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Abstract—We present a natural reverse Minkowski-type
inequality for lattices, which gives upper bounds on the number
of lattice points in a Euclidean ball in terms of sublattice
determinants, and conjecture its optimal form. The conjecture
exhibits a surprising wealth of connections to various areas
in mathematics and computer science, including a conjecture
motivated by integer programming by Kannan and Lovász
(Annals of Math. 1988), a question from additive combinatorics
asked by Green, a question on Brownian motions asked by
Saloff-Coste (Colloq. Math. 2010), a theorem by Milman and
Pisier from convex geometry (Ann. Probab. 1987), worst-
case to average-case reductions in lattice-based cryptography,
and more. We present these connections, provide evidence
for the conjecture, and discuss possible approaches towards
a proof. Our main technical contribution is in proving that
our conjecture implies the �2 case of the Kannan and Lovász
conjecture. The proof relies on a novel convex relaxation
for the covering radius, and a rounding procedure based on
“uncrossing” lattice subspaces.
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I. INTRODUCTION

A lattice L ⊂ R
n is defined as the set of all integer

linear combinations of n linearly independent vectors B =
(b1, . . . ,bn) in R

n, where we call B a basis for L. The

determinant of L is defined as det(L) = | det(B)|, which

is invariant to the choice of basis for L. The determinant

measures the “global density” of the lattice. More precisely,

det(L)−1 is the asymptotic number of lattice points per unit

volume.

One of the earliest and most important results in this

area is Minkowski’s (First) Theorem from 1889, which

guarantees the existence of lattice points in any large enough

symmetric convex body. In particular, it implies that any

lattice L with det(L) ≤ 1 must contain exponentially in

n many points of Euclidean norm at most
√
n. Informally,

Minkowski’s theorem can be described as saying that “global

density implies local density”.

The starting point of our investigation is an attempt to

reverse this implication. Assume L has local density, i.e.,

exponentially many points of norm at most
√
n. Can we

conclude that it must also have global density, i.e., det(L) ≤
1? A moment’s thought reveals that we cannot hope for such

a strong conclusion. Indeed, consider the lattice L generated

by the basis {e1, . . . , en−1,Men} where M is arbitrarily

large. Then det(L) = M yet L has exponentially many

points of norm at most
√
n.

A natural conjecture would therefore say that local density

implies global density in a subspace, or in other words,

that there is a (not necessarily full-rank) sublattice with low

determinant. This is the essence of our main conjecture.

To make this more precise, consider the lattice Z
n.

Obviously, all its sublattices have determinant at least 1 (as

the determinant of any integer matrix is integer). Moreover,

it is not difficult to see that the number of integer points

in a ball of radius r is approximately nr2 for r � √
n.

Our main conjecture basically says that Zn has the highest
local density among all lattices whose sublattices all have
determinant at least 1. See Conjecture III.1 for the formal

statement, which also makes the connection to the so-called

smoothing parameter explicit.

Conjecture I.1. (Main conjecture, informal) Let L ⊂ R
n

be an n-dimensional lattice whose sublattices all have
determinant at least 1. Then, for any r > 0, the number
of lattice points of Euclidean norm at most r is at most
exp(poly log n · r2).

While one can consider other variants of the conjecture

(see the stronger variant in Section IX and the weaker

variants in Section V), the main conjecture is the most

appealing, as described next.
Connections: The conjecture exhibits a surprising

wealth of connections to various areas in mathematics,

ranging from additive combinatorics to convex geometry and

to heat diffusion on manifolds. We mention some of those

next.

• The Kannan-Lovász (KL) conjecture [1] is a nearly

tight characterization of the covering radius of a lattice

with respect to a given convex body in terms of pro-

jection volumes and determinants. The main technical

contribution of our paper, appearing in Section IV, is

to show that the �2 version of the KL conjecture [1]

is implied up to poly-logarithmic factors by the main

conjecture. This implication is quite nontrivial, and a

proof overview will be given below. Very briefly, we

rely on a novel convex relaxation for the covering radius

and a rounding strategy for the corresponding dual

program to extract the relevant subspace. We remark
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that it is possible that our main conjecture in fact

implies the general KL conjecture.

• In 2007, it was suggested by Green [2] that a certain

strong variant of the polynomial Freiman-Ruzsa conjec-

ture over the integers is false. In work in progress of

the second-named author with Lovett [3], we prove that

this is indeed the case assuming the main conjecture.1

No unconditional proof of this is currently known.

• The following question was considered by Saloff-Coste

(see, e.g., [4], [5], [6] and especially [7, Problem 11]).

For a lattice L ⊂ R
n, consider the Brownian motion on

the flat torus R
n/L starting from the origin. Its density

at any time t > 0 is a Gaussian of standard deviation√
t reduced modulo L. Saloff-Coste asked whether its

mixing time in the total variation (or equivalently, L1)

sense is approximately the same as that in the (easier to

analyze) L2 sense. This is equivalent to asking whether

the smoothing parameter of a lattice is approximately

the same as the “L1 smoothing parameter.” In Sec-

tion VII we provide more background and show that

such a result follows from our main conjecture. We

remark that this seems to be the weakest implication

of the main conjecture that is already an interesting

question in its own right.

• In Section VIII we describe some connections to

computational complexity. We show that our main

conjecture implies a very tight reduction from the

problem of approximation the smoothing parameter to

the problem of sampling points from a given coset of

a lattice according to a Gaussian (or even subgaussian)

distribution. Combined with known reductions, this

shows that the hardness of SIS, a central average-case

cryptographic problem, can be based on the worst-case

hardness of approximation the smoothing parameter to

within Õ(
√
n). We also mention an easy implication

to the complexity of the problem of approximating the

covering radius.

