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Abstract—Regular expressions constitute a fundamental no-
tion in formal language theory and are frequently used in com-
puter science to define search patterns. In particular, regular
expression matching and membership testing are widely used
computational primitives, employed in many programming
languages and text processing utilities. A classic algorithm for
these problems constructs and simulates a non-deterministic
finite automaton corresponding to the expression, resulting
in an O(mn) running time (where m is the length of the
pattern and n is the length of the text). This running time
can be improved slightly (by a polylogarithmic factor), but
no significantly faster solutions are known. At the same time,
much faster algorithms exist for various special cases of regular
expressions, including dictionary matching, wildcard matching,
subset matching, word break problem etc.

In this paper, we show that the complexity of regular expres-
sion matching can be characterized based on its depth (when
interpreted as a formula). Our results hold for expressions
involving concatenation, OR, Kleene star and Kleene plus. For
regular expressions of depth two (involving any combination
of the above operators), we show the following dichotomy:
matching and membership testing can be solved in near-linear
time, except for “concatenations of stars”, which cannot be
solved in strongly sub-quadratic time assuming the Strong
Exponential Time Hypothesis (SETH). For regular expressions
of depth three the picture is more complex. Nevertheless, we
show that all problems can either be solved in strongly sub-
quadratic time, or cannot be solved in strongly sub-quadratic
time assuming SETH.

An intriguing special case of membership testing involves
regular expressions of the form “a star of an OR of concatena-
tions”, e.g., [a|ab|bc]∗. This corresponds to the so-called word
break problem, for which a dynamic programming algorithm
with a runtime of (roughly) O(n

√
m) is known. We show

that the latter bound is not tight and improve the runtime
to O(nm0.44...).

Keywords-Regular expressions; conditional hardness; SETH;
classification

I. INTRODUCTION

A regular expression (regexp) is a formula that describes a

set of words over some alphabet Σ. It consists of individual

symbols from Σ, as well as operators such as OR “|” (an

alternative between several pattern arguments), Kleene star
“∗” (which allows 0 or more repetitions of the pattern argu-

ment), Kleene plus “+” (which allows 1 or more repetitions

of the pattern argument), wildcard “.” (which matches an

arbitrary symbol), etc. For example, [a|b]+ describes any

sequence of symbols a and b of length at least 1. See

Preliminaries for the formal definition.
In addition to being a fundamental notion in formal

language theory, regular expressions are widely used in

computer science to define search patterns. Formally, given

a regular expression (pattern) p of size m and a sequence of

symbols (text) t of length n, the goal of regular expression

matching is to check whether a substring of t can be derived

from p. A closely related problem is that of membership

testing where the goal is to check whether the text t itself

can be derived from p. Regular expression matching and

membership testing are widely used computational prim-

itives, employed in several programming languages and

text processing utilities such as Perl, Python, JavaScript,

Ruby, AWK, Tcl and Google RE2. Apart from text pro-

cessing and programming languages, regular expressions

are used in computer networks [19], databases and data

mining [13], computational biology [22], human-computer

interaction [17] etc.
A classic algorithm for both problems constructs and sim-

ulates a non-deterministic finite automaton corresponding to

the expression, resulting in the “rectangular” O(mn) running

time. A sequence of improvements, first by Myers [21]

and then by [6], led to an algorithm that achieves roughly

O(mn/ log1.5 n) running time. The latter result constitutes

the fastest algorithm for this problem known to date, despite

an extensive amount of research devoted to this topic.

The existence of faster algorithms is a well-known open

problem ([12], Problem 4).
However, significantly faster algorithms are known for

various well-studied special cases of regular expressions. For

example:

1) If the pattern is a concatenation of symbols (i.e.,

we search for a specific sequence of symbols in the

text), the pattern matching problem corresponds to

the “standard” string matching problem and can be

solved in linear time, e.g., using the Knuth-Morris-

Pratt algorithm [18].

2) If the pattern is of the form p1|p2| . . . |pk where pi
are sequences of symbols, then the pattern matching

problem corresponds to the dictionary matching prob-
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lem that can be solved in linear time using the Aho-

Corasick algorithm [3].

3) If the pattern is a concatenation of symbols and single

character wildcards “.” matching any symbol, the

pattern matching problem is known as the wildcard
matching and can solved in (deterministic) O(n logm)
time using convolutions [10], [11], [15], [16].

4) More generally, if the pattern is a concatenation of

single character ORs of the form s1|s2| . . . |sk for

s1, . . . , sk ∈ Σ (e.g., [a|b][a|c][b|c]), the pattern match-

ing problem is known as superset matching and can be

solved in (deterministic) O(n log2 m) time [9], [10].

5) Finally, if the goal is to test whether a text t can be

derived from a pattern p of the form (p1|p2| . . . |pk)+
where pi are sequences of symbols, the problem is

known as the word break problem. It is a popular

interview question [20], [23], and the known solutions

can be implemented to run in
√
mn logO(1) n time.

The first two examples were already mentioned in [12]

as a possible reason why a faster algorithm for the general

problem might be possible. Despite the existence of such

examples, any super-polylogarithmic improvements to

the algorithms of [6], [21] in the general case remain

elusive. Furthermore, we are not aware of any systematic

classification of regular expressions into “easy” and “hard”

cases for the pattern matching and membership testing

problems. The goal of this paper is to address this gap.

