
Polynomial Representations of Threshold
Functions and Algorithmic Applications

Josh Alman∗, Timothy M. Chan† and Ryan Williams∗
∗Computer Science Department,

Stanford University,

{jalman,rrw}@cs.stanford.edu.
†Cheriton School of Computer Science,

University of Waterloo,

tmchan@uwaterloo.ca.

Abstract—We design new polynomials for representing
threshold functions in three different regimes: probabilistic
polynomials of low degree, which need far less randomness
than previous constructions, polynomial threshold functions
(PTFs) with “nice” threshold behavior and degree almost
as low as the probabilistic polynomials, and a new notion of
probabilistic PTFs where we combine the above techniques
to achieve even lower degree with similar “nice” thresh-
old behavior. Utilizing these polynomial constructions, we
design faster algorithms for a variety of problems:

• Offline Hamming Nearest (and Furthest) Neighbors:
Given n red and n blue points in d-dimensional
Hamming space for d = c logn, we can find an (ex-
act) nearest (or furthest) blue neighbor for every
red point in randomized time n2−1/O(

√
c log2/3 c) or

deterministic time n2−1/O(c log2 c). These improve on
a randomized n2−1/O(c log2 c) bound by Alman and
Williams (FOCS’15), and also lead to faster MAX-
SAT algorithms for sparse CNFs.

• Offline Approximate Nearest (and Furthest) Neighbors:
Given n red and n blue points in d-dimensional �1 or
Euclidean space, we can find a (1+ ε)-approximate
nearest (or furthest) blue neighbor for each red point
in randomized time near dn+n2−Ω(ε1/3/ log(1/ε)). This
improves on an algorithm by Valiant (FOCS’12) with
randomized time near dn+ n2−Ω(

√
ε), which in turn

improves previous methods based on locality-sensitive
hashing.

• SAT Algorithms and Lower Bounds for Circuits With
Linear Threshold Functions: We give a satisfiabil-
ity algorithm for AC0[m] ◦ LTF ◦ LTF circuits with a
subquadratic number of LTF gates on the bottom
layer, and a subexponential number of gates on
the other layers, that runs in deterministic 2n−nε

time. This strictly generalizes a SAT algorithm for
ACC0◦LTF circuits of subexponential size by Williams
(STOC’14) and also implies new circuit lower bounds
for threshold circuits, improving a recent gate lower
bound of Kane and Williams (STOC’16). We also
give a randomized 2n−nε -time SAT algorithm for
subexponential-size MAJ ◦AC0 ◦ LTF ◦AC0 ◦ LTF cir-
cuits, where the top MAJ gate and middle LTF gates
have O(n6/5−δ ) fan-in.

I. INTRODUCTION

The polynomial method is a powerful tool in circuit

complexity. The idea of the method is to transform all

circuits of some class into “nice” polynomials which

represent the circuit in some way. If the polynomial is

always sufficiently nice (e.g. has low degree), and one

can prove that a certain Boolean function f cannot be

represented so nicely, one concludes that the circuit class

is unable to compute f .
Recently, these tools have found surprising uses in

algorithm design. If a subproblem of an algorithmic

problem can be modeled by a simple circuit, and that

circuit can be transformed into a “nice” polynomial (or

“nice” distribution of polynomials), then fast algebraic

algorithms can be applied to evaluate or manipulate the

polynomial quickly. This approach has led to advances

on problems such as All-Pairs Shortest Paths [1], Orthog-

onal Vectors and Constraint Satisfaction [2], [3], [4], All-

Nearest Neighbor problems [5], and Stable Matching [6].

In most applications, the key step is to randomly

convert simple circuits into so-called probabilistic poly-

nomials. If f is a Boolean function on n variables, and

R is a ring, a probabilistic polynomial over R for f
with error 1/s and degree d is a distribution D of

degree-d polynomials over R such that for all x∈ {0,1}n,

Prp∼D [p(x) = f (x)]≥ 1− 1
s . Razborov [7] and Smolen-

sky [8] introduced the notion of a probabilistic polyno-

mial, and showed that any low-depth circuit consisting of

AND, OR, and PARITY gates can be transformed into

a low degree probabilistic polynomial by constructing

constant degree probabilistic polynomials for those three

gates. Many polynomial method algorithms use this

transformation.

In this work, we are interested in polynomial repre-

sentations of threshold functions. The threshold function

THθ determines whether at least a θ fraction of its input

bits are 1s. Threshold functions are among the simplest

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.57

466

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.57

467

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.57

467



Boolean functions that do not have constant degree prob-

abilistic polynomials: Razborov and Smolensky showed

that the MAJORITY function (a special case of a thresh-

old function) requires degree Ω(
√

n logs). Nonetheless,

as we will see throughout this paper, there are many

important problems which can be reduced to evaluating

circuits involving threshold gates on many inputs, and so

further study of polynomial representations of threshold

functions is warranted.

Threshold functions have been extensively studied

in theoretical computer science for many years; there

are numerous applications of linear and polynomial

threshold functions to complexity and learning theory (a

sample includes [9], [10], [11], [12], [13], [14], [15]).

A. Our Results

We consider three different notions of polynomials

representing THθ . Each achieves different tradeoffs be-

tween polynomial degree, the randomness required, and

how accurately the polynomial represents THθ . Each

leads to improved algorithms in our applications.

Less Randomness. First, we revisit probabilistic poly-

nomials. Alman and Williams [5] designed a probabilis-

tic polynomial for THθ which already achieves a tight

degree bound of Θ(
√

n logs). However, their construc-

tion uses Ω(n) random bits, which makes it difficult

to apply in deterministic algorithms. We show how

their low-degree probabilistic polynomials for threshold

functions can use substantially fewer random bits:

Theorem I.1. For any 0≤ θ ≤ 1, there is a probabilistic
polynomial for the function THθ of degree O(

√
n logs)

on n bits with error 1/s that can be randomly sampled
using only O(logn log(ns)) random bits.

Polynomial Threshold Function Representations.
Second, we consider deterministic Polynomial Threshold

Functions (PTFs). A PTF for a Boolean function f
is a polynomial (not a distribution on polynomials)

p : {0,1}n → R such that p(x) is smaller than a fixed

value when f (x) = 0, and p(x) is larger than the value

when f (x) = 1. In our applications, we seek PTFs with

“good threshold behavior”, such that |p(x)| ≤ 1 when

f (x) = 0, and p(x) is very large otherwise. We can

achieve almost the same degree for a PTF as for a

probabilistic polynomial, and even better degree for an

approximate threshold function:

Theorem I.2. We can construct a polynomial Ps,t,ε :R→
R of degree O(

√
1/ε logs), such that

• if x ∈ {0,1, . . . , t}, then |Ps,t,ε(x)| ≤ 1;
• if x ∈ (t,(1+ ε)t), then Ps,t,ε(x)> 1;
• if x≥ (1+ ε)t, then Ps,t,ε(x)≥ s.

For the “exact” setting with ε = 1/t, we can alternatively
bound the degree by O(

√
t log(st)).