Evidence for the conjecture: First, as we show in an

omitted section, the conjecture passes some basic sanity

checks. For instance, it is true for natural families of lattices

including “rectangular” lattices (or more generally, direct

sum of lattices for which the conjecture holds) as well as

random lattices. We also show there that a weaker bound on

the number of lattice points is true (namely, with poly log n
replaced by

√
n).

Second, as we describe in an omitted section, the con-

jecture has a certain “continuous relaxation” which talks

about volumes of sections instead of determinants of lattice

subspaces. Somewhat surprisingly, that relaxation is known

to be true and follows from a celebrated theorem by Milman

and Pisier. This is the most non-trivial implication of the

1We remark that for this it would suffice to prove the conclusion in
Conjecture I.1 for r =

√
n.

main conjecture that we know is true.

Finally, we believe that there are several approaches for

proving the main conjecture itself that are worth exploring in

more detail, including one based on additive combinatorics.

We also tried exploring whether there are natural weaker

variants of the conjecture that might be easier to prove.

Those variants are described in Section V, and some are

quite natural in their own right. The variant described in

Section VI is particularly appealing, and we believe that it

can be attacked using a Fourier analytic approach.

Related work: There has been considerable work on the

problem of bounding or counting the number of lattice points

in a ball, perhaps the earliest reference being Gauss’s circle

problem. Most of the work in this area, however, considers

“large” convex bodies and shows that for such bodies the

number of lattice points is very close to what one would

expect by a volume heuristic. As such, this seems too coarse

to capture the subspace structure highlighted by the main

conjecture. See, e.g., [8] and references therein for the kind

of results proved in this area since the early 20th century.

Also related is the work on stable lattices (sometimes

known as “semistable”). These are lattices of determinant 1
whose sublattices all have determinant at least 1. Properties

of stable lattices have been studied since the 1970s in

connection with algebra, topology, and geometry. See [9]

and references therein. In particular, Shapira and Weiss [9]

consider a strong quantitative variant of the �2 version of

the KL conjecture, and show that it implies the so-called

Minkowski conjecture. It remains to be seen how exactly

our main conjecture connects to the work on stable lattices.

Proof overview of the main technical theorem: Our

main technical theorem shows how to derive the �2 case

of the Kannan-Lovász (KL) conjecture from our main

conjecture. To explain the KL conjecture, recall that the

covering radius μ of a lattice is the maximum distance

a point in space can be from the lattice. So for instance

μ(Zn) =
√
n/2. An easy lower bound on μ(L) is given in

terms of the determinant of L. Namely, since balls of radius

μ(L) centered at all points of L cover R
n, we obtain by

volume considerations that μ(L) � √
n(det(L))1/n. This

bound can be far from tight, e.g., for the lattice generated

by the basis {e1, . . . , en−1,Men} where M is large. As

was the case for the main conjecture, we can tighten the

bound by maximizing over subspaces, namely, we consider

the maximum of
√
dim(W )(det(πW (L)))1/ dim(W ) over all

subspaces W where πW denotes the projection on W . Since

μ(L) ≥ μ(πW (L)) this is clearly a lower bound on μ(L).
The �2 KL conjecture says that this is nearly tight, i.e., that

we can also upper bound μ(L) by the same maximum up

to polylogarithmic terms.

As should be obvious by now, the �2 KL conjecture has

a similar flavor to our main conjecture (and even more so

when comparing the formal definitions, see Conjecture III.1

and Conjecture IV.1). The difference is that our conjecture
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tries to capture the number of points in a ball (or to be

precise, the smoothing parameter), whereas �2 KL tries to

capture the covering radius.

The first step in our proof is to bound from above

the covering radius by a convex program we call μsm.

Intuitively and informally, the convex program tries to find

the “smallest” covariance matrix A such that the distribution

obtained by picking a random lattice point and adding a

Gaussian random variable with covariance A is close to

uniform over R
n. Here by smallest we mean the expected

squared norm of a Gaussian with that covariance, which is

simply tr(A). A Gaussian that satisfies this property is said

to “smooth” L. It is intuitively clear (and not difficult to

prove formally) that this program bounds μ(L)2 from above,

since in order for the Gaussian to smooth L, it must “reach”

all points in space, and hence its norm must be at least μ(L).
To state this program formally, we recall that smoothness

has an elegant equivalent definition (which follows from the

Poisson summation formula) in terms of a Gaussian sum on

dual lattice points, namely

μsm(L)2 = min
{
tr(A) : A � 0,

∑
y∈L∗\{0}

e−πyTAy ≤ 1/2
}

.

(1)

At this point the natural thing to do would be to consider

the dual of μsm, which is a maximization problem, and

use its optimal solution to find a subspace the projection

on which has large determinant, as needed for the �2 KL

conjecture. Unfortunately, the dual program seems difficult

to deal with since the single constraint in (1) “entangles” all

the information about lattice points in a complicated way,

and it is not clear how it would help in identifying such a

subspace.

This is were our main conjecture comes in. We formulate

another convex program μdet which, assuming the main

conjecture, bounds μsm from above up to polylogarithmic

factors. In more detail, that program also tries to find the

covariance matrix with smallest trace, but its constraints

basically say that A should be such that in the dual lattice,

all sublattice determinants are large (relative to A). By the

main conjecture, large sublattice determinants imply small

number of points in balls, which in turn, implies smoothing.

(In fact, the formal statement of the main conjecture in

Conjecture III.1 is already stated in terms of a Gaussian

sum over lattice points as in (1), so there is no need for

this detour through number of points in balls.) Since under

the main conjecture, the constraints in μdet imply those in

μsm (i.e., are weaker), we obtain that μdet bounds μsm from

above up to polylogarithmic factors, as desired.

Since μdet directly puts in a constraint for every subspace,

the subspace structure comes out explicitly, and we are

finally in position take the dual. It turns out that the dual of

μdet has a reasonably nice form, and a solution to it can be

seen as some kind of mixture of various lattice subspaces.