Results: Our main result is a classification of the

computational complexity of regular expression matching

and membership checking for patterns that involve oper-

ators “|”, “+”, “∗” and concatenation “·”, based on the

pattern depth. Our classification enables us to distinguish

between the cases that are solvable in sub-quadratic time

(including the five problems listed above) and the cases that

do not have strongly sub-quadratic time algorithms under

natural complexity theoretic assumptions, such as Strong

Exponential Time Hypothesis [14] and Orthogonal Vectors

conjecture [8], [25]. Our results therefore demonstrate a non-

trivial dichotomy for the complexity of these problems.
To formulate our results, we consider pattern formulas

that are homogeneous, i.e., in which the operators at the

same level of the formula are equal (note that the five

aforementioned problems involve patterns that satisfy this

condition). We say that a homogeneous formula of depth k
has type o1o2 . . . ok if for all levels i the operators at level

i are equal to oi (note that, in addition to the operators, a

level might also contain leaves, i.e. symbols; for example the

expression [a|b]a[b|c] is a depth-2 formula of type “·|”). We

will assume that no two consecutive operators in the type

descriptor are equal, as otherwise they can be collapsed into

one operator.
Our results are described in Table I (for depth-2 expres-

sions) and Table II (for depth-3 expressions). The main

findings can be summarized as follows:

1) Almost all pattern matching and membership problems

involving depth-2 expressions can be solved in near-

linear time. The lone exception involve patterns of type

“·∗”, for which we show that matching and member-

ship problems cannot be solved in time O((mn)1−δ)
for any constant δ > 0 and m ≤ n assuming the

Strong Exponential Time Hypothesis (SETH) [14].

Interestingly, we show that pattern matching with a

very similar depth-2 type, namely “·+”, can be solved

in O(n log2 m) time.

2) Pattern matching problems with depth-2 expressions

contain a “high density” of interesting algorithmic

problems, with non-trivial algorithms existing for

types “·+” (this paper), “·|” [10] , “|·” [3] and “+·”
(essentially solved in [18], since + can be dropped).

In contrast, membership problems with depth-2 ex-

pressions have a very restrictive structure that makes

them mostly trivially solvable in linear time, with the

aforementioned exception for the “·∗” type

3) Pattern matching problems with depth-3 expressions

have a more diversified structure. All types starting

with · are SETH-hard; all types starting with | are

either-SETH hard (if followed by ·) or easily solv-

able in linear time; all types starting from ∗ are

trivially solvable in linear time (since ∗ allows zero

repetitions); all types starting from + inherit their

complexity from the last two operators in the type

description (since + allows exactly one repetition).

4) Finally, membership checking with depth-3 expres-

sions presents the most complex picture. As before,

all types starting with · are SETH-hard. On the other

hand, types starting with | (except for |·∗) have linear

time algorithms, with difficulty levels that range from

trivial observations to undergraduate-level exercises1.

Types starting with ∗ or + include “∗|·” and “+|·”,

which correspond to the aforementioned word break

problem [20], [23]. This is the only problem in the ta-

ble whose (conditional) complexity is not determined

up to logarithmic factors. However, we show that the

running time of the standard dynamic-programming

based algorithm can be improved, from roughly nm0.5

to roughly nm0.5 − 1/18.

Our techniques: Our upper bounds for depth-2 expres-

sions follow either from known near-linear time algorithms

for specific variants of regular expressions, or relatively

simple constructions of such algorithms. In particular, we

observe that type “·|” expressions (concatenations of ORs)

correspond to superset matching, type “|·” expressions (OR

of sequences) correspond to dictionary matching and type

“+·” reduces to “·” and thus corresponds to the standard

1Incidentally, the second author used some of the problems from Table II
in an undergraduate algorithms course.
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Type Example Pattern matching Membership

·+ a+ab+ O(n log2 m) (full version) O(n+m) (immediate)·∗ a∗ab∗ Ω((mn)1−α) (Section III-C) Ω((mn)1−α) (full version)

·| [a|b][b|c] O(n log2 m) (superset matching [10]) O(n+m) (immediate)

|· ab|c O(n+m) (dictionary matching [3]) O(n+m) (immediate)

|∗ a∗|a|b∗ O(n+m) (immediate) O(n+m) (immediate)

|+ a+|a|b+ O(n+m) (immediate - reducible to “|”) O(n+m) (immediate)

∗· [ab]∗ O(n+m) (immediate) O(n+m) (immediate)

∗+ [a+]∗ O(n+m) (immediate) O(n+m) (immediate - reducible to “+”)

∗| [a|b]∗ O(n+m) (immediate) O(n+m) (immediate)

+· [ab]+ O(n+m) (string matching [18]) O(n+m) (immediate - equivalent to “∗·”)

+| [a|b]+ O(n+m) (immediate - reducible to “|”) O(n+m) (immediate - equivalent to “∗|”)

+∗ [a∗]+ O(n+m) (immediate) O(n+m) (immediate - reducible to “+”)

Table I: Classification of the complexity of the pattern matching and the membership test problems for depth-2 expressions.

All lower bounds assume SETH and m ≤ n. Some upper bounds use randomization (notably hashing). For an explanation

of reducibility see “Our techniques”.

pattern matching problem. Furthermore, we give a near-

linear time algorithm for pattern matching with type “·+”

expressions, where patterns are concatenations of expres-

sions of the form s≥k or sk, where s≥k denotes a sequence

of symbols s repeated at least k ≥ 1 times.2 We show

that this problem can be solved in near-linear time by

reducing it to one instance of subset matching and one

instance of wildcard matching. All other problems can be

solved in linear time, with the exception of type “·∗”.