By summing multiple copies of the polynomial from

Theorem I.2, we immediately obtain a PTF with the

same degree for the OR of O(s) threshold functions

(needed in our applications). This theorem follows di-

rectly from known extremal properties of Chebyshev

polynomials, as well as the lesser known discrete Cheby-

shev polynomials. Because Theorem I.2 gives a single

polynomial instead of a distribution on polynomials, it is

especially helpful for designing deterministic algorithms.

Chebyshev polynomials are well-known to yield good

approximate polynomials for computing certain Boolean

functions over the reals [16], [17], [13], [18], [19] (please

see the Preliminaries for more background).

Probabilistic PTFs. Third, we introduce a new (natu-

ral) notion of a probabilistic PTF for a Boolean function

f . This is a distribution on PTFs, where for each input

x, a PTF drawn from the distribution is highly likely to

agree with f on x. Combining the techniques from prob-

abilistic polynomials for THθ and the deterministic PTFs

in a simple way, we construct a probabilistic PTF with

good threshold behavior whose degree is lower than both

the deterministic PTF and the degree bounds attainable

by probabilistic polynomials (surprisingly breaking the

“square-root barrier”):

Theorem I.3. We can construct a probabilistic poly-
nomial P̃n,s,t,ε : {0,1}n → R of degree O((1/ε)1/3 logs),
such that

• if ∑n
i=1 xi≤ t, then |P̃n,s,t,ε(x1, . . . ,xn)| ≤ 1 with prob-

ability at least 1−1/s;
• if ∑n

i=1 xi ∈ (t, t + εn), then P̃n,s,t,ε(x1, . . . ,xn) > 1

with probability at least 1−1/s;
• if ∑n

i=1 xi ≥ t + εn, then P̃n,s,t,ε(x1, . . . ,xn) ≥ s with
probability at least 1−1/s.

For the “exact” setting with ε = 1/n, we can alterna-
tively bound the degree by O(n1/3 log2/3(ns)).

The PTFs of Theorem I.3 can be sampled using

only O(log(n) · log(ns)) random bits as well; their lower

degree will allow us to design faster randomized al-

gorithms for a variety of problems. For emphasis, we

will sometimes refer to PTFs as deterministic PTFs to

distinguish them from probabilistic PTFs.

These polynomials for THθ can be applied to many

different problems:

Offline Hamming Nearest Neighbor Search. In the

Hamming Nearest Neighbor problem, we wish to prepro-

cess a set D of n points in {0,1}d such that, for a query

q ∈ {0,1}d , we can quickly find the p ∈D with smallest

Hamming distance to q. This problem is central to many

problems throughout Computer Science, especially in

467468468



search and error correction [20]. However, it suffers from

the curse of dimensionality phenomenon, where known

algorithms achieve the nearly trivial runtimes of either

2Ω(d) or Ω(n/poly(logn)), with matching lower bounds

in many data structure models (see e.g. [21]). Using our

PTFs, we instead design a new algorithm for the natural

offline version of this problem:

Theorem I.4. Given n red and n blue points in {0,1}d

for d = c logn
 log3 n/ log5 logn, we can find an (exact)
Hamming nearest/farthest blue neighbor for every red
point in randomized time n2−1/O(

√
c log3/2 c).

Using the same ideas, we are also able to deran-

domize our algorithm, to achieve deterministic time

n2−1/O(c log2 c) (see Remark 3 in Section V). When d =
c logn for constant c, these algorithms both have “truly

subquadratic” runtimes. These both improve on Alman

and Williams’ algorithm [5] which runs in randomized

time n2−1/O(c log2 c), and only gives a nontrivial algorithm

for d 
 log2 n/ log3 logn. Applying reductions from [5],

we can achieve similar runtimes for finding closest pairs

in �1 for vectors with small integer entries, and pairs

with maximum inner product or Jaccard coefficient.

It is worth noting that there may be a serious limit to

solving this problem much faster. Theorem I.4 (and [5])

shows for all c there is a δ > 0 such that Offline Ham-

ming Nearest Neighbor search in dimension d = c logn
takes O(n2−δ ) time. Showing that there is a universal

δ > 0 that works for all c would disprove the Strong

Exponential Time Hypothesis [5, Theorem 1.4].

Offline Approximate Nearest Neighbor Search.
The problem of finding high-dimensional approximate
nearest neighbors has received even more attention.

Locality-sensitive hashing yields data structures that can

find (1 + ε)-factor approximate nearest neighbors to

any query point in Õ(dn1−Ω(ε)) (randomized) time after

preprocessing in Õ(dn+ n2−Ω(ε)) time and space,1 for

not only Hamming space but also �1 and �2 space [22],

[23]. Thus, a batch of n queries can be answered in

Õ(dn2−Ω(ε)) randomized time. Exciting recent work on

locality-sensitive hashing [24], [25] has improved the

constant factor in the Ω(ε) bound, but not the growth

rate in ε . In 2012, G. Valiant [19] reported a surprising

algorithm running in Õ(dn+n2−Ω(
√

ε)) randomized time

for the offline version of the problem in �2. We obtain

a still faster algorithm for the offline problem, with
√

ε
improved to about ε1/3:

Theorem I.5. Given n red and n blue points in [U ]d

and ε � log6 logn
log3 n

, we can find a (1+ ε)-approximate �1

1Throughout the paper, the Õ notation hides polylogarithmic factors,
[U ] denotes {0,1, . . . ,U−1}, and poly(n) denotes a fixed polynomial
in n.

or �2 nearest/farthest blue neighbor for each red point
in (dn+ n2−Ω(ε1/3/ log(1/ε))) · poly(log(nU)) randomized
time.

Valiant’s algorithm, like Alman and Williams’ [5],

relied on fast matrix multiplication, and it also used

Chebyshev polynomials but in a seemingly more com-

plicated way. Our new probabilistic PTF construction

is inspired by our attempt to unify Valiant’s approach

with Alman and Williams’, which leads to not only

a simplification but also an improvement of Valiant’s

algorithm. (We also almost succeed in derandomizing

Valiant’s n2−Ω̃(
√

ε) result in the Hamming case, except

for an initial dimension reduction step; see Remark 3 in

Section V.)

Numerous applications to high-dimensional computa-

tional geometry follow; for example, we can approximate

the diameter or Euclidean minimum spanning tree in

roughly the same running time.

MAX-SAT. Another application is MAX-SAT: finding

an assignment that satisfies the maximum number of

clauses in a given CNF formula with n variables. In

the sparse case when the number of clauses is cn, a

series of papers have given faster exact algorithms, for

example, achieving 2n−n/O(c logc) time by Dantsin and

Wolpert [26], 2n−n/O(c logc)2/3 time by Sakai et al. [27],

and 2n−n/O(
√

c) time by Chen and Santhanam [28]. Using

the polynomial method and our new probabilistic PTF

construction, we obtain the following improved result:

Theorem I.6. Given a CNF formula with n variables
and cn
 n4/ log10 n clauses, we can find an assignment
that satisfies the maximum number of clauses in random-
ized 2n−n/O(c1/3 log7/3 c) time.