The last and most technically demanding part of the proof

is to “round” that dual solution, i.e., we show how to take

an arbitrary mixture of lattice subspaces and extract from

it just one lattice subspace that is nearly as good. There

are several steps to this proof, the most interesting one

being a sort of “uncrossing inequality,” showing that if the

solution includes two subspaces V and W , we can replace

them with the subspaces V +W and V ∩W in a way that

does not decrease the goal function. We now repeat this

uncrossing step over and over again. Notice that we make

progress as long as there are two subspaces such that neither

is contained in the other. Therefore, after sufficiently many

iterations, we arrive at a chain, i.e., a sequence of subspaces

W1 ⊆ W2 ⊆ · · · ⊆ Wm. Using careful bucketing, we show

that one of these subspaces must be nearly as good as the

mixture, and this completes the proof.

Outline: Due to lack of space, almost all preliminaries,

proofs, and some statements, are omitted. We refer the

reader to the arXiv version for a more complete treatment

http://arxiv.org/abs/1606.06913.
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II. PRELIMINARIES

We write X � Y to mean that there exists a universal

constant C > 0 such that X ≤ CY , and similarly for X �
Y .

Definition II.1 (Matrix Slice). We denote X∩W , the slice
of X on W , to be the unique PSD matrix satisfying

yT(X∩W )y = min
w∈W⊥

(y +w)TX(y +w), ∀y ∈ R
n .

If X =

(
A C
CT B

)
∈ S

n
+, A ∈ R

k×k, C ∈ R
k×(n−k),

B ∈ R
(n−k)×(n−k), then the slice X on W = R

k × 0n−k

is the Schur complement of X with respect B (lifted to live
in the full space), that is

X∩W =

(
A− CB+CT 0k×(n−k)

0(n−k)×k 0(n−k)×(n−k)

)
.

Definition II.2 (Projected Determinant). Define the pro-
jected determinant of X on W by

det
W

(X)
def
= det(OT

WXOW ) (2)
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where OW is any matrix whose columns form an orthonor-
mal basis of W .

A d-dimensional Euclidean lattice L ⊂ R
n is defined

as the set of all integer linear combinations of d linearly

independent vectors B = (b1, . . . ,bd) in R
n, where we call

B a basis for L. If d = n we say that the lattice is full rank.

The determinant of L is defined as det(L) = √
det(BTB),

which is invariant to the choice of basis for L.

The dual lattice of L is L∗ = {y ∈ span(L) : 〈y,x〉 ∈
Z, ∀x ∈ L}. It is easy to verify that B(BTB)−1 yields a

basis for L∗ and that det(L∗) = 1/det(L). We say that a

subspace W ⊆ R
n is a lattice subspace of L ⊂ R

n if W
admits a basis of vectors in L. We will need a few important

facts about lattice subspaces and projections. Firstly, the

projection πW (L) onto a subspace W ⊆ R
n is a lattice

(i.e., discrete) if and only if W is a lattice subspace of L∗.
Furthermore, πW (L)∗ = L∗ ∩W . Secondly, for two lattice

subspaces V,W of L, both the intersection V ∩W and the

sum V +W is a lattice subspace of L.

Definition II.3. The covering radius of L is

μ(L) = inf{r ≥ 0 : span(L) ⊆ L+ rBn
2 } .

For a positive definite X � 0 and a countable set T ⊆ R
n,

define

ρX(T ) =
∑
y∈T

e−πyTX−1y.

We extend this to positive semidefinite X � 0 by

ρX(T ) =
∑

y∈T∩im(X)

e−πyTX+y.

Note that with the above definition, ρX(T ) is a continuous

function over all of Sn+.

We remark that the above notation is slightly non-

standard, in that we parametrize the ρ with respect to X and

not X1/2. This notation will however be more convenient

for us. For s > 0, we will often denote ρs2I by ρs2 .

We define ηε(L) the ε-smoothing parameter of L as the

unique s > 0 satisfying

ρ1/s2(L∗) =
∑
y∈L∗

e−π‖sy‖2 = 1 + ε .

We will simply say the smoothing parameter of L to denote

η(L) def
= η1/2(L).

III. THE MAIN CONJECTURE

We now formally state the main conjecture.

Conjecture III.1. (Main conjecture) Let Cη(n) > 0 be the
smallest number such that for any L ⊂ R

n,

η(L) ≤
Cη(n) max

W �={0} lattice subspace of L∗
(det(L∗ ∩W ))−1/ dim(W ).

(3)

Then Cη(n) ≤ poly log n.

Note that by homogeneity, to prove Conjecture III.1 it

suffices to show that η(L) ≤ poly log n whenever all

sublattices of L∗ have determinant at least 1. We now

show an equivalence between the smoothing parameter and

a bound on the number of dual lattice points at distance r
of the form e(sr)

2

. This formalizes the equivalence between

the above conjecture and Conjecture I.1.

Lemma III.2. For an n-dimensional lattice L, the following
inequality holds:

η(L)/
√
3 ≤ max

r>0

√
log(|L∗ ∩ rBn

2 |)/π
r

≤ η(L) .

IV. THE MAIN CONJECTURE IMPLIES THE

KANNAN-LOVÁSZ CONJECTURE

We start by stating the �2 KL conjecture.

Conjecture IV.1 (The �2 Kannan-Lovász Conjecture). Let
CKL(n) > 0 be the smallest number such that for any L ⊂
R

n,

μ(L) ≤ CKL(n) max
W lattice subspace of L∗

1≤d=dim(W )≤n

√
d det(L∗ ∩W )−1/d .

(4)

Then CKL(n) ≤ poly log n.

We note that the reverse direction is easy to prove, i.e.,

that the max in Eq. (4) is � μ(L). We also note that

the best known lower bound on CKL(n) is O(
√
log n),

obtained by the lattice generated by the basis B =
(e1, e2/

√
2, . . . , en/

√
n). With the above formulation, we

can state the main result of this paper as follows.