The latter expressions correspond to patterns obtained by

concatenating patterns of the form s≥k and sk. Unlike in the

“·+” case, however, here we cannot assume that k ≥ 1, since

each symbol could be repeated zero times. We show that

this simple change makes the problem SETH-hard. This is

accomplished by a reduction from an intermediate problem,

namely the (unbalanced version of the) Orthogonal Vectors

Problem (OVP) [8], [25]. The problem is defined as follows:

given two sets A,B ⊆ {0, 1}d such that |A| = M and

|B| = N , determine whether there exists x ∈ A and y ∈ B
such that the dot product x · y =

∑d
j=1 xjyj is equal to 0.3

Our results for depth-3 expression pattern matching are

multi-fold. First, all types starting from ∗ are trivially solv-

able in linear time, since ∗ allows zero repetitions. Second,

all types starting from + inherit their complexity from the

last two operators in the type description, since + allows

exactly one repetition. Third, all types starting from |∗ or

|+ have simple linear time solutions.

The remaining cases lead to SETH-hard problems. For

six types this follows immediately from the analogous result

for type “·∗”. For the six remaining types the hardness is

2For example, the expression aa+bc+ generates all words of the form
a≥2b1c≥1.

3The reduction is somewhat complex, so we will not outline it here.
However, we give an overview of other reductions from OVP in the next
few paragraphs.

shown via individual reductions from OVP. For some types,

such a reduction is immediate. For example, for type “|·|”
expressions (ORs of concatenations of ORs), we form the

text by concatenating all vectors in B (separated by some

special symbol), and we form the pattern by taking an OR

of the vectors in A, modified by replacing 0 with [0|1] and 1
with 0. A similar approach works for type “|·+” expressions.

The remaining four types are grouped into two classes:

“·+·” is grouped with “·|·” and “·+|” is grouped with

“·|+”. For each group, we first show hardness of the first

type in the group (i.e., of “·+·” and “·+|”, respectively).

We then show that the second type in each group is hard by

making changes to the hardness proof for the first type.

The hardness proof for “·+·” proceeds as follows. We

form the pattern p by concatenating (appropriately separated)

pattern vector gadgets for each vector in A, and form the

text t by concatenating (appropriately separated) text vector

gadgets for each vector in B. We then show that if there

is a pair of orthogonal vectors ai ∈ A, bj ∈ B then p can

be matched to a substring of t, and vice versa. To show

this, we construct p and t so that any pair of gadgets (in

particular the gadgets for ai and bj) can be aligned. We

then show that (i) each vector gadget for a vector in A can

be matched with “most” of the gadget for the corresponding

b ∈ B (ii) matching the gadgets for orthogonal vectors ai

and bj allows us to make a “smaller step”, i.e., to match the

gadget for ai with a smaller part of the gadget for bj , and

(iii) at least one “smaller step” is necessary to completely

derive a substring of t from p. We then conclude that there

is a pair of orthogonal vectors ai ∈ A, bj ∈ B if and only

if p can be matched to a substring of t. The hardness proof

for “·+|” follows a similar general approach, although the

technical development is different. In particular, we construct

the gadgets such that the existence of orthogonal vectors

makes it possible to make a “bigger step”, i.e., to derive a
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Type Example Pattern matching Membership·|· [a|bb][ba|b] Ω((mn)1−α) (full version) Ω((mn)1−α) (full version)·|∗ [a∗|b∗][c∗|b] Ω((mn)1−α) (from “·∗”) Ω((mn)1−α) (from “·∗”)·|+ [a+|b+][c+|b] Ω((mn)1−α) (full version) Ω((mn)1−α) (full version)·+· [ab]+[bca]+ Ω((mn)1−α) (full version) Ω((mn)1−α) (full version)·+| [a|b]+[a|c|d]+ Ω((mn)1−α) (full version) Ω((mn)1−α) (full version)·+∗ [a][a+]∗[b+] Ω((mn)1−α) (from “·∗”) Ω((mn)1−α) (from “·∗”)· ∗ · [ab]∗[bca]∗ Ω((mn)1−α) (from “·∗”) Ω((mn)1−α) (from “·∗”)·∗| [a|b]∗[a|b|c]∗ Ω((mn)1−α) (from “·∗”) Ω((mn)1−α) (from “·∗”)· ∗+ [a∗]b[b+]∗ Ω((mn)1−α) (from “·∗”) Ω((mn)1−α) (from “·∗”)

|·| [(a|b)(b|c)]|[(a|c)b] Ω((mn)1−α) (Section III-A) O(n+m) (immediate)

|·∗ [a∗b∗]|[b∗c∗] Ω((mn)1−α) (from “·∗”) Ω((mn)1−α) (from “·∗”)

|·+ [a+b+]|[b+c+] Ω((mn)1−α) (Section III-B) O(n+m) (full version)

|∗· [abc]∗|[bc]∗ O(n+m) (immediate - reducible to “|”) O(n+m) (full version)

|∗| [a|b|c]∗|[b|c]∗ O(n+m) (immediate - reducible to “|”) O(n+m) (immediate)

|∗+ [a+]∗|[b+]∗ O(n+m) (immediate - reducible to “|”) O(n+m) (immediate)

|+· [abc]+|[bc]+ O(n+m) (reducible to “|·”) O(n+m) (full version)

|+| [a|b|c]+|[b|c]+ O(n+m) (immediate - reducible to “|”) O(n+m) (same as “|∗|”)

|+∗ [a∗]+|[b∗]+ O(n+m) (immediate - reducible to “|”) O(n+m) (immediate)

