take nβ−o(1) amortized time.

Assume now that an algorithm exists such that queries

take O(Nγ) amortized time for any 0 < γ < 1. We wish to

show that this algorithm cannot perform updates in amor-

tized time O(N1−γ−ε) for any ε > 0. Pick β = γ+ε/2 and

set α = 1− β. We now use the above reduction to create a

dynamic graph G with N = O(nα+β) = O(n) nodes. Since

queries do not take nβ−o(1) time it follows from the above

discussion that updates must take nα−o(1) = n1−γ−ε/2−o(1)

time. Since this is polynomially greater than O(N1−γ−ε)
the claim follows.

IV. HARDNESS OF DYNAMIC MAXIMUM WEIGHT

MATCHING IN BIPARTITE PLANAR GRAPHS

In this section we will demonstrate the generality of our

reduction framework by showing Theorem 3.

Proof of Theorem 3: We start by showing how to re-

duce from (min,+)-Matrix-Mult to minimum weight perfect

matching, where the weight of such a matching corresponds

to the shortest path distance between aj and a′n−j+1 similar

to the proof of Theorem 1. We then describe how to use this

reduction further to get a problem instance for maximum

weight matching.

Let A,B be an instance to the (min,+)-Matrix-Mult

problem of sizes n×nβ and nβ ×nα respectively. Consider

the grid embedding GB of B. We first replace each node of

GB by two nodes connected by an edge of weight 0. For

2We also perform O(nα+β) updates to create the initial graph (depend-
ing on the model), however we will choose α and β such that this term is
dominated.

481482482

b1

b2

b3

a1 a2 a3 a'1a'2a'3

b'1

b'2

b'3

X2+B2,1

X2·8+Ai,2

X2·16+Ai,1

Ai,3

X2 5X2

X2

Figure 2. Example of a phase in the graph G in the reduction of Theorem 4. The highlighted path illustrates a shortest path between a1 and a′3 as an
example of a query. Most edge weights have been omitted for clarity.

aj , ui,j , xi,j , and vi,j denote the corresponding nodes with

superscript d and u (for “down” and “up”). For bi and wi,j

denote the corresponding nodes with superscript l and r (for

“left” and “right”). Now, for each original edge in GB we

replace it as follows keeping its weight:

• (ui,j , vi,j) → (uu
i,j , v

d
i,j)

• (ui,j , wi,j) → (ud
i,j , w

l
i,j)

• (ui,j , vi+1,j) → (ud
i,j , v

u
i+1,j)

• (ui,j , wi,j−1) → (uu
i,j , w

r
i,j−1)

• (vi,j , xi,j) → (vdi,j , x
u
i,j)

• (xi,j , wi,j) → (xd
i,j , w

l
i,j)

• (aj , v0,j) → (adj , v
u
0,j)

• (wi,C , bi) → (wr
i,C , b

l
i)

This construction is illustrated in Figure 3. We call this

modified grid structure ḠB . Observe that there are no edges

between “up” and “left” vertices or between “down” and

“right”. It follows that the graph is bipartite and that these

two sets of nodes make up the two partitions.

We now replace the grids GB and G′B by ḠB and Ḡ′B in

the initial graph G from the proof of Theorem 1. The edges

(bk, b
′
k) are replaced by (brk, b

′l
k). We will use the following

observation.

Proposition 2. The graph resulting from joining two grids
ḠB in the way of Figure 2 has a unique perfect matching.

We now add two additional nodes s and t to the initial

graph and perform a phase for each row i of A as follows:

1) For each 1 ≤ k ≤ nβ set the weight of the edge

(brk, b
′l
k) to be X2 · (2(nα + 1)(nβ − k)) +Ai,k.

2) For each 1 ≤ j ≤ nα do the following three steps: 1)

add the edges (s, auj) and (t, a′unα−j+1), 2) query the

minimum weight perfect matching, 3) delete the two

edges.

Since the edges (s, auj) and (t, a′unα−j+1) have to be in any

perfect matching this leaves adj and a′dnα−j+1 unmatched.

Any perfect matching now has to “connect” these two nodes

by a path of original (weight > 0) edges. The weight of a

perfect matching in G then corresponds to the length of a

shortest path from aj to a′nα−j+1 in the graph from the proof

of Theorem 1. It follows that we get the same trade-offs for

minimum weight perfect matching as for APSP with the

exception that the trade-off only holds when q(N) ≥ u(N)
since we perform O(1) updates for each query.