Theorem IV.2. The �2 Kannan-Lovász conjecture holds with
bound CKL(n) = O(log n)Cη(n).

In an omitted section we provide some optional back-

ground on the KL conjecture. The rest of this section is

dedicated to the proof of Theorem IV.2.

A. Proof outline

We now give a high level overview of the proof. The

first step of the proof, appearing in Section IV-B, is to

formulate a convex relaxation μsm of the covering radius μ.

This convex relaxation is quite natural, and can be described

as measuring the “most efficient” way to smooth a lattice

using an ellipsoidal Gaussian. We will explore it further in

Section VI. Next, we use our main conjecture to arrive at a

further convex relaxation, which we dub μdet. This is done

in Section IV-C. The final and arguably most interesting part

of the proof is to round the dual formulation of μdet. This is

done in Section IV-D. The proof of the theorem is then just

a combination of the theorems appearing in the following

subsections
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B. Smooth μ bound

The first step in the proof is to bound the covering

radius by a convex relaxation we call μsm. The fact that the

covering radius is at most
√
n times the smoothing parameter

is standard by now (it is already implicit in [10]), and the

theorem can be seen as a slight extension of this standard

fact to non-spherical Gaussians. One interesting aspect of the

statement, though, is that the resulting minimization problem

is convex.

Theorem IV.3 (Smooth μ bound). For an n-dimensional
lattice L ⊂ R

n, let

μsm(L)2 = min
{
tr(A) : A � 0,

∑
y∈L∗\{0}

e−πyTAy ≤ 1/2
}

.

(5)

Then μ(L) ≤ 4π−1/2μsm(L). Furthermore, the program
defining μsm(L) is convex.

C. Determinantal μ bound and its dual

Theorem IV.4 (Determinantal μ bound). For an n-
dimensional lattice L ⊂ R

n, let

μdet(L)2 = min
{
tr(A) : A � 0, det

W
(A) ≥ 1

det(L∗ ∩W )2
,

∀ W �= {0} lattice subspace of L∗
}

. (6)

Then, the program defining μdet(L) is convex, and

μdet(L)/2 ≤ μsm(L) ≤ Cη(n)μdet(L) .
We now write down the dual of μdet and prove that strong

duality holds (following a mostly-standard argument).

Theorem IV.5 (Dual of determinantal μ bound). For an n-
dimensional lattice L ⊂ R

n, let

μdual
det (L)2 = maximize

m∑
i=1

di detWi(Xi)
1/di

det(L∗ ∩Wi)2/di

subject to
m∑
i=1

Xi � I

Wi �= {0} lattice subspace of L∗, di = dim(Wi), i ∈ [m]

Xi � 0, im(Xi) = Wi, i ∈ [m]

m ∈ N.
(7)

Then μdet(L) = μdual
det (L).

D. Subspace rounding

Here we prove Theorem IV.6, the most involved part

of the reduction. The proof uses a certain “uncrossing”

inequality, Lemma IV.7, proven in Section IV-E below.

Theorem IV.6 (Subspace Rounding). Let L ⊂ R
n be an

n-dimensional lattice. Then

μdual
det (L)2 ≤

24(log2 n+ 1)2 max
W lattice subspace of L∗

d=dim(W )∈[n]

d

det(L∗ ∩W )2/d
.

E. The uncrossing inequality

The following is the uncrossing inequality.

Lemma IV.7. For any lattice L, lattice subspaces V,W ,
and positive semidefinite X,Y � 0 with images V,W
respectively,

detV (X)

det(L ∩ V )2
· detW (Y )

det(L ∩W )2
≤

detV ∩W
((

X+Y
2

)∩(V ∩W ))
det(L ∩ (V ∩W ))2

·

detV+W

(
X + Y − (

X+Y
2

)∩(V ∩W ))
det(L ∩ (V +W ))2

.

V. WEAKER VARIANTS OF THE MAIN CONJECTURE

In an effort to make progress on the main conjecture,

it is natural to consider weaker forms of it and hope that

they would be easier to prove. In this section we describe

four such forms, some quite natural in their own right, and

describe their relationship. Those weaker forms are obtained

by relaxing the quantity appearing in the right-hand side of

Eq. (3) in the main conjecture, which we call here ηdet. The

first two involve the quantities ηρ and ημ where instead of

asking the sublattice L∗ ∩W to have small determinant, we

ask it to have large Gaussian mass (or equivalently, many

lattice points in a ball) in the case of ηρ, or its dual to have

large covering radius in the case of ημ. The remaining two

quantities, η◦ρ and η◦μ , are obtained from the previous two

by replacing the lattice subspace by an arbitrary ellipsoid.

This avoids the discreteness inherent in the set of lattice

subspaces, and might be more amenable to a proof.

Definition V.1. For a lattice L we define the following
quantities, where W always ranges over all lattice subspaces
of L∗ of positive dimension.

ηdet(L) = max
W

(det(L∗ ∩W ))−1/ dim(W )

ηρ(L) = max
s>0,W

s · (log ρ1/s2(L∗ ∩W )/ dimW )1/2

ημ(L) = max
W

μ(πW (L))/
√
dimW

η◦ρ (L) = sup
X�0

(log ρX(L∗)/ trX)1/2

η◦μ(L) = sup
R non-singular

μ(RL)/(tr(RTR))1/2

= sup
R non-singular,‖R‖F≤1

μ(RL)
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Remark. It is easy to check from the definitions that all
six “η-type” parameters are positively homogeneous, that
is for η̃ ∈ {ηdet, ηρ, ημ, η◦ρ , η◦μ , η} as above, we have
η̃(λL) = λη̃(L) for λ > 0. We will show a stronger property
in Lemma V.6 below. Also, in the definitions of η◦ρ and η◦μ
we can equivalently take the supremum over all (nonzero)
matrices X,R, including singular ones. This holds due to
standard limit arguments.