∗·| [[a|b][b|c]]∗ O(n+m) (immediate) O(n+m) (immediate)

∗·∗ [a∗b∗c∗]∗ O(n+m) (immediate) Ω((mn)1−α) (from “·∗”)

∗·+ [a+b+c+]∗ O(n+m) (immediate) O(n+m) (full version)

∗|· [a|ab|bc]∗ O(n+m) (immediate) O(nm0.44...) (word break - full version)

∗|∗ [a∗|b∗|c∗]∗ O(n+m) (immediate) O(n+m) (immediate)

∗|+ [a+|b+|c+]∗ O(n+m) (immediate) O(n+m) (immediate)

∗+· [[abcd]+]∗ O(n+m) (immediate) O(n+m) (immediate)

∗+| [[a|b|c|d]+]∗ O(n+m) (immediate) O(n+m) (immediate)

∗+∗ [[a∗]+]∗ O(n+m) (immediate) O(n+m) (immediate)

+·| [[a|b][b|c]]+ O(n log2 m) (reducible to “·|”) O(n+m) (same as “∗·|”)

+·∗ [a∗b∗c∗]+ Ω((mn)1−α) (from “·∗”) Ω((mn)1−α) (same as “∗·∗”)

+·+ [a+b+c+]+ O(n log2 m) (reducible to “·+”) O(n+m) (same as “∗·+”)

+|· [a|ab|bc]+ O(n+m) (reducible to “|·”) O(nm0.44...) (word break - full version)

+|∗ [a∗|b∗|c∗]+ O(n+m) (reducible to “|∗”) O(n+m) (same as “∗|∗”)

+|+ [a+|b+|c+]+ O(n+m) (reducible to “|+”) O(n+m) (same as “∗|+”)

+∗· [[abcd]∗]+ O(n+m) (reducible to “∗·”) O(n+m) (same as “∗·”)

+∗| [[a|b|c|d]∗]+ O(n+m) (reducible to “∗|”) O(n+m) (same as “∗|”)

+∗+ [[a+]∗]+ O(n+m) (reducible to “∗+”) O(n+m) (same as “∗+”)

Table II: Classification of the complexity of the pattern matching and the membership test problems for depth-3 expressions.

See Figure 1 for the visualization of the table.

bigger part of t, and that one bigger step is necessary to

complete the derivation.

To show hardness of the second type in each group,

we adapt the arguments for the first type in the group. In

particular, to show hardness for type “·|·” , we construct p
and t as in the reduction for type “·+·” and then transform

p into a type “·|·” regular expression p′. The transformation

has the property that p′ is less expressive than p (i.e., the

language corresponding to p is a superset of the language

corresponding to p′), but the specific substrings of the text

t needed for the reduction can be still derived from p′.
The hardness proof for “·|+” is obtained via a similar

transformation of the hardness proof for “·+|” .

Finally, consider the membership checking problem for

depth-3 expressions. As before, all types starting with · are

shown to be SETH-hard. The reductions are similar to those

for the pattern matching problem, but in a few cases require

some modifications. On the other hand, types starting with

| (with the exception of |·∗) have linear time algorithms.

The algorithms are not difficult, but require the use of basic

algorithmic notions, such as periodicity (for types “|∗·”
and “|+·”) and run-length encoding (for type “|·+”). Types

starting with ∗ are mostly solvable in linear time, with two

exceptions: type “∗·∗” inherits the hardness from “·∗”, while
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Pattern matching:

·

hard

|

∗

+

easy

· hard

∗,+ easy

·
∗ hard

|,+ easy

|, ∗ easy

Membership:

·

hard

|

∗

+

·
∗ hard

|,+ easy

∗,+ easy

· ∗ hard
|,+ easy

| · Word Break
∗,+ easy

+ easy

· ∗ hard
|,+ easy

| · Word Break
∗,+ easy

∗ easy

Figure 1: Tree diagrams visualizing Table II. Depth 3 types are classified as “easy” (near-linear time), “hard” (near-

quadratic time, assuming SETH), or “Word Break” (whose complexity is not determined). The leftmost operators in each

tree correspond to the leftmost operators in type descriptions.

the type “∗|·” corresponds to the aforementioned word break

problem which we discuss in the next paragraph. Finally,

types starting with + are analogous to those starting with ∗.
The word break problem is the only problem in the

table whose (conditional) complexity is not determined

up to logarithmic factors. There are several known solu-

tions to this problem based on dynamic programming [20],

[23]. A careful implementation of those algorithms (us-

ing substring hashing and pruning) leads to a runtime of

O(nm0.5 logO(1) n). However, we show that this bound

is not tight, and can be further improved to roughly

nm0.5 − 1/18. Our new algorithm speeds up the dynamic

program by using convolutions to pre-compute information

that is reused multiple times during the execution of the

algorithm. We note that the algorithm is randomized and

has a one-sided error.

Due to space limitations, most of the proofs have been

omitted from this version of the paper.

Related work: Our hardness results come on the heels

of several recent works demonstrating quadratic hardness

of sequence alignment problems assuming SETH or other

conjectures. In particular, such results have been shown for

Local Alignment [2], Fréchet distance [7], Edit Distance [5]

and Longest Common Subsequence [1], [8]. As in our case,

most of those results were achieved by a reduction from

OVP, performed by concatenating appropriately constructed

gadgets for the vectors in the input sets. The technical

development in our paper is, however, quite different, since

regular expression matching is not defined by a sequence

similarity measure. Instead, our gadget constructions are

tailored to the specific sets of operators and expression types

defining the problem variants. Furthermore, we exploit the

similarity between related expression types (such as “·+·”
and “·|·”) and show how to convert a hardness proof for

one type into a hardness proof for the other type.