For general dense instances, the problem becomes

tougher. Williams [29] gave an O(20.792n)-time algo-

rithm for MAX-2-SAT, but an O(2(1−δ )n)-time algo-

rithm for MAX-3-SAT (for a universal δ > 0) has re-

mained open; currently the best reported time bound [30]

is 2n−Ω(n/ logn)1/3 , which can be slightly improved to

2n−Ω(
√

n/ logn) with more care. We make new progress

on not only MAX-3-SAT but also MAX-4-SAT:

Theorem I.7. Given a weighted 4-CNF formula F with
n variables with positive integer weights bounded by
poly(n), we can find an assignment that maximizes the
total weight of clauses satisfied in F, in randomized
2n−n/O(log2 n log2 logn) time. In the sparse case when the
clauses have total weight cn, the time bound improves
to 2n−n/O(log2 c log2 logc).

The algorithms for MAX-SAT are described in the full

version of this paper.

LTF-LTF Circuit SAT Algorithms and Lower

468469469



Bounds. Using our small sample space for probabilistic

MAJORITY polynomials (Theorem I.1), we construct a

new circuit satifiability algorithm for circuits with linear

threshold functions (LTFs) which improves over several

prior results. Let AC0[d,m]◦LTF◦LTF[S1,S2,S3] be the

class of circuits with a layer of S3 LTFs at the bottom

layer (nearest the inputs), a layer of S2 LTFs above the

bottom layer, and a size-S1 AC0[m] circuit of depth d
above the two LTF layers.2

Theorem I.8. For every integer d > 0, m> 1, and δ > 0,
there is an ε > 0 and an algorithm for satisfiability of
AC0[d,m]◦LTF◦LTF[2nε

,2nε
,n2−δ ] circuits that runs in

deterministic 2n−nε
time.

Williams [31] gave a comparable SAT algorithm for

ACC0 ◦ LTF circuits of 2nε
size, where ε > 0 is suf-

ficiently small.3 Theorem I.8 strictly generalizes the

previous algorithm, allowing another layer of n2−ε lin-

ear threshold functions below the existing LTF layer.

Theorem I.8 also trivially implies deterministic SAT

algorithms for LTF◦LTF circuits of up to n2−o(1) gates,

improving over the recent SAT algorithms of Chen,

Santhanam, and Srinivasan [32] which only work for

n1+ε -wire circuits for ε 
 1, and the SAT algorithms of

Impagliazzo, Paturi, and Schneider [33].

The SAT algorithm for ACC0 ◦ LTF ◦ LTF is given

in the full version of this paper; here we sketch the

ideas in it. Similar to the SAT algorithm for ACC0 ◦LTF
circuits [31], the bottom layer of LTFs can be replaced

by a layer of DNFs, via a weight reduction trick. We

replace LTFs in the middle layer with AC0◦MAJ circuits

(modifying a construction of Maciel and Thérien [34]

to keep the fan-in of MAJ gates low), then replace

these MAJ gates of n2−Θ(δ ) fan-in with probabilistic F2-

polynomials of degree n1−Θ(δ )+Θ(ε) over a small sample

space, provided by Theorem I.1. Taking a majority vote

over all samples, and observing that an F2-polynomial

is a MOD2 ◦ AND circuit, we obtain a MAJ ◦ ACC0

circuit, but with 2n1−O(δ )
size in some of its layers. By

carefully applying known depth reduction techniques, we

can convert the circuit into a depth-two circuit of size

2n1−Ω(ε)
which can then be evaluated efficiently on many

inputs. (This is not obvious: applying the Beigel-Tarui

depth reduction to a 2O(n1−ε )-size circuit would make

its new size quasi-polynomial in 2O(n1−ε ), yielding an

intractable bound of 2nO(1)
.)

Applying the known connection between circuit sat-

isfiability algorithms and circuit lower bounds for ENP

problems [35], [36], [37], the following is immediate:

2Recall that for an integer m ≥ 2, AC0[m] refers to constant-depth
unbounded fan-in circuits over the basis {AND,OR,MODm}, where
MODm outputs 1 iff the sum of its input bits is divisible by m.

3Recall ACC0 is the infinite union of AC0[m] for all integers m≥ 2.

Corollary I.1. For every d > 0, m > 1, and δ ∈
(0,1), there is an ε > 0 such that the class ENP

does not have non-uniform circuits in AC0[d,m]◦LTF◦
LTF[2nε

,2nε
,n2−δ ]. In particular, for every ε > 0, ENP

does not have ACC0 ◦ LTF ◦ LTF circuits where the
ACC0◦LTF subcircuit has 2no(1)

size and the bottom LTF
layer has n2−ε gates.

Most notably, Corollary I.1 proves lower bounds

with n2−ε LTFs on the bottom layer and subexponen-
tially many LTFs on the second layer. This improves

upon recent LTF◦LTF gate lower bounds of Kane and

Williams [38], at the cost of raising the complexity of

the hard function from TC0
3 to ENP.

A Powerful Randomized SAT Algorithm. Finally,

combining the probabilistic PTF for MAJORITY (The-

orem I.3) with the probabilistic polynomial of [5], we

give a randomized SAT algorithm for a rather powerful

class of circuits. The class MAJ◦AC0 ◦LTF◦AC0 ◦LTF
denotes the class of circuits with a majority gate at the

top, along with two layers of linear threshold gates, and

arbitrary O(1)-depth AC0 circuitry between these three

layers. This circuit class is arguably much more powerful

than TC0
3 (MAJ ◦MAJ ◦MAJ), based on known low-

depth circuit constructions for arithmetic functions (e.g.

[39], [34], [40]).

Theorem I.9. For all ε > 0 and integers d ≥ 1, there
is a δ > 0 and a randomized satisfiability algorithm
for MAJ ◦ AC0 ◦ LTF ◦ AC0 ◦ LTF circuits of depth d
running in 2n−Ω(nδ ) time, on circuits with the following
properties:

• the top MAJ gate, along with every LTF on the
middle layer, has O(n6/5−ε) fan-in, and

• there are O(2nδ
) many AND/OR gates (anywhere)

and LTF gates at the bottom layer.

Theorem I.9 applies the probabilistic PTF of de-

gree about n1/3 (Theorem I.3) to the top MAJ gate,

probabilistic polynomials over Z of degree about n1/2

(Theorem I.1) to the middle LTFs, and weight reduction

to the bottom LTFs; the rest can be represented with

poly(nδ ) degree. The full algorithm is given in the full

version of this paper.

It would not be surprising (to at least one author) if

the above circuit class contained strong pseudorandom

function candidates; that is, it seems likely that the

Natural Proofs barrier applies to this circuit class. Hence

from the circuit lower bounds perspective, the problem

of derandomizing the SAT algorithm of Theorem I.9 is

extremely interesting.

469470470



II. PRELIMINARIES

Notation. In what follows, for (x1, . . . ,xn) ∈ {0,1}n

define |x| := ∑n
i=1 xi. For a logical predicate P, we use

the notation [P] to denote the function which outputs 1

when P is true, and 0 when P is false.

For θ ∈ [0,1], define THθ : {0,1}n → {0,1} to be

the threshold function THθ (x1, . . . ,xn) := [|x|/n≥ θ ]. In
particular, TH1/2 =MAJORITY.

For classes of circuits C and D , C ◦D denotes the

class of circuits consisting of a single circuit C ∈ C
whose inputs are the outputs of some circuits from D .

That is, C ◦D is simply the composition of circuits from

C and D .