Theorem V.2. For any lattice L we have the inequalities

1

Cη(n)
η(L) ≤ ηdet(L) �ηρ(L) � ημ(L)≤ ≤

η◦ρ (L) � η◦μ(L) � η(L) .
Lemma V.3. For any lattice L and s > 0,

μ(L) ≥ max
s>0

s ·
√

log ρ(sL∗)
π

. (8)

One might wonder if the inequality in Lemma V.3 also

holds in reverse, say up to polylogarithmic factors. It turns

out that this is an easy consequence of the �2 KL conjecture,

and we may therefore refer to it as the weak-KL conjecture.

Intuitively, it shows that the covering radius can be charac-

terized up to polylogarithmic factors by the norm distribution

of points in the dual lattice. To make this more precise, we

show in Lemma V.5 below that the maximum in (8) has a

simple equivalent point counting formulation. In particular,

we show that it is in essence the minimum s > 0 for which

the number of points at any radius r is bounded by a function

of the form esr. We note the interesting similarity with the

point counting formulation of the smoothing parameter in

Lemma III.2, which gives a bound of the form e(sr)
2

.

Weaker forms of the main conjecture: By replacing

the quantity ηdet appearing in the main conjecture with

one of other four quantities appearing in Definition V.1, we

get weaker forms of the main conjecture. Some of those

are quite natural. For instance, by using ημ, we obtain a

conjecture that can be interpreted as saying that if L is not

smooth, then there is a certificate for that in the form of a

projection where the Gaussian “does not reach” the covering

radius of the projected lattice. Also, the conjecture obtained

from η◦ρ is quite appealing as both sides of the inequality

only involve the Gaussian mass. Finally, by using η◦μ(L) we

obtain the weakest form of the main conjecture. It turns out

that this weakest form is sufficient for the applications in

Section VII and Section VIII-A, and we therefore define it

explicitly.

Conjecture V.4. (Weak conjecture) Let C
(μ,◦)
η (n) > 0 be

the smallest number such that for any n-dimensional lattice
L ⊂ R

n,

η(L) ≤ C(μ,◦)
η (n)η◦μ(L) . (9)

Then C
(μ,◦)
η (n) ≤ poly log n.

In Section V-A we will show that the weak conjecture com-

bined with the �2-KL conjecture imply the main conjecture.

Point counting formulation: Here we formulate the

claim made after Lemma V.3.

Lemma V.5. Let L ⊂ R
n be an n-dimensional lattice. Then

2
√
πe3/2 max

r>0

log(|L ∩ rBn
2 |)

2πr
≥ max

s>0
s

√
log ρ(sL)

π

≥ max
r>0

log(|L ∩ rBn
2 |)

2πr
.

Continuity of the η parameters: We end this section by

stating basic continuity properties of the η-type parameters.

Lemma V.6. Let η̃ ∈ {ηdet, ηρ, ημ, η◦ρ , η◦μ , η}. For L ⊂ R
n

an n-dimensional lattice, for an invertible transformation
T ∈ R

n×n,

‖T−1‖−1η̃(L) ≤ η̃(TL) ≤ ‖T‖η̃(L) .

In particular, η̃(L) = η̃(TL) if T is an orthogonal trans-
formation. Furthermore, the map T �→ η̃(TL), with domain
equal to the space of n×n invertible matrices, is continuous.

A. The Kannan-Lovász conjecture and the weak conjecture

The goal of this section is to show that the �2 Kannan-

Lovász conjecture is equivalent to a polylogarithmic bound

on the worst case ratio between η◦μ and ηdet.

Definition V.7. Let Cdet
(μ,◦)(n) denote the smallest number

such that for any n-dimensional lattice L ⊂ R
n,

η◦μ(L) ≤ Cdet
(μ,◦)(n) · ηdet(L) .

The main equivalence is given below.

Theorem V.8. For n ≥ 1, Cdet
(μ,◦)(n) ≤ CKL(n) � log n ·

Cdet
(μ,◦)(n).

The first inequality immediately implies that the weak

conjecture together with the �2-KL conjecture imply the

main conjecture. The second inequality is a sharpened

version of our main result, Theorem IV.2, since Cdet
(μ,◦)(n) �

Cη(n) by Theorem V.2.

VI. SMOOTH μ TIGHTNESS AND THE WEAK CONJECTURE

Recall from Theorem IV.3 the convex program μsm that

provides an upper bound on μ.

Definition VI.1. (Smooth μ tightness) Let C(sμ)(n) > 0 be
the smallest number such that for any n-dimensional lattice
L ⊂ R

n,

μsm(L) ≤ C(sμ)(n)μ(L) .

Intuitively, C(sμ)(n) being small means that it is always

possible to smooth a lattice with a (not necessarily spher-

ical) Gaussian whose expected norm is nearly as small as

possible, namely, not much more than the covering radius.

Obviously, one cannot smooth a lattice with a Gaussian
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of expected norm less than the covering radius – this is

precisely the content of Theorem IV.3.

The main result of this section (omitted) is that

C(sμ)(n) ≈ C
(μ,◦)
η (n). This implies that the weak con-

jecture (Conjecture V.4) is equivalent to the statement that

C(sμ)(n) ≤ poly log n. We mention in passing that the proof

of Theorem IV.2 combined with the easy reverse direction

of the KL conjecture already implies that for any lattice L,

μsm(L) � Cη(n)μ(L), i.e., that C(sμ)(n) � Cη(n).
At a high level, we show that C(sμ)(n) is in essence the

“dual” form of C
(μ,◦)
η (n).

VII. MIXING TIME OF BROWNIAN MOTION ON THE

TORUS

Given a full-rank lattice L ⊂ R
n, consider the Brownian

motion on R
n/L starting from the origin. The probability

density function at time t > 0 is given by ft : R
n/L → R

+,

ft(x) = t−n/2ρt(L+ x) .