The reduction in Section III-A has been independently

discovered by Kasper Larsen and Raphael Clifford (personal

communication). Conditional lower bounds (via reductions

from 3SUM) for certain classes of regular expressions have

been investigated in [4]. Estimating the complexity of regular

expression matching using specific algorithms has also been

a focus of several papers. See e.g., [24] and the references

therein.

II. PRELIMINARIES

Orthogonal Vectors problem: Our reductions use the

unbalanced version of the Orthogonal Vectors Problem,

defined as follows: given two sets A,B ⊆ {0, 1}d such that

|A| = M, |B| = N , determine whether there exists x ∈ A
and y ∈ B such that the dot product x · y =

∑d
j=1 xjyj

(taken over the reals) is equal to 0. An equivalent formu-

lation of this problem is: given two collections of subsets

of {1, . . . , d}, of sizes M and N , respectively, determine if

there is a set in the first collection that is contained in a set

from the second collection.

It is known that, for any M = Θ(Nα) for some

α ∈ (0, 1] and any constant δ > 0, any algorithm for OVP

problem with an O(MN)1−δ running time would also yield

a more efficient algorithm for SAT, violating the Strong

Exponential Time Hypothesis, even in the setting when the

dimension d is arbitrary d = ω(logN). This was shown
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in [25] for the balanced case M = N , and extended to the

unbalanced case in [8]. Therefore, in this paper we show

that a problem is SETH-hard by reducing unbalanced OVP

to it.

Subset Matching problem: In the subset matching

problem, we are given a pattern string p and a text string

t where each pattern and text location is a set of symbols

drawn from some alphabet. The pattern is said to occur at

the text position i if the set pj is a subset of the set ti+j for

all j. The goal of the problem is find all positions where

p occurs in t. The problem can be solved in deterministic

O(N log2 N) time, where N =
∑

i |ti|+
∑

i |pi| [10].

Superset Matching problem: This problem is analogous

to subset matching except that we require that pj is a

superset of the set ti+j for all j. The aforementioned

algorithm of [10] applies to this problem as well.

Wildcard Matching problem: In the wildcard matching

problem, we are given a pattern string p and a text string

t where each pattern and text location is an element

from Σ ∪ {.}, where “.” is the special wildcard symbol.

The pattern is said to occur at the text position i if

for all j we have that (i) one of the symbols pj and

ti+j is equal to “.”, or (ii) pj = ti+j . The goal of the

problem is find all positions where p occurs in t. The

problem can be solved in deterministic O(n log n) time [10].

Regular expressions: Regular expressions over a sym-

bol set Σ and an operator set O = {·, |,+, ∗} are defined

recursively as follows:

• a is a regular expression, for any a ∈ Σ;

• if R and S are regular expressions then so are [R]|[S],
[R]·[S], [R]+ and [R]∗.

For the sake of simplicity, in the rest of this paper we

will typically omit the concatenation operator ·, and also

omit some of the parenthesis if the expression is clear from

the context.
A regular expression p determines a language L(p) over

Σ. Specifically, for any regular expressions R, S and any

a ∈ Σ, we have: L(a) = {a}; L(R|S) = L(R) ∪ L(S);
L(R·S) = {uv : u ∈ L(R), v ∈ L(S)}; L(R+) =
∪i≥1·ij=1L(R); and L(R∗) = L(R+)∪{ε}, where ε denotes

the empty word.
Regular expressions can be viewed as rooted labeled trees,

with internal nodes labeled with operators from O and leaves

labeled with symbols from Σ. Note that the number of

children of an internal node is not fixed, and can range

between 1 (for + and ∗) and m. We say that a regular

expression is homogeneous if all internal node labels at the

same tree level are equal. Note that this definition does not

preclude expressions such as aa+ where not all leaves have

the same depth. A homogeneous formula of depth k has type

o1o2 . . . ok, oi ∈ O, if for all levels i the operators at level

i are equal to oi. For example, aa+ has type “·+”.

To state our results, it is convenient to identify depth-3

homogeneous regular expressions that are equivalent to

some depth-2 regular expressions. In particular, in all types

starting from +, the operator + can be removed, since p+

occurs in the text t if and only if p occurs in t. Similarly, in

all types starting from |+, the operator + can be removed,

for the same reasons.

Notation: For symbol (or sequence) z and integer i,
zi denotes symbol (or sequence) z repeated i times. For an

integer n, [n] denotes {1, 2, 3, . . . n}. Given an integer d,

0d (1d, resp.) denotes the vector with all entries equal to 0
(1, resp.) in d dimensions. For sequences s1, s2, . . . , sk, we

write
⊙k

i=1 si to denote the concatenation s1 s2 . . . sk of

the sequences.

Simplifying assumptions: To simplify our proofs, we

will make several simplifying assumptions about the Or-

thogonal Vectors instance (different assumptions are used

in different proofs). In what follows, we describe what kind

of assumptions we make, and how to satisfy them:

1) The number of vectors M in set A is odd or even

(depending on the proof): this can be achieved w.l.o.g.

since we can add a vector to set A consisting only of

1s.

2) The dimensionality d of vectors from sets A and B
is odd or even (depending on the proof): this can be

achieved w.l.o.g. since we can add new coordinate to

every vector and set this coordinate to 0.