To show the same result for maximum weight matching

we may simply perform the following two changes: 1) pick

a sufficiently large integer y and set the weight of each

edge to y minus its weight in the above reduction, and 2)

when adding the edges (s, auj) and (t, a′unα−j+1) assign them

weight y2 such that any maximum weight matching has to

include these two edges and will have weight

y2 +
N − 4

2
· y − dG∗(aj , a′nα−j+1) ,

where G∗ denotes the corresponding graph in the proof of

Theorem 1.

V. UNWEIGHTED

In this section we sketch the proof of Theorem 2. Due to

space restrictions we have to defer the full proof to the full

paper available online at [64].

Instead of reducing from (min,+)-Matrix-Mult we reduce

from the online binary vector-matrix-vector multiplication

problem described in [30]. Since this is a binary problem

we can not use the weighted grid construction of Section II.

Instead we use the grid of Definition 1 and subdivide

each edge such that the graph is unweighted but has the

same distances between grid points. The proof now follows

by following essentially the same line of argument as in

Section III.

VI. DYNAMIC s, t-SHORTEST PATH AND RELATED

PROBLEMS

In Section III we showed a lower bound for the trade-off

between query and update time for dynamic APSP in grid

482483483

vu
2,2

vd
2,2

uu
2,2

ud
2,2

xu
2,2

xd
2,2

wl
2,2 wr

2,2

Figure 3. Grid construction for minimum weight perfect matching. Thick edges correspond to original edges and have the same weight as in GB . Thin
edges have weight 0.

graphs conditioned on Conjecture 1. Here we note that we

can extend the proof of Theorem 1 to show similar lower

bounds for dynamic problems, where the algorithm only

needs to maintain a single value such as s, t-shortest path,

girth, and diameter. We also note that the above techniques

for proving bounds in unweighted graphs also apply to the

theorem below. The proof of the following theorem can be

found in the full version of this paper.

Theorem 5. No algorithm can solve the s, t-shortest path,
girth (directed), or diameter problems in planar graphs on
N nodes with amortized update time u(N) and query time
q(N) such that max(q(N), u(N)) = O(N

1
2−ε) for any ε >

0 unless Conjecture 1 is false. Furthermore, if q(N) ≥ u(N)
the algorithm cannot have q(N) · u(N) = O(N1−ε). This
holds even if the planar embedding of G never changes.

VII. WORST-CASE BOUNDS FOR PARTIALLY DYNAMIC

PROBLEMS

Our reductions above work in the fully dynamic setting,

where edge insertions and deletions (or weight increments

and decrements) are allowed. Using the standard rollback
technique (see eg. [28]) we obtain the following worst-case
bounds for the partially dynamic versions of the problems

considered in this paper. Below we state the corollary for

APSP and note that similar statements can be made for our

other results.

Corollary 3. No algorithm can solve the incremental or
decremental APSP problem for planar graphs on N nodes
with worst-case query time q(N) and update time u(N)
such that q(N) · u(N) = O(N1−ε) for any ε > 0 unless
Conjecture 1 is false.

ACKNOWLEDGMENT

Amir Abboud’s research is partially supported by Virginia

Vassilevska Williams’s NSF Grants CCF-1417238 and CCF-

1514339, and BSF Grant BSF:2012338. Part of the work

was performed while Amir Abboud was visiting the Simons

Institute for the Theory of Computing, Berkeley, CA.
Søren Dahlgaard’s Research is partially supported by

Mikkel Thorup’s Advanced Grant DFF-0602-02499B from

the Danish Council for Independent Research under the

Sapere Aude research career programme. Part of this work

was done while Søren Dahlgaard was visiting Stanford

University.
The authors would like to acknowledge Shay Mozes,

Oren Weimann and Virginia Vassilevska Williams for helpful

comments and discussions.

REFERENCES

[1] P. Klein and S. Mozes, “Optimization algorithms for planar
graphs, 2014,” Book draft available at http://planarity.org.

[2] M. R. Henzinger, P. Klein, S. Rao, and S. Subramanian,
“Faster shortest-path algorithms for planar graphs,” journal
of computer and system sciences, vol. 55, no. 1, pp. 3–23,
1997.

[3] J. Fakcharoenphol and S. Rao, “Planar graphs, negative
weight edges, shortest paths, and near linear time,” Journal of
Computer and System Sciences, vol. 72, no. 5, pp. 868–889,
2006, see also FOCS’01.

[4] G. N. Frederickson, “Data structures for on-line updating of
minimum spanning trees, with applications,” SIAM Journal
on Computing, vol. 14, no. 4, pp. 781–798, 1985.

[5] Z. Galil and G. F. Italiano, Maintaining biconnected compo-
nents of dynamic planar graphs. Springer, 1991.