As t goes to infinity, the Brownian motion converges to the

uniform distribution. For 1 ≤ p < ∞, the Lp mixing time
τp(L) is defined as

inf
{
t > 0 :

(
det(L)−1

∫
Rn/L

| det(L)ft(x)−1|pdx
)1/p

<
1

4

}

and extended to p =∞ by

τ∞(L) = inf
{
t > 0 : ∀x, | det(L)ft(x)− 1| < 1/4

}
.

We clearly have that τp(L) ≤ τq(L) for any 1 ≤ p ≤ q ≤ ∞.

Also, the constant 1/4 is arbitrary (see, e.g., [11, Section

4.5]).

Using the Poisson summation formula and Parseval’s

identity, one can show that τ∞(L) ≤ 2τ2(L) (and we can

even take 1/2 instead of 1/4 in the definition of τ2). This

property is not unique to Brownian motions on the torus

– the L∞ mixing time of any reversible Markov chain is

always at most twice the L2 mixing time (see, e.g., the

appendix of [12]).

What about the L1 mixing time? How much smaller can

it be than the L2 (or L∞) mixing time? Analyzing the

L1 mixing time of Markov chains is generally quite hard.

We note that there are examples of random walks on finite

transitive graphs where the L1 and L2 mixing times differ

greatly [13]. Still, one can hope that L1 and L2 mixing times

are close when considering Brownian motion on manifolds

such as the torus. This and related questions were considered

by Saloff-Coste (see, e.g., [4], [5], [6]) who also asks it

explicitly in a recent survey [7, Problem 11].

We next prove that under the weak conjecture, L1 mixing

time is approximately the same as the L∞ mixing time.

Intuitively, the proof proceeds as follows. If we are below

the L∞ mixing time, then by the weak conjecture, there is

a certificate for that in the form of a Euclidean structure

(or equivalently, a linear transformation) under which the

Brownian motion does not reach the covering radius. But if

this is the case, then surely it cannot even mix in the L1

sense.

Theorem VII.1. For any n-dimensional lattice L, τ∞(L) �
C

(μ,◦)
η (n)2 τ1(L).

VIII. COMPUTATIONAL COMPLEXITY AND

CRYPTOGRAPHY

In this section, we present the complexity implications of

the weak conjecture (Conjecture V.4) for approximating the

smoothing parameter (Section VIII-A), and of the �2 KL

conjecture (Conjecture IV.1) for approximating the covering

radius (Section VIII-B).

A. The Weak Conjecture and GapSPP

We consider the following two computational problems.

The first, GapSPP, is the problem of approximating the

smoothing parameter η(L) of an input lattice L. The second,

Discrete Gaussian Sampling (DGS), is the task of generating

samples distributed according to DL+t,s for parameters

s ≥ η(L). Here, the discrete Gaussian distribution DL+t,s

is the discrete distribution with support L+ t whose proba-

bility mass function is proportional to the restriction of the

Gaussian density of standard deviation s to L+ t.

The smoothing parameter and the discrete Gaussian dis-

tribution are closely related. For instance, one of the main

important properties of the smoothing parameter is that for

s = Ω̃(η(L)), the discrete Gaussian distribution DL+t,s

“behaves like” a continuous Gaussian of standard deviation

s in terms of its global statistics such as moments. Also,

both play a fundamental role in lattice-based cryptography,

in particular in the best known worst-case to average-case

reductions for lattice problems (e.g., [14], [15], [16], [17],

[18]). Finally, they recently featured in the fastest known

provable algorithms for lattice problems [19].

Given the tight relationship between the smoothing pa-

rameter and the discrete Gaussian distribution, a natural

question is whether one can compute a good approximation

of the smoothing parameter (that is, solve GapSPP) using

only oracle access to a discrete Gaussian sampler. The best

known reduction is from Õ(
√
n)-GapSPP to DGS sampling,

and is implicit in [14]. The main goal of this section is to

show that conditioned on the weak conjecture, one obtains

an exponential improvement in the approximation factor,

namely a reduction from poly log n-GapSPP to DGS. The

formal statement appears in Theorem VIII.4.
Connection to lattice-based cryptography: Together

with prior work [14], [16], [18], this reduction directly

implies a worst case to average case reduction from Õ(
√
n)-

GapSPP to the Shortest Integer Solution problem (SIS), one

of the base hard problems in lattice-based cryptography (see

Definition VIII.5). The best unconditional approximation

factor is O(n). We will describe this in more detail in

Section VIII-A2.
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For the Learning with Errors (LWE) problem (see [15]),

the other and perhaps most versatile base problem in lattice-

based cryptography, it was shown in [17] that Õ(
√
n/α)-

GapSPP reduces to LWE, where α is the LWE error pa-

rameter. Interestingly, they also show that the reduction

of Õ(n/α)-GapSVP to LWE in [15] can be recovered by

running the GapSPP reduction and using the known relations

between the smoothing parameter and the shortest vector in

the dual lattice (i.e., one can factor the reduction through

GapSPP).

Given the above results, it seems that GapSPP might be a

good alternative to the standard worst-case problems such as

GapSVP or SIVP for worst case to average case reductions.

Indeed, the obtained approximation factor is an Õ(
√
n)

factor better when reducing to SIS (conditionally) and LWE

(unconditionally), though one may argue that it is perhaps

somewhat dubious to compare approximation factors with

respect to different lattice problems.

On a concluding note, we remark that other than the

results presented here and those in [17], very little work

has been done to understand the fine-grained complexity of

GapSPP. We hope here to have helped motivate its further

study.