Rectangular Matrix Multiplication. One of our key

tools is fast rectangular matrix multiplication:

Lemma II.1 (Coppersmith [41]). For all sufficiently
large N, multiplication of an N×N.172 matrix with an
N.172×N matrix can be done in O(N2 log2 N) arithmetic
operations over any field.

A proof can be found in the appendix of [31].

Chebyshev Polynomials in TCS. Another key to our

work is that we find new applications of Chebyshev

polynomials to algorithm design. This is certainly not a

new phenomenon in itself; here we briefly survey some

prior related usages of Chebyshev polynomials. First,

Nisan and Szegedy [16] used Chebyshev polynomials to

compute the OR function on n Boolean variables with

an “approximating” polynomial p : Rn → R, such that

for all x ∈ {0,1}n we have |OR(x)− p(x)| ≤ 1/3, yet

deg(p) = O(
√

n). They also proved the degree bound is

tight up to constants in the big-O; Paturi [17] generalized

the upper and lower bound to all symmetric functions.

This work has led to several advances in learning the-

ory. Building on the polynomials of Nisan and Szegedy,

Klivans and Servedio [13] showed how to compute an

OR of t ANDs of w variables with a PTF of degree

O(
√

w log t), similar to our degree bound for computing

an OR of t MAJORITYs of w variables of Theorem I.2

(however, note our bound in the “exact” setting is a bit

better, due to our use of discrete Chebyshev polynomi-

als). They also show how to compute an OR of s ANDs

on n variables with a deterministic PTF of O(n1/3 logs)
degree, similar to our cube-root-degree probabilistic PTF

for the OR of MAJORITY of Theorem I.3 in the “exact”

setting. However, it looks difficult to generalize Klivans-

Servedio’s O(n1/3 logs) degree bound to compute an

OR of MAJORITY: part of their construction uses a

reduction to decision lists which works for conjunctions

but not for MAJORITY functions. Klivans, O’Donnell

and Servedio [42] show how to compute an AND of

k MAJORITY on n variables with a PTF of degree

O(
√

w logk). By a simple transformation via De Mor-

gan’s law, there is a polynomial for OR of MAJORITY

with the same degree. Their degree is only slightly

worse than ours in terms of k (because we use discrete

Chebyshev polynomials).

In streaming algorithms, Harvey, Nelson, and

Onak [43] use Chebyshev polynomials to design efficient

algorithms for computing various notions of entropy in

a stream. As a consequence of a query upper bound

in quantum computing, Ambainis et al. [44] show how

to approximate any Boolean formula of size s with

a polynomial of degree
√

s1+o(1)
, improving on ear-

lier bounds of O’Donnell and Servedio [14] that use

Chebyshev polynomials. Sachdeva and Vishnoi [45]

give applications of Chebyshev polynomials to graph

algorithms and matrix algebra. Linial and Nisan [46]

use Chebyshev polynomials to approximate inclusion-

exclusion formulas, and Sherstov [47] extends this to

arbitrary symmetric functions.

III. DERANDOMIZING PROBABILISTIC

POLYNOMIALS FOR THRESHOLD FUNCTIONS

In this section, we revisit the previous probabilistic

polynomial for the majority function on n bits, and show

it can be implemented using only polylog(n,s) random

bits. Our construction is essentially identical to that of

[5], except that we use far fewer random bits to sample

entries from the input vector in the recursive step of the

construction.

For the analysis, we need a Chernoff bound for bits

with limited independence:

Lemma III.1 ([48] Theorem 5 (I)(b)). If X is the sum
of k-wise independent random variables, each of which
is confined to the interval [0,1], with μ = E[X ], δ ≤ 1,
and k = �δ 2μe−1/3
, then

Pr[|X−μ| ≥ δ μ]≤ e−δ 2μ/3.

In particular, the following inequality appears in the

analysis of [5]:

Corollary III.1. If x ∈ {0,1}n with |x|/n = w, and
x̃ ∈ {0,1}n/10 is a vector each of whose entries is
k-wise independently chosen entry of x, where k =
�20e−1/3 log(1/ε)
, with |x̃|/(n/10) = v, then for every
ε < 1/4,

Pr

[
v≤ w− a√

n

]
≤ ε

4
,

where a =
√
10 ·√ln(1/ε).

Proof: Apply Lemma III.1 with X = |x̃|, μ =
E[|x̃|] = wn, and δ =

√
40log(1/ε)/n.

Reminder of Theorem I.1. For any 0≤ θ ≤ 1, there is a
probabilistic polynomial for the threshold function THθ

470471471



of degree O(
√

n logs) on n bits with error 1/s that can be
randomly sampled using O(log(n) log(ns)) random bits.

Proof: Our polynomial is defined recursively, just as

in [5]. Set ε = 1/s. Using their notation, the polynomial

Mn,θ ,ε for computing THθ on n bits with error ε is

defined by:

Mn,θ ,ε(x) := An,θ ,2a(x) ·Sn/10,θ ,a/
√

n,ε/4(x̃)

+Mn/10,θ ,ε/4(x̃) · (1−Sn/10,θ ,a/
√

n,ε/4(x̃)).

In [5], x̃ was a sample of n/10 bits of x, chosen

independently at random. Here, we pick x̃ to be a

sample of n/10 bits chosen k-wise independently, for

k = �20e−1/3 log(1/ε)
. The other polynomials in this

recursive definition are as in [5]:

• Mm,θ ,ε for m < n is the (recursively defined) prob-

abilistic polynomial for THθ on m bits and ε error

• Sm,θ ,δ ,ε(x) := (1 −Mm,θ+δ ,ε(x)) ·Mm,θ−δ ,ε(x) for

m < n
• An,θ ,g : {0,1}n→Z is an exact polynomial of degree

at most 2g
√

n+ 1 which gives the correct answer

to THθ for any vector x with |x| ∈ [θn−g
√

n,θn+
g
√

n], and may give arbitrary answers on other

vectors.

Examining the proof of correctness in Alman and

Williams [5], we see that the only requirement of

the randomness is that it satisfies their Lemma 3.4, a

concentration inequality for sampling x̃ from x. Our

Corollary III.1 is identical to their Lemma 3.4, except

that it replaces their method of sampling x̃ with k-wise

sampling; the remainder of the proof of correctness is

exactly as before.

Our polynomial construction is recursive: we divide n
by 10 and divide ε by 4, each time we move from one

recursive layer to the next. At the jth recursive level

of our construction, for 1 ≤ j < log10(n), we need to

O(log(4 j/ε))-wise independently sample n/10 j entries

from a vector of length n/10 j−1. Summing across all of

the layers, we need a total of O(n) samples from a k-wise

independent space, where k is never more than O(n/ε).
This can be done all together using O(n) samples from

{1,2, . . . ,n} which are O(n/ε)-wise independent. Using

standard constructions, this requires O(log(n) log(n/ε))
random bits.

IV. PTFS FOR ORS OF THRESHOLD FUNCTIONS

In this section, we show how to construct low-degree

PTFs representing threshold functions that have good

threshold behavior, and consequently obtain low-degree

PTFs for an OR of many threshold functions.

A. Deterministic Construction

We begin by reviewing some basic facts about Cheby-

shev polynomials (see the full version of this paper for

proof sketches). The degree-q Chebyshev polynomial of
the first kind is

Tq(x) :=
�q/2

∑
i=0

(
q
2i

)
(x2−1)ixq−2i.