[6] H. N. Djidjev, G. E. Pantziou, and C. D. Zaroliagis, “Com-
puting shortest paths and distances in planar graphs,” in
Automata, Languages and Programming. Springer, 1991,
pp. 327–338.

[7] Z. Galil, G. F. Italiano, and N. Sarnak, “Fully dynamic
planarity testing,” in Proceedings of the twenty-fourth annual
ACM symposium on Theory of computing. ACM, 1992, pp.
495–506.

483484484

[8] S. Subramanian, “A fully dynamic data structure for reacha-
bility in planar digraphs,” in Algorithms-ESA’93. Springer,
1993, pp. 372–383.

[9] P. N. Klein and S. Subramanian, “A fully dynamic approxima-
tion scheme for shortest paths in planar graphs,” Algorithmica,
vol. 22, no. 3, pp. 235–249, 1998.

[10] G. Borradaile, P. N. Klein, S. Mozes, Y. Nussbaum, and
C. Wulff-Nilsen, “Multiple-source multiple-sink maximum
flow in directed planar graphs in near-linear time,” in Proc.
52nd IEEE Symposium on Foundations of Computer Science
(FOCS), 2011, pp. 170–179.

[11] J. Łącki, Y. Nussbaum, P. Sankowski, and C. Wulff-Nilsen,
“Single source–all sinks max flows in planar digraphs,” in
Foundations of Computer Science (focs), 2012 Ieee 53rd
Annual Symposium on. IEEE, 2012, pp. 599–608.

[12] P. N. Klein, “Multiple-source shortest paths in planar graphs,”
in SODA, vol. 5, 2005, pp. 146–155.

[13] G. F. Italiano, Y. Nussbaum, P. Sankowski, and C. Wulff-
Nilsen, “Improved algorithms for min cut and max flow in
undirected planar graphs,” in Proceedings of the forty-third
annual ACM symposium on Theory of computing. ACM,
2011, pp. 313–322.

[14] H. Kaplan, S. Mozes, Y. Nussbaum, and M. Sharir, “Sub-
matrix maximum queries in monge matrices and monge
partial matrices, and their applications,” in Proceedings of
the twenty-third annual ACM-SIAM symposium on Discrete
Algorithms. SIAM, 2012, pp. 338–355.

[15] P. Gawrychowski and A. Karczmarz, “Improved bounds
for shortest paths in dense distance graphs,” CoRR, vol.
abs/1602.07013, 2016. [Online]. Available: http://arxiv.org/
abs/1602.07013

[16] D. Delling, P. Sanders, D. Schultes, and D. Wagner, “Engi-
neering route planning algorithms,” in Algorithmics of large
and complex networks. Springer, 2009, pp. 117–139.

[17] R. Bauer, “Dynamic speed-up techniques for dijkstra?s algo-
rithm,” Master’s thesis, Institut für Theoretische Informatik-
Universität Karlsruhe (TH), p. 41, 2006.

[18] D. Delling, A. V. Goldberg, T. Pajor, and R. F. Werneck,
“Customizable route planning,” in Experimental algorithms.
Springer, 2011, pp. 376–387.

[19] D. Delling and D. Wagner, “Landmark-based routing in
dynamic graphs,” in Experimental algorithms. Springer,
2007, pp. 52–65.

[20] R. Geisberger, P. Sanders, D. Schultes, and C. Vetter, “Exact
routing in large road networks using contraction hierarchies,”
Transportation Science, vol. 46, no. 3, pp. 388–404, 2012.

[21] D. Schultes and P. Sanders, “Dynamic highway-node routing,”
in Experimental Algorithms. Springer, 2007, pp. 66–79.

[22] I. Abraham, S. Chechik, D. Delling, A. V. Goldberg, and R. F.
Werneck, “On dynamic approximate shortest paths for planar
graphs with worst-case costs,” in Proc. 27th ACM/SIAM
Symposium on Discrete Algorithms (SODA), 2016, pp. 740–
753.

[23] I. Abraham, S. Chechik, and C. Gavoille, “Fully dynamic
approximate distance oracles for planar graphs via forbidden-
set distance labels,” in Proc. 44th ACM Symposium on Theory
of Computing (STOC), 2012, pp. 1199–1218.

[24] D. Eppstein, “Dynamic connectivity in digital images,” In-
formation Processing Letters, vol. 62, no. 3, pp. 121–126,
1997.