Overview of the reduction: We first explain the known

reduction from Õ(
√
n)-GapSPP to DGS sampling implicit

in [14]. Given as input a lattice L and s > 0, the reduction

simply calls the DGS oracle with L, s, and t = 0, and then

runs a certain statistical test to check if the output “looks

like” a discrete Gaussian distribution. Specifically, the test

checks that (1) all vectors are in L and are of length O(s
√
n)

and (2) they span R
n. It is obvious that this reduction can

be implemented in polynomial time. Correctness follows by

showing that (1) for any parameter s = Ω(η(L)), Õ(n)
DGS samples on an n-dimensional lattice L are likely to

be of length O(s
√
n) and span R

n, and that (2) for s =
Õ(η(L)/√n), any set of lattice points of length O(s

√
n)

will be contained in a proper subspace of L. We note that

in the second case, it is crucial that the test is guaranteed to

fail regardless of the distribution of samples, since the oracle

can behave arbitrarily for s below the smoothing parameter.

Our improved reduction is from poly log n-GapSPP to

DGS sampling, and is conditioned on the weak conjecture.

Let us assume that we need to distinguish between η(L) ≤ 1
and η(L) ≥ poly log n. We first pick a coset t of L
uniformly at random. We then ask the oracle to produce

O(n) DGS samples at parameter O(1) over L+ t. We then

compute the empirical second moment matrix C over these

samples, and accept if the largest eigenvalue of C is O(1)
and reject otherwise. The fact that this test succeeds in a yes

instance follows from standard concentration arguments for

subgaussian random variables. However, for no instances,

we require the weak conjecture to prove soundness (against

any distribution, not just DGS). At a technical level, we

will use the weak conjecture to deduce that with constant

probability over t, for some linear map R, ‖R‖F ≤ 1, the

set R(L+t) consists only vectors of length Ω(1). The mere

existence of this matrix R will turn out to be enough to

force the covariance matrix of any distribution on L + t
to have largest eigenvalue of size Ω(1). This concludes the

reduction.

As can be seen from the above description, our reduction

(as well as that in [14]) actually do not require true discrete

Gaussian samples (i.e., samples from DL+t,s) – any sub-

gaussian distribution on L + t would be equally good. We

make this formal in Definition VIII.3 below, where we define

the computational problem of discrete subgaussian sampling

(DSGS). This mild strengthening of the reduction turns out

to be quite useful for the connection to SIS, since some

of the known reductions to SIS only produce subgaussian

samples but not true discrete Gaussian samples.

1) Reduction of GapSPP to Discrete Subgaussian Sam-
pling: We begin with the necessary preliminaries on sub-

gaussian random variables.

Definition VIII.1 (Subgaussian Random Variable). We say
that a random variable X ∈ R is s-subgaussian or subgaus-
sian with parameter s, for s > 0, if for all t ≥ 0,

Pr[|X| ≥ t] ≤ 2e−(t/s)2/2 .

We note that the canonical example of a 1-subgaussian
distribution is N(0, 1) itself. For a vector-valued random
variable X ∈ R

n, we say that X is s-subgaussian if all
its one-dimensional marginals are, i.e., if ∀θ ∈ Sn−1, the
random variable 〈X, θ〉 is s-subgaussian.

We now define the main lattice problems of interest in

this section.

Definition VIII.2 (Gap Smoothing Parameter Problem). For
α = α(n) ≥ 1, ε = ε(n) ≥ 0, α-GapSPPε (the Smoothing
Parameter Problem) is defined as follows: given a basis B
for a lattice L ⊂ R

n and s > 0, decide whether ηε(L) < s
(YES instance) or ηε(L) ≥ αs (NO instance).

Definition VIII.3 (Discrete Subgaussian Sampling Prob-

lem). For σ a function that maps lattices to non-negative
real numbers, and m = m(n) ∈ N, m-DSGSσ (the Discrete
Subgaussian Sampling Problem) is defined as follows: given
a basis B for a lattice L ⊂ R

n, a shift t ∈ R
n, and a

parameter s ≥ σ(L), output a sequence of m independent
and identically distributed s-subgaussian random vectors
supported on L+t. We note that the function σ need not be
efficiently computable, and that the output of the sampler is
only guaranteed when s ≥ σ(L).

The main result of this section is the following.

Theorem VIII.4. For any α = α(n) ≥ 1, there exists a
polynomial time reduction from O(αC

(μ,◦)
η (n))-GapSPP1/2

to O(n)-DSGSαη .
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2) The implications to lattice-based cryptography: Re-

ductions from worst-case lattice problems to the average-

case problem SIS are often stated as reductions from stan-

dard lattice problems such as SIVP or GapSVP. Here

we observe that they are in fact implicitly reductions from

DSGS. As such, they can be combined with the reduction

from Theorem VIII.4 to obtain a reduction from the worst

case problem GapSPP to SIS. For concreteness, we will

follow here the reduction from [16], which is a simplification

of the reduction in [14]. A similar conclusion should apply to

more recent and refined reductions, such as the one in [18].

We first define the average-case SIS problem. A possible

setting of parameters is q = poly(n), m = �n log q�, and

β =
√
m. We note that with this setting solutions are

guaranteed to exist, and so the problem is not vacuous.

Definition VIII.5 (Small Integer Solution Problem). For
integers q, m, and n, and a real number β ≥ 1, the SISq,m,β

problem asks to find with non-negligible probability, given a
matrix A chosen uniformly from Z

n×m
q , a nonzero e ∈ Z

m

such that Ae = 0 mod q and ‖e‖2 ≤ β.

Theorem VIII.6. For any m(n), β(n) = poly(n), and
prime q(n) = n · β(n) · ω(√log n), there is a poly-time
reduction from DSGSσ for σ(L) = Õ(β(n)η(L)) (with any
desired polynomial number of samples) to solving SISq,m,β

on the average with non-negligible probability.