Fact IV.1. For any ε ∈ (0,1),

• if x ∈ [−1,1], then |Tq(x)| ≤ 1;
• if x ∈ (1,1+ ε), then Tq(x)> 1;

• if x≥ 1+ ε , then Tq(x)≥ 1
2eq

√
ε .

In certain scenarios, we obtain slightly better results

using a (lesser known) family of discrete Chebyshev
polynomials defined as follows [49, page 59]:

Dq,t(x) :=
q

∑
i=0

(−1)i
(

q
i

)(
t− x
q− i

)(
x
i

)
.

(See also [50, pages 33–34] or Chebyshev’s original

paper [51] with an essentially equivalent definition up

to rescaling.)

Fact IV.2. Let cq,t = (t + 1)q+1/q!. For all t > q ≥√
8(t +1) ln(t +1),

• if x ∈ {0,1, . . . , t}, then |Dq,t(x)| ≤ cq,t ;

• if x≤−1, then Dq,t(x)≥ eq2/(8(t+1))cq,t .

Reminder of Theorem I.2. We can construct a poly-
nomial Ps,t,ε :R→R of degree O(

√
1/ε logs), such that

• if x ∈ {0,1, . . . , t}, then |Ps,t,ε(x)| ≤ 1;
• if x ∈ (t,(1+ ε)t), then Ps,t,ε(x)> 1;
• if x≥ (1+ ε)t, then Ps,t,ε(x)≥ s.

For the “exact” setting with ε = 1/t, we can alternatively
bound the degree by O(

√
t log(st)).

Proof: Set Ps,t,ε(x) := Tq(x/t) for a parameter q
to be determined. The first two properties are obvious

from Fact IV.1. On the other hand, if x ≥ (1+ ε)t,
then Fact IV.1 shows that Ps,t,ε(x)≥ 1

2eq
√

ε ≥ s, provided

we set q =
⌈√

1/ε ln(2s)
⌉
. This achieves O(

√
1/ε logs)

degree.

When ε = 1/t the above yields O(
√

t logs) de-

gree; we can reduce the logs factor by instead

defining Ps,t,ε(x) := Dq,t(t − x)/cq,t . Now, if x ≥ t +
1, then Ps,t,ε(x) ≥ eq2/(8(t+1)) ≥ s by setting q =⌈√

8(t +1) ln(max{s, t +1})
⌉
.

Using Theorem I.2, we can construct a low-degree

PTF for computing an OR of s thresholds of n bits:

471472472



Corollary IV.1. Given n,s, t,ε , we can construct a
polynomial P : {0,1}ns → R of degree at most Δ :=
O(

√
1/ε logs) and at most s · (n

Δ
)

monomials, such that

• if the formula
∨s

i=1

[
∑n

j=1 xi j > t
]

is false, then
|P(x11, . . . ,x1n, . . . ,xs1, . . . ,xsn)| ≤ s;

• if the formula
∨s

i=1

[
∑n

j=1 xi j ≥ t + εn
]

is true, then
P(x11, . . . ,x1n, . . . ,xs1, . . . ,xsn)> 2s.

For the exact setting with ε = 1/n, we can alternatively
bound Δ by O(

√
n log(ns)).

Proof: Define P(x11, . . . ,x1n, . . . ,xs1, . . . ,xsn) :=

∑s
i=1 Pn,3s,t,ε

(
∑n

j=1 xi j

)
, where Pn,3s,t,ε is from Theo-

rem I.2. The stated properties clearly hold. (In the second

case, the output is at least 3s− (s−1)> 2s.)

B. Probabilistic Construction

Allowing ourselves a distribution of PTFs to randomly

draw from, we can achieve noticeably lower degree

than the previous section. We start with a fact which

follows easily from the (tight) probabilistic polynomial

for MAJORITY:

Fact IV.3. (Alman–Williams [5], or Theorem I.1)
We can construct a probabilistic polynomial Qn,s,t :

{0,1}n → R of degree O(
√

n logs), such that

• if ∑n
i=1 xi ≤ t, then Qn,s,t(x1, . . . ,xn) = 0 with prob-

ability at least 1−1/s;
• if ∑n

i=1 xi > t, then Qn,s,t(x1, . . . ,xn) = 1 with prob-
ability at least 1−1/s.

Reminder of Theorem I.3. We can construct a
probabilistic polynomial P̃n,s,t,ε : {0,1}n → R of degree
O((1/ε)1/3 logs), such that

• if ∑n
i=1 xi≤ t, then |P̃n,s,t,ε(x1, . . . ,xn)| ≤ 1 with prob-

ability at least 1−1/s;
• if ∑n

i=1 xi ∈ (t, t + εn), then P̃n,s,t,ε(x1, . . . ,xn) > 1

with probability at least 1−1/s;
• if ∑n

i=1 xi ≥ t + εn, then P̃n,s,t,ε(x1, . . . ,xn) ≥ s with
probability at least 1−1/s.

For the “exact” setting with ε = 1/n, we can alterna-
tively bound the degree by O(n1/3 log2/3(ns)).

Proof: Let r and q be parameters to be set later.

Draw a random sample R⊆ {1, . . . ,n} of size r. Let

tR :=
tr
n
−c0

√
r logs and t− := t−2c0

(
n√
r

)√
logs

for a sufficiently large constant c0. Define

P̃n,s,t,ε(x1,...,xd) := Qr,2s,tR({xi}i∈R) ·Ps,t ′,ε ′

(
n

∑
i=1

xi− t−
)
,

where Ps,t ′,ε ′ is the polynomial from Theorem I.2,

with t ′ := t− t− = Θ((n/
√

r)
√
log s) and ε ′ := εn/t ′ =

Θ(ε
√

r/
√
log s).

To verify the stated properties, consider three cases:

• CASE 1: ∑n
i=1 xi < t−. By a standard Chernoff

bound, with probability at least 1− 1/(2s), we

have ∑i∈R xi < t−r/n + c0
√

r log s ≤ tR (assuming

that r ≥ log s). Thus, with probability at least

1 − 1/s, we have Qn,2s,tR({xi}i∈R) = 0 and so

P̃n,s,t,ε(x1, . . . , xn) = 0.

• CASE 2: ∑n
i=1 xi ∈ [t−, t]. With probability at least

1− 1/s, we have Qr,2s,tR({xi}i∈R) ∈ {0, 1} and so

|P̃n,s,t,ε(x1, . . . , xn)| ≤ 1.

• CASE 3: ∑n
i=1 xi > t. By a standard Chernoff

bound, with probability at least 1−1/(2s), we have

∑i∈R xi ≥ tr/n+ c0
√

r log s = tR. Thus, with proba-

bility at least 1−1/s, we have Qr,2s,tR({xi}i∈R) = 1

and so P̃n,s,t,ε(x1, . . . , xn) > 1 for ∑n
i=1 xi ∈ (t, t +

εn), or P̃n,s,t,ε(x1, . . . , xn)≥ s for ∑n
i=1 xi ≥ t + εn.