3) Let A = {a1, . . . , aM} and B = {b1, . . . , bN}. If

there are i, j such that ai · bj = 0 then there are

i′, j′ such that ai
′ · bj′ = 0 and i′ ≡ j′(mod 2):

this can be assumed w.l.o.g. since we can define a

set A′ = {aM , a1, a2, a3, . . . , aM−1} and perform two

reductions, one on the pair of sets A and B and another

one on the pair of sets A′ and B. If a pair of orthogonal

vectors exists, one of these reductions will detect it.

4) The dimensionality d is greater than 100: we can as-

sume this since otherwise Orthogonal Vectors problem

can be solved in O(2d ·N) = O(N) time.

5) bt1 = btd = 0 for all t ∈ [N ] and d is odd: first,

we make d odd as described above. Then we add

two entries for every vector from A or B, one at the

beginning and one at the end, and set both entries to

0.

6) The first vector a1 from the set A is not orthogonal to

all vectors from B: first, we can detect whether this

is the case in O(dN) time. If a1 is orthogonal to a

vector from B, we have found a pair of orthogonal

vectors. Otherwise we proceed with the reduction.
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III. REDUCTIONS FOR THE PATTERN MATCHING

PROBLEM

We start this section by showing hardness for regular

expressions of type “|·|” and “|·+”. These hardness proofs

are quite simple, and will help us introduce notation used

in more complex reductions presented later. After that we

present the hardness proof for regular expressions of type

“·∗”.

A. Hardness for type “|·|”
Theorem 1. Given sets A = {a1, . . . , aM} ⊆ {0, 1}d and
B = {b1, . . . , bN} ⊆ {0, 1}d, we can construct a regular
expression p and a sequence of symbols t, in O(Nd) time,
such that a substring of t can be derived from p if and only if
there are a ∈ A and b ∈ B such that a ·b = 0. Furthermore,
p has type “|·|”, |p| ≤ O(Md) and |t| ≤ O(Nd).

Proof: First, we will construct our pattern p. For an

integer v ∈ {0, 1}, we construct the following pattern

coordinate gadget

CG(v) :=

{
[0|1] if v = 0;

[0] if v = 1.

For a vector a ∈ {0, 1}d, we define a pattern vector gadget

V G(a) := CG(a1)CG(a2)CG(a3) . . . CG(ad).

Our pattern p is then defined as “|” of all pattern vector

gadgets:

p :=V G
(
a1

) |V G
(
a2

) |V G
(
a3

) |V G
(
a4

) |
. . . |V G

(
aM−1

) |V G
(
aM

)
.

Now we construct the text t. First, for a vector b ∈ {0, 1}d,

we define text vector gadget as concatenation of all entries

of b: V G′(b) := b1 b2 b3 b4 . . . bd. Note that we can derive

V G′(b) from V G(a) if and only if a · b = 0. Our text t is

defined as a concatenation of all text vector gadgets with a

symbol 2 in between any two neighbouring vector gadgets:

t :=V G′
(
b1
)
2V G′

(
b2
)
2V G′

(
b3
)
2V G′

(
b4
)
2

. . . 2V G′
(
bN−1

)
2V G′

(
bN

)
.

We need to show that we can derive a substring of t from

p if and only if there are two orthogonal vectors in A and

B. This follows from lemmas 1 and 2 below.

Lemma 1. If there are two vectors a ∈ A and b ∈ B that
are orthogonal, then a substring of t can be derived from p.

Proof: Suppose that ai · bj = 0 for some i ∈ [M ],
j ∈ [N ]. We choose a pattern vector gadget V G(ai) from

the pattern p and transform it into a text vector gadget

V G′(bj). This is possible because of the orthogonality and

the construction of the vector gadgets.

Lemma 2. If a substring of t can be derived from p, then
there are two orthogonal vectors.

Proof: By the construction of pattern p, we have to

choose one pattern vector gadget, say, V G(ai), that is

transformed into a binary substring of t of length d. The

text t has the property that it is a concatenation of binary

strings of length d separated by symbols 2. This means that

V G(ai) will be transformed into binary string V G′(bj) for

some j. This implies that ai · bj = 0 by the construction of

the vector gadgets.

B. Hardness for type “|·+”

Theorem 2. Given sets A = {a1, . . . , aM} ⊆ {0, 1}d and
B = {b1, . . . , bN} ⊆ {0, 1}d, we can construct a regular
expression p and a sequence of symbols t, in O(Nd) time,
such that a substring of t can be derived from p iff there are
a ∈ A and b ∈ B such that a · b = 0. Furthermore, p has
type “|·+”, |p| ≤ O(Md) and |t| ≤ O(Nd).

Proof: First, we will construct our pattern. For an

integer v ∈ {0, 1}, we construct the following pattern

coordinate gadget

CG(v) :=

{
x+ if v = 0;

x+x+ if v = 1.

For a vector a ∈ {0, 1}d, we define a pattern vector gadget as

concatenation of coordinate gadgets for all coordinates with

the symbol y in between every two neighbouring coordinate

gadgets:

V G(a) := CG(a1) y CG(a2) y CG(a3) y . . . y CG(ad).

Our pattern p is then defined as an OR (“|”) of all the pattern

vector gadgets:

p :=V G
(
a1

) |V G
(
a2

) |V G
(
a3

) |V G
(
a4

) |
. . . |V G

(
aM−1

) |V G
(
aM

)
.