Combined with Theorem VIII.4, this yields a reduction

from Õ(β(n)C
(μ,◦)
η (n))-GapSPP1/2 to SISq,m,β . In par-

ticular, with the setting of parameters mentioned above

Definition VIII.5, and assuming the weak conjecture, we

obtain a reduction from Õ(
√
n)-GapSPP1/2 to SISq,m,β , an

improvement upon the best known reduction by an Õ(
√
n)

factor.

B. KL and the Covering Radius Problem

The �2 KL conjecture has an easy application to the

computational complexity of lattice problems. Although this

application is not directly related to the main topic of this

paper, we record it here for future reference and for further

motivation.

Consider the decision version of the γ-approximate cover-

ing radius problem, denoted GapCRPγ , where γ = γ(n) > 0
is an approximation factor. Here, we are given a lattice L and

a number r > 0 and the goal is to decide if the covering

radius μ(L) of L is at most r (YES instances) or more

than γ · r (NO instances). This problem was considered

by Guruswami et al. [20] who showed that GapCRP√n ∈
NP and that GapCRP2 ∈ AM. They also showed that

GapCRP√n ∈ coNP and that GapCRP√
n/ logn

∈ coAM.

Here we observe that the �2 KL conjecture implies an

exponential improvement on the two latter results. Namely,

we have that GapCRPCKL(n) ∈ coNP. Indeed, this is easy

to prove. Construct a verifier that is given as proof a lattice

subspace W of L∗ and verifies that det(L∗ ∩W ) ≤ dd/2,

where d = dim(W ). If μ(L) ≥ CKL(n) then such a sub-

space exists by definition. If, on the other hand, μ(L) ≤ 1,

then the easy reverse direction of Eq. (4) shows that no such

subspace can exist.

IX. LIMITS FOR STRONG REVERSE MINKOWSKI

INEQUALITIES

In this somewhat more speculative section, we discuss

a possible stronger form of the main conjecture that, if

true, would truly deserve the name “reverse Minkowski.”

We recall that the main conjecture bounds from above the

number of lattice points at any radius r > 0 by a function

of the form e(poly logn)r2 when all sublattice determinants

are at least 1. It is a priori unclear why assuming such a

uniform upper bound on all radii is the “natural” thing to ask

for (hopefully, we have at least demonstrated its usefulness),

and one may be tempted to ask: given a radius r > 0, what

is the tightest bound on the number of lattice points at this

radius in terms of sublattice determinants?

To arrive at a plausible candidate for such a bound, let us

recall Minkowski’s first theorem, which provides volumetric

lower bounds on lattice point counts. The lower bound is

stated in terms of the determinant of the full lattice, but

obviously, having a sublattice of small determinant would

also suffice, as we can invoke Minkowski’s theorem inside

the subspace spanned by that sublattice. More precisely, it

follows from Minkowski’s theorem that for any lattice L,

|L ∩ rBn
2 | ≥M((r/2),L) ,

where

M(r,L) = max
W lattice subspace of L
0≤d=dim(W )≤n

vold(rB
d
2 )/ det(L ∩W ) .

(10)

By convention, the quotient is 1 for d = 0, and hence we

note that M(r,L) ≥ 1 always.

It now becomes natural to ask whether the volumetric

bound M(r,L) is far from being tight. To this end, we

introduce the following definition.

Definition IX.1. Let CM (n) denote the smallest number
such that for any r > 0 and any n-dimensional lattice L,

|rBn
2 ∩ L| ≤M(CM (n)r,L) .

We may speculate that CM (n) ≤ poly log n. We note that

while this would be amazing if true, a counterexample would

possibly be just as (or more) instructive and yield useful

insights into the structure of lattice points. We also note

that this would imply the main conjecture, Conjecture III.1,

as shown in the following proposition.

Proposition IX.2. For any n, Cη(n) = O(CM (n)).
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The best upper bound we can prove is CM (n) = O(
√
n),

as shown in Theorem IX.4 below. We note that by Propo-

sition IX.2, this recovers the best known bound O(
√
n) on

Cη(n).

General convex bodies: One can take the above discus-

sion a step further and wonder why we should restrict our-

selves to scalings of the Euclidean ball, since Minkowski’s

theorem holds more generally for any symmetric convex

body. Indeed, slightly overloading notation, for any sym-

metric convex body K ⊆ R
n, Minkowski’s theorem implies

that |L∩K| ≥M((K/2),L), where M(K,L) is defined as

in (10) with rBd
2 replaced by K ∩W .

Definition IX.3. Let C ′M (n) denote the smallest number
such that for any n-dimensional lattice L, and any symmetric
convex body K ⊆ R

n,

|L ∩K| ≤M(C ′M (n)K,L) .
Clearly C ′M (n) ≥ CM (n). Theorem IX.4 below gives

the best upper bound we can prove, C ′M (n) ≤ O(n).
Given the foregoing discussion, one might be tempted to

ask whether the upper bound on C ′M (n) can be improved,

say to poly log n. Unfortunately, we can show that this is

false: in Theorem IX.5 we prove that C ′M (n) ≥ Ω(n1/4−ε).
The proof crucially uses a convex body K that is very far
from a Euclidean ball, hence we may still hope that a better

inequality is possible for the Euclidean ball, namely, that

CM (n) ≤ poly log n.

A. Best known upper bounds

Theorem IX.4 (Weak Reverse Minkowski). For a symmetric
convex body K and n-dimensional lattice L in R

n, |K∩L| ≤
M(3nK,L). Furthermore, for any radius r > 0, |rBn

2 ∩
L| ≤M(6

√
nr,L).

The above inequality is in fact relatively simple to prove

and so we find it somewhat surprising that it was not

discovered earlier.

B. Lower bound for general convex bodies

Theorem IX.5. For any ε > 0 there exists a constant
C > 0 such that for any n large enough, there exists an
n-dimensional symmetric convex body K and lattice L such
that M(Cn1/4−εK,L) ≤ |L ∩K|.
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