The degree of P̃n,s,t,ε is

O
(√

r log s+
√
(1/(ε

√
r))

√
log s log s

)
and we can set r =

⌈
(1/ε)2/3 log s

⌉
. For the exact setting,

the degree is

O
(√

r log s+
√
(n/
√

r)
√

log s · log(ns)
)

and we can set r =
⌈

n2/3 log1/3(ns)
⌉
.

Remark 1. Using the same techniques as in Theorem

I.1, we can sample a probabilistic polynomial from

Theorem I.3 with only O(log(n) log(ns)) random bits.

Corollary IV.2. Given d,s, t,ε , we can construct a prob-
abilistic polynomial P̃ : {0,1}ns → R of degree at most
Δ := O((1/ε)1/3 logs) with at most s · (n

D

)
monomials,

such that
• if

∨s
i=1

[
∑n

j=1 xi j ≥ t
]

is false, then

|P̃(x11, . . . ,x1n, . . . ,xs1, . . . ,xsn)| ≤ s with probability
at least 2/3;

• if
∨s

i=1

[
∑d

j=1 xi j ≥ t + εn
]

is true, then

P̃(x11, . . . ,x1n, . . . ,xs1, . . . ,xsn)> 2s with probability
at least 2/3.

For the exact setting with ε = 1/n, we can alternatively
bound Δ by O(n1/3 log2/3(ns)).

Proof: Define P̃(x11, . . . ,x1n, . . . ,xs1, . . . ,xsn) :=

∑s
i=1 P̃n,3s,ti,ε(xi1, . . . ,xin).

Remark 2. The coefficients of the polynomials from

Fact IV.3 are poly(n)-bit integers, and it can be checked

472473473



that the coefficients of all our deterministic and proba-

bilistic polynomials are rational numbers with poly(n)-
bit numerators and a common poly(n)-bit denominator,

and that the same bound for the number of monomials

holds for the construction time, up to poly(n) factors.

That is, computations with these polynomials have low

computational overhead relative to n.

V. EXACT AND APPROXIMATE OFFLINE NEAREST

NEIGHBOR SEARCH

We now apply our new probabilistic PTF construc-

tion to obtain a faster algorithm for offline exact near-

est/farthest neighbor search in Hamming space:

Reminder of Theorem I.4. Given n red and n blue
points in {0,1}d for d = c logn 
 log3 n/ log5 logn,
we can find an (exact) Hamming nearest/farthest blue
neighbor for every red point in randomized time
n2−1/O(

√
c log3/2 c).

Proof: We proceed as in Abboud, Williams, and

Yu’s algorithm for Boolean orthogonal vectors [3] or

Alman and Williams’ algorithm for Hamming closest

pair [5]. For a fixed t, we first solve the decision

problem of testing whether the nearest neighbor distance

is less than t for each red point. (Farthest neighbors are

similar.) Let s = nα for some parameter α to be set later.

Arbitrarily divide the blue point set into n/s groups of s
points. For every group G of blue points and every red

point q, we want to test whether

F(G,q) :=

[
min
p∈G

‖p−q‖1 < t
]

=
∨
p∈G

[
d

∑
i=1

(piqi +(1− pi)(1−qi))> d− t

]
(where pi denotes the i-th coordinate of a point p). By

Corollary IV.2, we can express F(G,q) as a probabilistic

polynomial that has the following number of monomials:

s ·
(

O(d)
O(d1/3 log2/3(ds))

)
≤ nα ·O

(
c logn

c1/3α2/3 logn

)O(c1/3α2/3 logn)

≤ nα ·nO(c1/3α2/3 log c
α ) 
 (n/s)0.1

for large enough n, by setting α to be a sufficiently small

constant times 1/(c1/3 log3/2 c). The same bound holds

for the construction time of the polynomial.

We can rewrite the polynomial for F(G,q) as the

dot product of two vectors φ(G) and ψ(q) in (n/s)0.1

dimensions over R. The problem of evaluating F(G,q)
over all n/s groups G of blue points and all red points

q then reduces to multiplying an n/s× (n/s)0.1 with

an (n/s)0.1 × n matrix over R. This in turn reduces

to s instances of multiplication of n/s× (n/s)0.1 with

(n/s)0.1× n/s matrices, each of which can be done in

Õ(n/s)2 arithmetic operations on poly(d)-bit numbers

over an appropriately large field (Lemma II.1). The total

time is Õ(poly(d)n2/s) = O(n2−1/O(c1/3 log3/2 c)).

The error probability for each pair (G,q) is at most

1/3, which can be lowered to O(1/n3), for example, by

repeating O(logn) times (and taking the majority of the

answers). The overall error probability is then O(1/n).
This solves the decision problem for a fixed t, but we

can compute all nearest neighbor distances by calling

the decision algorithm d times for all values of t. For

each red point, we can find an actual nearest neighbor

in additional O(s) time, since we know which group

achieves the nearest neighbor distance.

The same approach can be applied to solve approxi-
mate nearest neighbor search in Hamming space:

Theorem V.1. Given n red and n blue points in {0,1}d

and ε � log6(d logn)/ log3 n, we can find an approxi-
mate Hamming nearest/farthest blue neighbor with ad-
ditive error at most εd for each red point in randomized
time n2−Ω(ε1/3/ log( d

ε logn )).

Proof: We mimic the proof of Theorem I.4 up to the

definition of the polynomial F(G,q). However, instead

of applying the exact polynomial of Corollary IV.2, we

insert the approximate polynomial construction from the

same corollary. While the exact polynomial had de-

gree O(d1/3 log2/3(ds)), the approximate one has degree

O((1/ε)1/3 logs). Setting

s := nα := nΩ(ε1/3/ log( d
ε logn )),

the number of monomials in the new polynomial is now

s ·
(

O(d)
O((1/ε)1/3 logs)

)
≤ nα ·O

(
d

(α/ε1/3) logn

)O((α/ε1/3) logn)

≤ nα ·nO((α/ε1/3) log d
α logn ) 
 (n/s)0.1,

for large enough n. The remainder of the algorithm is

the same as the proof of Theorem I.4, and the running

time is Õ(n2/s2)≤ n2−Ω(ε1/3/ log( d
ε logn )).

Remark 3. For deterministic algorithms, using Corol-

lary IV.1 instead, the time bounds for Theorems I.4

and I.5 become n2−1/O(c log2 c) and n2−Ω(
√

ε/ log( d
ε logn ))

respectively.

The algorithm of Theorem V.1 still has three draw-

backs: (i) the exponent in the time bound depends on

the dimension d, (ii) the result requires additive instead

of multiplicative error, and (iii) the result is for Hamming

473474474



space instead of more generally �1 or �2. We can resolve

all three issues at once, by using known dimension

reduction techniques:

Reminder of Theorem I.5. Given n red and n
blue points in [U ]d and ε � log6 logn

log3 n
, we can find

a (1+ ε)-approximate �1 or �2 nearest/farthest blue
neighbor for each red point in (dn+n2−Ω(ε1/3/ log(1/ε))) ·
poly(log(nU)) randomized time.