Now we proceed with the construction of our text t. For an

integer v ∈ {0, 1}, we define the following text coordinate

gadget

CG′(v) :=

{
xx if v = 0;

x if v = 1.

For vector b ∈ {0, 1}d, we define the text vector gadget as

V G′(b) :=CG′(b1, 1) y CG′(b2, 2) y CG′(b3, 3) y
. . . y CG′(bd, d).

Note that we can derive V G′(b) from V G(a) iff a · b = 0.

Our text t is defined as a concatenation of all text vector

gadgets with the symbol z in between any two neighbouring

vector gadgets:

t :=V G′(b1) z V G′(b2) z V G′(b3) z V G′(b4) z

. . . z V G′(bN−1) z V G′(bN ).
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We need to show that we can derive a substring of t from

p iff there are two orthogonal vectors. This follows from

lemmas 3 and 4 below.

Lemma 3. If there are two vectors a ∈ A and b ∈ B that
are orthogonal, then a substring of t can be derived from p.

Proof: Suppose that ai · bj = 0 for some i ∈ [M ],
j ∈ [N ]. We choose a pattern vector gadget V G(ai) from

the pattern p and transform it into a text vector gadget

V G′(bj). This is possible because of the orthogonality and

the construction of the vector gadgets.

Lemma 4. If a substring of t can be derived from p, then
there are two orthogonal vectors.

Proof: We call a sequence of symbols nice iff it can be

derived from the regular expression x+yx+yx+y . . . yx+,

where “x+” appears d times.

By the construction of pattern p, we have to choose one

pattern vector gadget, say, V G(ai), that is transformed into

a nice sequence. The text t has the property that it is a

concatenation of nice sequences separated by symbols z.

This means that V G(ai) will be transformed into a sequence

V G′(bj) for some j. This implies that ai · bj = 0 by the

construction of vector gadgets.

C. Hardness for type “·∗”
Theorem 3. Given sets A = {a1, . . . , aM} ⊆ {0, 1}d
and B = {b1, . . . , bN} ⊆ {0, 1}d with M ≤ N , we can
construct the regular expression p and the text t in time
O(Nd), such that a substring of t can be derived from p iff
there are a ∈ A and b ∈ B such that a ·b = 0. Furthermore,
p is of type “·∗”, |p| ≤ O(Md) and |t| ≤ O(Nd).

Proof: W.l.o.g., we can assume that M ≡ 1(mod 2) and

d ≡ 1(mod 2), d ≥ 100. Also, if there are i ∈ [M ], j ∈ [N ]
such that ai · bj = 0, then there are i′ ∈ [M ], j′ ∈ [N ]
such that ai

′ · bj′ = 0 and i′ ≡ j′(mod 2). Furthermore,

we assume bj1 = bjd = 0 for all j ∈ [N ] and that a1 is not

orthogonal to any vector bj .

First, we will construct our pattern. For an integer v ∈
{0, 1} and an integer i ∈ [d], we construct the following

pattern coordinate gadget

CG(v, i) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
yy∗ if v = 0 and i ≡ 1(mod 2);

yyyy∗ if v = 1 and i ≡ 1(mod 2);

xx∗ if v = 0 and i ≡ 0(mod 2);

xxxx∗ if v = 1 and i ≡ 0(mod 2).

For a vector a ∈ {0, 1}d, we define a pattern vector gadget

V G(a) := CG(a1, 1)CG(a2, 2)CG(a3, 3) . . . CG(ad, d).

We also need another pattern vector gadget V G0 :=
(y∗ x∗)d+10 y∗.

Our pattern is then defined as follows:

p := y6
⊙

j∈[M−1]

(
x10 V G(aj)x10 V G0

)
x10 V G(aM )x10 y6.

Now we proceed with the construction of our text. For

integers v ∈ {0, 1}, i ∈ [d], we define the following text

coordinate gadget

CG′(v, i) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
yyy if v = 0 and i ≡ 1(mod 2);

y if v = 1 and i ≡ 1(mod 2);

xxx if v = 0 and i ≡ 0(mod 2);

x if v = 1 and i ≡ 0(mod 2).

For a vector b ∈ {0, 1}d and an integer j ≡ 1(mod 2), we

define the text vector gadget as

V G′(b, j) := CG′(b1, 1)CG′(b2, 2)CG′(b3, 3) . . . CG′(bd, d).

We also define V G′(b, j), when j ≡ 0(mod 2). In this case,

V G′(b, j) is equal to V G′(b, 1) except that we replace every

occurrence of the substring y3 with the substring y6.

One can verify that for any vectors a, b ∈ {0, 1}d and any

integer i, V G′(b, i) can be derived from V G(a) iff a ·b = 0.

We will also need an additional text vector gadget

V G′0 := y3 (x3 y3)(d−1)/2.

Our text is then defined as follows:

t :=

3N⊙
j=−2N

(
x10 V G′0 x

10 V G′(bj , j)
)
,

where we assume bj := 011111 . . . 111110 for j 
∈ [N ].
We have to show that we can derive a substring of t from

p iff there are two orthogonal vectors. This follows from

lemmas 5 and 6 below.

Lemma 5. If there are two vectors a ∈ A and b ∈ B that
are orthogonal, then a substring of t can be derived from p.

Proof: W.l.o.g. we have that, ak · bk = 0 for some

k ∈ [M ]. The proof for the case when ak · br = 0, k ∈ [M ],
r ∈ [N ], k ≡ r(mod 2) is analogous.

The pattern p starts with y6. We transform it into

CG′(b0d, d) appearing in V G′(b0, 0). We can do this since

b0d = 0.