[25] R. Clifford, A. Grønlund, and K. G. Larsen, “New uncon-
ditional hardness results for dynamic and online problems,”
in Proc. 56th IEEE Symposium on Foundations of Computer
Science (FOCS), 2015, pp. 1089–1107.

[26] L. Roditty and U. Zwick, “On dynamic shortest paths prob-
lems,” Algorithmica, vol. 61, no. 2, pp. 389–401, 2011, see
also ESA’04.

[27] M. Patrascu, “Towards polynomial lower bounds for dynamic
problems,” in Proc. 42nd ACM Symposium on Theory of
Computing (STOC), 2010, pp. 603–610.

[28] A. Abboud and V. V. Williams, “Popular conjectures im-
ply strong lower bounds for dynamic problems,” in Proc.
55th IEEE Symposium on Foundations of Computer Science
(FOCS), 2014, pp. 434–443.

[29] T. Kopelowitz, S. Pettie, and E. Porat, “Higher lower bounds
from the 3sum conjecture,” in Proc. 27th ACM/SIAM Sympo-
sium on Discrete Algorithms (SODA), 2016, pp. 1272–1287.

[30] M. Henzinger, S. Krinninger, D. Nanongkai, and T. Sara-
nurak, “Unifying and strengthening hardness for dynamic
problems via the online matrix-vector multiplication conjec-
ture,” in Proc. 47th ACM Symposium on Theory of Computing
(STOC), 2015, pp. 21–30.

[31] A. Abboud, V. V. Williams, and H. Yu, “Matching triangles
and basing hardness on an extremely popular conjecture,” in
Proc. 47th ACM Symposium on Theory of Computing (STOC),
2015, pp. 41–50.

[32] S. Dahlgaard, “On the hardness of partially dynamic graph
problems and connections to diameter,” arXiv preprint
arXiv:1602.06705, 2016, to appear at ICALP’16.

[33] R. Gurjar, A. Korwar, J. Messner, S. Straub, and T. Thierauf,
“Planarizing gadgets for perfect matching do not exist,”
in Mathematical Foundations of Computer Science 2012.
Springer, 2012, pp. 478–490.

[34] L. Roditty and V. V. Williams, “Fast approximation algo-
rithms for the diameter and radius of sparse graphs,” in
Proc. 45th ACM Symposium on Theory of Computing (STOC),
2013, pp. 515–524.

[35] A. Abboud, V. V. Williams, and J. R. Wang, “Approximation
and fixed parameter subquadratic algorithms for radius and
diameter in sparse graphs,” in Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2016, Arlington, VA, USA, January 10-12,
2016, 2016, pp. 377–391.

[36] D. Marx, “On the optimality of planar and geometric approxi-
mation schemes,” in Foundations of Computer Science, 2007.
FOCS’07. 48th Annual IEEE Symposium on. IEEE, 2007,
pp. 338–348.

484485485

[37] ——, “The square root phenomenon in planar graphs.” in
ICALP (2), 2013, p. 28.

[38] C. Gavoille, D. Peleg, S. Pérennes, and R. Raz, “Distance
labeling in graphs,” Journal of Algorithms, vol. 53, no. 1, pp.
85–112, 2004, see also SODA’01.

[39] V. V. Williams and R. Williams, “Subcubic equivalences
between path, matrix and triangle problems,” in Foundations
of Computer Science (FOCS), 2010 51st Annual IEEE Sym-
posium on. IEEE, 2010, pp. 645–654.

[40] A. Abboud and K. Lewi, “Exact weight subgraphs and the
k-sum conjecture,” in Proc. 40th International Colloquium on
Automata, Languages and Programming (ICALP), 2013, pp.
1–12.

[41] A. Abboud, F. Grandoni, and V. V. Williams, “Subcubic
equivalences between graph centrality problems, APSP and
diameter,” in Proc. 26th ACM/SIAM Symposium on Discrete
Algorithms (SODA), 2015, pp. 1681–1697.

[42] B. Saha, “Language edit distance and maximum likelihood
parsing of stochastic grammars: Faster algorithms and con-
nection to fundamental graph problems,” in Foundations of
Computer Science (FOCS), 2015 IEEE 56th Annual Sympo-
sium on. IEEE, 2015, pp. 118–135.

[43] K. Diks and P. Sankowski, “Dynamic plane transitive clo-
sure,” in Algorithms–ESA 2007. Springer, 2007, pp. 594–
604.

[44] R. B. Avraham, H. Kaplan, and M. Sharir, “A faster algorithm
for the discrete fréchet distance under translation,” arXiv
preprint arXiv:1501.03724, 2015.