Proof: (The �1 case.) We first solve the deci-

sion problem for a fixed threshold value t. We use

a variant of �1 locality-sensitive hashing (see [52]) to

map points from �1 into low-dimensional Hamming

space (providing an alternative to Kushilevitz, Ostrovsky,

and Rabani’s dimension reduction technique for Ham-

ming space [53]). For each red/blue point p and each

i ∈ {1, . . . ,k}, define hi(p) = (hi1(p), . . . ,hid(p)) with

hi j(p) =
⌊
(pai j +bi j)/(2t)

⌋
where ai j ∈ {1, . . . ,d} and

bi j ∈ [0,2t) are independent uniformly distributed ran-

dom variables. For each of the O(n) hashed values of hi,

pick a random bit; let fi(p) be the random bit associated

with hi(p). Finally, define f (p) = ( f1(p), . . . , fk(p)) ∈
{0,1}k. For any fixed p,q,

Pr[hi j(p) �= hi j(q)] =
1

d

d

∑
a=1

min

{ |pa−qa|
2t

,1

}
,

Pr[ fi(p) �= fi(q)] =
1

2
Pr[hi(p) �= hi(q)]

=
1

2
Pr

[
k∨

j=1

[hi j(p) �= hi j(q)]

]
.

• If ‖p−q‖1 ≤ t, then Pr[hi j(p) �= hi j(q)]≤ ‖p−q‖1
2dt ≤

1
2d and Pr[ fi(p) �= fi(q)]≤ α0 := 1

2 (1− (1− 1
2d )

d);
• if ‖p− q‖1 ≥ (1+ ε)t, then Pr[hi j(p) �= hi j(q)] ≥
min{‖p−q‖1

2dt , 1d }≥ 1+ε
2d and Pr[ fi(p) �= fi(q)]≥α1 :=

1
2 (1− (1− 1+ε

2d )d).

Note that α1 − α0 = Ω(ε). By a Chernoff bound, it

follows (assuming k ≥ logn) that

• if ‖p−q‖1 ≤ t, then ‖ f (p)− f (q)‖1 ≤ A0 := α0k+
O(
√

k logn) with probability 1−O(1/n3);
• if ‖p−q‖1 ≥ (1+ε)t, then ‖ f (p)− f (q)‖1 ≥ A1 :=

α1k−O(
√

k logn) with probability 1−O(1/n3).

Note that A1 − A0 = Ω(εk) by setting k to be a suf-

ficiently large constant times (1/ε)2 logn. We have

thus reduced the problem to an approximate problem

with additive error O(εk) for Hamming space in k =
O((1/ε2) logn) dimensions, which by Theorem V.1 re-

quires n2−Ω(ε1/3/ log(1/ε)) time. The initial cost of apply-

ing the mapping f is O(dkn).
This solves the decision problem; we can solve

the original problem by calling the decision algorithm

O(log1+ε U) times for all t’s that are powers of 1+ε .

Proof: (The �2 case.) We use a version of the

Johnson–Lindenstrauss lemma to map from �2 to �1 (see

for example [54]). For each red/blue point p, define

f (p) = ( f1(p), . . . , fk(p)) ∈ R
k with fi(p) = ∑k

j=1 ai j p j,

where the ai j’s are independent normally distributed

random variables with mean 0 and variance 1. For each

fixed p,q ∈ R
d , it is known that after rescaling by

a constant, ‖ f (p)− f (q)‖1 approximates ‖p− q‖2 to

within 1±O(ε) factor with probability 1−O(1/n3), by
setting k = O((1/ε)2 logn). It suffices to keep O(logU)-
bit precision of the mapped points. The initial cost of

applying the mapping f is O(dkn) (which can be slightly

improved by utilizing a sparse Johnson–Lindenstrauss

transform [55]).

Numerous applications to high-dimensional computa-

tional geometry now follow. We briefly mention just one

such application, building on the work of [56], [22]:

Corollary V.1. Given n points in [U ]d and ε �
log6 logn/ log3 n, we can find a (1+ε)-approximate �1 or
�2 minimum spanning tree in (dn+ n2−Ω(ε1/3/ log(1/ε))) ·
poly(log(nU)) randomized time.

ACKNOWLEDGMENTS

The authors thank the FOCS referees for their helpful

comments. J.A. was supported by NSF CCF-1212372

and NSF DGE-114747. T.M.C. was supported by an

NSERC grant. R.W. was supported in part by NSF CCF-

1212372 and CCF-1552651 (CAREER). Any opinions,

findings and conclusions or recommendations expressed

in this material are those of the authors and do not

necessarily reflect the views of the NSF.

REFERENCES

[1] R. Williams, “Faster all-pairs shortest paths via circuit complex-
ity,” in STOC, 2014, pp. 664–673.

[2] R. Williams and H. Yu, “Finding orthogonal vectors in discrete
structures,” in SODA, 2014, pp. 1867–1877.

[3] A. Abboud, R. Williams, and H. Yu, “More applications of the
polynomial method to algorithm design,” in SODA, 2015, pp.
218–230.

[4] R. Williams, “The polynomial method in circuit complexity
applied to algorithm design (invited talk),” in 34th International
Conference on Foundation of Software Technology and Theoret-
ical Computer Science, FSTTCS, 2014, pp. 47–60.

[5] J. Alman and R. Williams, “Probabilistic polynomials and Ham-
ming nearest neighbors,” in FOCS, 2015, pp. 136–150.

[6] D. Moeller, R. Paturi, and S. Schneider, “Subquadratic algorithms
for succinct stable matching,” in Computer Science Symposium
in Russia, 2016, pp. 294–308.

[7] A. A. Razborov, “Lower bounds on the size of bounded depth
circuits over a complete basis with logical addition,” Mathemati-
cal Notes of the Academy of Sciences of the USSR, vol. 41, no. 4,
pp. 333–338, 1987.

[8] R. Smolensky, “Algebraic methods in the theory of lower bounds
for boolean circuit complexity,” in STOC, 1987, pp. 77–82.

[9] R. Beigel, N. Reingold, and D. A. Spielman, “The perceptron
strikes back,” in IEEE Structure in Complexity Theory Confer-
ence, 1991, pp. 286–291.

474475475



[10] J. Bruck and R. Smolensky, “Polynomial threshold functions, AC0

functions, and spectral norms,” SIAM J. Comput., vol. 21, no. 1,
pp. 33–42, 1992.

[11] J. Aspnes, R. Beigel, M. Furst, and S. Rudich, “The expressive
power of voting polynomials,” Combinatorica, vol. 14, no. 2, pp.
135–148, 1994.

[12] R. Beigel, “The polynomial method in circuit complexity,” in
IEEE Structure in Complexity Theory Conference, 1995, pp. 82–
95.

[13] A. R. Klivans and R. Servedio, “Learning DNF in time 2Õ(n1/3),”
in STOC, 2001, pp. 258–265.

[14] R. O’Donnell and R. A. Servedio, “New degree bounds for
polynomial threshold functions,” Combinatorica, vol. 30, no. 3,
pp. 327–358, 2010.

[15] A. A. Sherstov, “Breaking the Minsky–Papert barrier for
constant-depth circuits,” in STOC, 2014, pp. 223–232.

[16] N. Nisan and M. Szegedy, “On the degree of boolean functions
as real polynomials,” Computational Complexity, vol. 4, no. 4,
pp. 301–313, 1994.

[17] R. Paturi, “On the degree of polynomials that approximate
symmetric boolean functions (preliminary version),” in STOC,
1992, pp. 468–474.