For j = 1, 2, . . . , k − 2, we transform

x10 V G(aj)x10 V G0 into x10 V G′0 x
10 V G′(bj , j) by

transforming V G(aj) into V G′0 and V G0 into V G′(bj , j).
Next we transform

x10 V G(ak−1)x10 V G0 x
10 V G(ak)x10 V G0

into

x10 V G′0 x
10 V G′(bk−1, k − 1)x10 V G′0 x

10

V G′(bk, k)x10 V G′0 x
10 V G′(bk+1, k + 1)
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Notice that we use the fact that k ≥ 2 (we assumed that

a1 is not orthogonal to any vector from B). Note that

V G′(bk+1, k+1) appears in the text t even if k = N . This

is because in the definition of the text t, integer j ranges

from −2N up to 3N .
We perform the transformation by performing the follow-

ing steps:

1) transform V G(ak−1) into V G′0;

2) transform V G0 into V G′(bk−1, k − 1)x10 V G′0;

3) transform V G(ak) into V G′(bk, k) (we can do this

since ak · bk = 0);

4) transform V G0 into V G′0 x
10 V G′(bk+1, k + 1).

Now, for j = k + 1, . . . ,M − 1 transform

x10 V G(aj)x10 V G0 into x10 V G′0 x
10 V G′(bj+1, j + 1)

similarly as before. Next, transform x10 V G(aM )x10 into

x10 V G′0 x
10. Finally, transform y6 into CG′(bM+1

1 ) appear-

ing in V G′(bM+1,M +1). We can do this since bM+1
1 = 0.

Lemma 6. If a substring of t can be derived from p, then
there are two orthogonal vectors.

Proof: By the construction, every substring x10 from

p must be mapped to a unique substring x10 in t (there

are no substrings of t that have more than 10 symbols x).

Because of this, every V G(ai) must be mapped to V G′0
or V G′(bj , j) for some j. If the latter case occurs, the

corresponding vectors are orthogonal and we are done. It

remains to consider the case that all vector gadgets V G(ai)
get mapped to V G′0. Consider any vector gadget V G0 in

p. To the left of it we have the sequence x10 and to the

right of it we have the sequence x10. Each one of these two

sequences x10 in p gets mapped to a unique sequence x10

in t. We call the vector gadget V G0 nice if the two unique

sequences x10 are neighbouring in t, that is, there is no other

sequence x10 in t between the two unique sequences. We

consider two cases below.
Case 1: There is a vector gadget V G0 in p that

is not nice. Take any vector gadget V G0 that is not

nice and denote it by v. The gadget v is immediately

to the right of the expression V G(ai
′
)x10 in p for some

i′ ∈ [M ]. V G(ai
′
) is mapped to V G′0 (otherwise, we

have found an orthogonal pair of vectors, as per the dis-

cussion above) and this V G′0 is to the left of substring

x10 V G′(bj
′′
, j′′) in t for some j′′. Because v is not nice,

a prefix of it must map to V G′(bj
′′
, j′′)x10 V G′0. We

claim that entire v gets mapped to V G′(bj
′′
, j′′)x10 V G′0.

If this is not the case, then a prefix of v must be

mapped to V G′(bj
′′
, j′′)x10 V G′0 x

10 V G′(bj
′′+1, j′′ + 1)

(since sequence x10 in p to the right of v must be

mapped to x10). A prefix of v can’t be mapped to

V G′(bj
′′
, j′′)x10 V G′0 x

10 V G′(bj
′′+1, j′′ + 1) since v =

(y∗ x∗)d+10y∗ can produce sequence with at most d + 11
substrings of maximal length consisting entirely of symbols

y but sequence V G′(bj
′′
, j′′)x10 V G′0 x

10 V G′(bj
′′+1, j′′+

1) has 3d+1
2 > d+11 (if d ≥ 100) subsequences of maximal

length consisting entirely of y. Therefore, we are left with

the case that entire v is mapped to V G′(bj
′′
, j′′)x10 V G′0.

The gadget v is to the left of vector gadget V G(ai
′+1)

and V G′(bj
′′
, j′′)x10 V G′0 is to the left of vector gadget

V G′(bj
′′+1, j′′ + 1). We conclude that V G(ai

′+1) must be

mapped to V G′(bj
′′+1, j′′ + 1). This implies that ai

′+1 ·
bj

′′+1 = 0 and we are done.
Case 2: All vector gadgets V G0 in p are nice. We start

p with y6 followed immediately by x10. This means that y6

is mapped to CG′(bj
′

d , j
′) for some even j′ (by the construc-

tion of coordinate gadgets CG′). Consider vector gadgets

in p from left to the right. We must have that V G(a1) is

mapped to V G′0, that V G0 is mapped to V G′(b1, 1) (since

every V G0 in p is nice), that V G(a2) is mapped to V G′0,

that V G0 is mapped to V G′(b2, 2) (since every V G0 in

p is nice) and so forth. Since M is odd, we have that

V G(aM ) is mapped to V G′0 and that this vector gadget

V G′0 is followed by x10 V G′(bj
′+M , j′ +M). V G(aM ) is

followed by x10y6 and this means that y6 is mapped to the

beginning of V G′(bj
′+M , j′+M). This is impossible since

V G′(bj
′+M , j′+M) does not contain a substring of length

6 or more consisting of symbols y (observe that j′ +M is

odd and see the construction of vector gadget V G′). We get

that Case 2 can’t happen.
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