[45] D. Dor, S. Halperin, and U. Zwick, “All-pairs almost shortest
paths,” SIAM Journal on Computing, vol. 29, no. 5, pp. 1740–
1759, 2000.

[46] V. V. Williams, “Multiplying matrices faster than
coppersmith-winograd,” in Proceedings of the forty-fourth
annual ACM symposium on Theory of computing. ACM,
2012, pp. 887–898.

[47] F. Le Gall, “Powers of tensors and fast matrix multiplication,”
in Proceedings of the 39th international symposium on sym-
bolic and algebraic computation. ACM, 2014, pp. 296–303.

[48] O. Weimann and R. Yuster, “Approximating the diameter of
planar graphs in near linear time,” ACM Transactions on
Algorithms, vol. 12, no. 1, p. 12, 2016, see also ICALP’13.

[49] P. Sankowski, “Faster dynamic matchings and vertex con-
nectivity,” in Proc. 18th ACM/SIAM Symposium on Discrete
Algorithms (SODA), 2007, pp. 118–126.

[50] K. Onak and R. Rubinfeld, “Maintaining a large matching
and a small vertex cover,” in Proceedings of the forty-second
ACM symposium on Theory of computing. ACM, 2010, pp.
457–464.

[51] S. Baswana, M. Gupta, and S. Sen, “Fully dynamic maximal
matching in o (log n) update time,” in Foundations of Com-
puter Science (FOCS), 2011 IEEE 52nd Annual Symposium
on. IEEE, 2011, pp. 383–392.

[52] O. Neiman and S. Solomon, “Simple deterministic algorithms
for fully dynamic maximal matching,” ACM Transactions
on Algorithms (TALG), vol. 12, no. 1, p. 7, 2015, see also
STOC’13.

[53] A. Bernstein and C. Stein, “Fully dynamic matching in
bipartite graphs,” in Automata, Languages, and Programming.
Springer, 2015, pp. 167–179.

[54] S. Bhattacharya, M. Henzinger, and G. F. Italiano, “Deter-
ministic fully dynamic data structures for vertex cover and
matching,” in Proceedings of the Twenty-Sixth Annual ACM-
SIAM Symposium on Discrete Algorithms. SIAM, 2015, pp.
785–804.

[55] A. Bernstein and C. Stein, “Faster fully dynamic matchings
with small approximation ratios,” in Proceedings of the
Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms. SIAM, 2016, pp. 692–711.

[56] M. He, G. Tang, and N. Zeh, “Orienting dynamic graphs, with
applications to maximal matchings and adjacency queries,” in
Algorithms and Computation. Springer, 2014, pp. 128–140.

[57] T. Kopelowitz, R. Krauthgamer, E. Porat, and S. Solomon,
“Orienting fully dynamic graphs with worst-case time
bounds,” in Automata, Languages, and Programming.
Springer, 2014, pp. 532–543.

[58] D. Peleg and S. Solomon, “Dynamic (1+ ε)-approximate
matchings: a density-sensitive approach,” in Proceedings of
the Twenty-Seventh Annual ACM-SIAM Symposium on Dis-
crete Algorithms. SIAM, 2016, pp. 712–729.

[59] A. Anand, S. Baswana, M. Gupta, and S. Sen, “Maintaining
approximate maximum weighted matching in fully dynamic
graphs,” in Conference on the Foundations of Software Tech-
nology and Theoretical Computer Science (FSTTCS), 2012,
pp. 257–266.

[60] R. Duan and S. Pettie, “Linear-time approximation for maxi-
mum weight matching,” Journal of the ACM (JACM), vol. 61,
no. 1, p. 1, 2014.

[61] M. Gupta and R. Peng, “Fully dynamic (1+ e)-approximate
matchings,” in Foundations of Computer Science (FOCS),
2013 IEEE 54th Annual Symposium on. IEEE, 2013, pp.
548–557.

[62] S. Alstrup, C. Gavoille, E. B. Halvorsen, and H. Petersen,
“Simpler, faster and shorter labels for distances in graphs,”
in Proc. 27th ACM/SIAM Symposium on Discrete Algorithms
(SODA), 2016, pp. 338–350.

[63] S. Alstrup, S. Dahlgaard, M. B. T. Knudsen, and E. Porat,
“Sublinear distance labeling for sparse graphs,” CoRR,
vol. abs/1507.02618, 2015, to appear at ESA’16. [Online].
Available: http://arxiv.org/abs/1507.02618

[64] A. Abboud and S. Dahlgaard, “Popular conjectures as a
barrier for dynamic planar graph algorithms,” CoRR, vol.
abs/1605.03797, 2016.

485486486