[18] A. A. Sherstov, “Making polynomials robust to noise,” Theory
of Computing, vol. 9, pp. 593–615, 2013.

[19] G. Valiant, “Finding correlations in subquadratic time, with
applications to learning parities and the closest pair problem,”
J. ACM, vol. 62, no. 2, p. 13, 2015. Preliminary version in
FOCS’12.

[20] P. Indyk, “Nearest neighbors in high-dimensional spaces,” in
Handbook of Discrete and Computational Geometry, 2nd ed.
Chapman and Hall, 2004, pp. 877–892.

[21] O. Barkol and Y. Rabani, “Tighter lower bounds for nearest
neighbor search and related problems in the cell probe model,”
JCSS, vol. 64, no. 4, pp. 873–896, 2002.

[22] S. Har-Peled, P. Indyk, and R. Motwani, “Approximate nearest
neighbor: Towards removing the curse of dimensionality,” Theory
of Computing, vol. 8, no. 1, pp. 321–350, 2012.

[23] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions,” in FOCS,
2006, pp. 459–468.

[24] A. Andoni, P. Indyk, H. L. Nguyen, and I. Razenshteyn, “Beyond
locality-sensitive hashing,” in SODA, 2014, pp. 1018–1028.

[25] A. Andoni and I. Razenshteyn, “Optimal data-dependent hashing
for approximate near neighbors,” in STOC, 2015, pp. 793–801.

[26] E. Dantsin and A. Wolpert, “MAX-SAT for formulas with
constant clause density can be solved faster than in O(2n) time,”
in SAT, 2006, pp. 266–276.

[27] T. Sakai, K. Seto, S. Tamaki, and J. Teruyama, “Improved exact
algorithms for mildly sparse instances of Max SAT,” in IPEC,
2015, pp. 90–101.

[28] R. Chen and R. Santhanam, “Improved algorithms for sparse
MAX-SAT and MAX-k-CSP,” in SAT, 2015, pp. 33–45.

[29] R. Williams, “A new algorithm for optimal 2-constraint satisfac-
tion and its implications,” Theor. Comput. Sci., vol. 348, no. 2-3,
pp. 357–365, 2005. See also ICALP’04.

[30] T. Sakai, K. Seto, S. Tamaki, and J. Teruyama, “A satisfiability
algorithm for depth-2 circuits with a symmetric gate at the
top and AND gates at the bottom,” Electronic Colloquium on
Computational Complexity (ECCC), vol. 22, p. 136, 2015.

[31] R. Williams, “New algorithms and lower bounds for circuits with
linear threshold gates,” in STOC, 2014, pp. 194–202.

[32] R. Chen, R. Santhanam, and S. Srinivasan, “Average-case lower
bounds and satisfiability algorithms for small threshold circuits,”
in CCC, 2016, pp. 1:1–1:35.

[33] R. Impagliazzo, R. Paturi, and S. Schneider, “A satisfiability
algorithm for sparse depth two threshold circuits,” in FOCS,
2013, pp. 479–488.

[34] A. Maciel and D. Thérien, “Threshold circuits of small majority-
depth,” Information and Computation, vol. 146, no. 1, pp. 55–83,
1998.

[35] R. Williams, “Improving exhaustive search implies superpolyno-
mial lower bounds,” SIAM J. Comput., vol. 42, no. 3, pp. 1218–
1244, 2013. See also STOC’10.

[36] ——, “Nonuniform ACC circuit lower bounds,” J. ACM, vol. 61,
no. 1, p. 2, 2014.

[37] H. Jahanjou, E. Miles, and E. Viola, “Local reductions,” in ICALP
Part I, 2015, pp. 749–760.

[38] D. M. Kane and R. Williams, “Super-linear gate and super-
quadratic wire lower bounds for depth-two and depth-three
threshold circuits,” Electronic Colloquium on Computational
Complexity (ECCC), vol. 22, p. 188, 2015. To appear in
STOC’16.

[39] A. K. Chandra, L. Stockmeyer, and U. Vishkin, “Constant depth
reducibility,” SIAM J. Computing, vol. 13, no. 2, pp. 423–439,
1984.

[40] A. Maciel and D. Thérien, “Efficient threshold circuits for power
series,” Information and Computation, vol. 152, no. 1, pp. 62–73,
1999.

[41] D. Coppersmith, “Rapid multiplication of rectangular matrices,”
SIAM J. Comput., vol. 11, no. 3, pp. 467–471, 1982.

[42] A. R. Klivans, R. O’Donnell, and R. A. Servedio, “Learning
intersections and thresholds of halfspaces,” J. Comput. Syst. Sci.,
vol. 68, no. 4, pp. 808–840, 2004.

[43] N. J. A. Harvey, J. Nelson, and K. Onak, “Sketching and
streaming entropy via approximation theory,” in FOCS, 2008,
pp. 489–498.

[44] A. Ambainis, A. M. Childs, B. W. Reichardt, R. Špalek, and
S. Zhang, “Any and-or formula of size n can be evaluated in time
n1/2+o(1) on a quantum computer,” SIAM J. Computing, vol. 39,
no. 6, pp. 2513–2530, 2010.

[45] S. Sachdeva and N. K. Vishnoi, “Faster algorithms via approxi-
mation theory,” Theoretical Computer Science, vol. 9, no. 2, pp.
125–210, 2013.

[46] N. Linial and N. Nisan, “Approximate inclusion-exclusion,” Com-
binatorica, vol. 10, no. 4, pp. 349–365, 1990.

[47] A. A. Sherstov, “Approximate inclusion-exclusion for arbitrary
symmetric functions,” in CCC, 2008, pp. 112–123.

[48] J. P. Schmidt, A. Siegel, and A. Srinivasan, “Chernoff-Hoeffding
bounds for applications with limited independence,” SIAM J.
Discrete Mathematics, vol. 8, no. 2, pp. 223–250, 1995.

[49] M. Hirvensalo, “Studies on boolean functions related to quantum
computing,” Ph.D. dissertation, University of Turka, 2003.

[50] G. Szegö, Orthogonal Polynomials. American Mathematical
Society, 1975.

[51] P. L. Chebyshev, “Sur l’interpolation,” in Oeuvres de P. L.
Tchebychef, A. Markoff and N. Sonin, Eds. Commissionaires de
L’Académie Impériale des Sciences, 1899, vol. 1, pp. 539–560.

[52] A. Andoni, “Approximate nearest neighbor problem in high
dimensions,” Master’s thesis, MIT, 2005.

[53] E. Kushilevitz, R. Ostrovsky, and Y. Rabani, “Efficient search for
approximate nearest neighbor in high dimensional spaces,” SIAM
J. Computing, vol. 30, no. 2, pp. 457–474, 2000.

[54] J. Matoušek, “On variants of the Johnson–Lindenstrauss lemma,”
Random Struct. Algorithms, vol. 33, no. 2, pp. 142–156, 2008.

[55] N. Ailon and B. Chazelle, “The fast Johnson–Lindenstrauss
transform and approximate nearest neighbors,” SIAM J. Comput.,
vol. 39, no. 1, pp. 302–322, 2009.

[56] P. Indyk and R. Motwani, “Approximate nearest neighbors:
Towards removing the curse of dimensionality,” in STOC, 1998,
pp. 604–613.

475476476


