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Abstract—We give new algorithms based on the sum-of-
squares method for tensor decomposition. Our results im-
prove the best known running times from quasi-polynomial
to polynomial for several problems, including decomposing
random overcomplete 3-tensors and learning overcomplete
dictionaries with constant relative sparsity. We also give the
first robust analysis for decomposing overcomplete 4-tensors
in the smoothed analysis model.

A key ingredient of our analysis is to establish small spectral
gaps in moment matrices derived from solutions to sum-of-
squares relaxations. To enable this analysis we augment sum-of-
squares relaxations with spectral analogs of maximum entropy
constraints.

Keywords-tensor decomposition; smoothed analysis; FOOBI
algorithm; sum-of-squares method; Lasserre hierarchy; simul-
taneous diagonalization

I. INTRODUCTION

Tensors are arrays of (real) numbers with multiple indices—

generalizing matrices (two indices) and vectors (one index)

in a natural way. They arise in many different contexts,

e.g., moments of multivariate distributions, higher-order

derivatives of multivariable functions, and coefficients of

multivariate polynomials. An important ongoing research

effort aims to extend algorithmic techniques for vectors and

matrices to more general tensors. A key challenge is that

many tractable matrix computations (like rank and spectral

norm) become NP-hard in the tensor setting (even for just

three indices) [1], [2]. However, recent work gives evidence

that it is possible to avoid this computational intractability

and develop provably efficient algorithms, especially for low-

rank tensor decompositions, by making suitable assumptions

about the input and allowing for approximations [3]–[7].

These algorithms lead to the best known provable guarantees

for a wide range of unsupervised learning problems [8]–

[11], including learning mixtures of Gaussians [12], Latent

Dirichlet topic modeling [13], and dictionary learning [14].

Low-rank tensor decompositions are useful for these learning

problems because they are often unique up to permuting

the factors—in contrast, low-rank matrix factorizations are

unique only up to unitary transformation. In fact, as far as

we are aware, in all natural situations where finding low-rank

tensor decompositions is tractable, the decompositions are

also unique.

We consider the following (symmetric) version of the

tensor decomposition problem: Let a1, . . . , an ∈ R
d be

d-dimensional unit vectors. We are given (approximate)

access to the first k moments M1, . . . ,Mk of the uniform

distribution over a1, . . . , an, that is,

Mt =
1
n

n∑
i=1

a⊗t
i for t ∈ {1, . . . , k} . (1)

The goal is to approximately recover the vectors a1, . . . , an.

What conditions on the vectors a1, . . . , an and the number

of moments k allow us to efficiently and robustly solve this

problem?
A classical algorithm based on (simultaneous) matrix

diagonalization [15], [16, attributed to Jennrich] shows that

whenever the vectors a1, . . . , an are linearly independent,

k = 3 moments suffice to recover the vectors in polynomial

time. (This algorithm is also robust against polynomially

small errors in the input moment tensors [9], [10], [17].)

Therefore an important remaining algorithmic challenge for

tensor decomposition is the overcomplete case, when the num-

ber of vectors (significantly) exceeds their dimension. Several

recent works studied this case with different assumptions on

the vectors and the number of moments. In this work, we

give a unified algorithmic framework for overcomplete tensor

decomposition that achieves—and in many cases surpasses—

the previous best guarantees for polynomial-time algorithms.
In particular, some decompositions that previously required

quasi-polynomial time to find are reduced to polynomial time

in our framework, including the case of general tensors with

order logarithmically large in its overcompleteness n/d [14]

and random order-3 tensors with rank n ≤ d3/2/ logO(1)(d)
[5]. Iterative methods may also achieve fast local convergence

guarantees for incoherent order-3 tensors with rank o(d3/2),
which become global convergence guarantees under no more

than constant overcompleteness [8]. In the smoothed analysis

model, where each vector of the desired decomposition is

assumed to have been randomly perturbed by an inverse

polynomial amount, polynomial-time decomposition was

achieved for order-5 tensors of rank up to d2/2 [9]. Our

framework extends this result to order-4 tensors, for which

the corresponding analysis was previously unknown for any

superconstant overcompleteness.
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The starting point of our work is a new analysis of the

aforementioned matrix diagonalization algorithm that works

for the case when a1, . . . , an are linearly independent. A

key ingredient of our analysis is a powerful and by now

standard concentration bound for Gaussian matrix series

[18], [19]. An important feature of our analysis is that it

is captured by the sum-of-squares (SoS) proof system in a

robust way. This fact allows us to use Jennrich’s algorithm

as a rounding procedure for sum-of-squares relaxations of

tensor decomposition, which is the key idea behind improving

previous quasi-polynomial time algorithms based on these

relaxations [5], [14].

The main advantage that sum-of-squares relaxations afford

for tensor decomposition is that they allow us to efficiently

hallucinate faithful higher-degree moments for a distribution

given only its lower-degree moments. We can now run

classical tensor decomposition algorithms like Jennrich’s on

these hallucinated higher-degree moments (akin to rounding).

The goal is to show that those algorithms work as well as

they would on the true higher moments. What is challenging

about it is that the analysis of Jennrich’s algorithm relies

on small spectral gaps that are difficult to reason about in

the sum-of-squares setting. (Previous sum-of-squares based

methods for tensor decomposition also followed this outline

but used simpler, more robust rounding algorithms which

required quasi-polynomial time.)

To this end, we view solutions to sum-of-squares relax-

ations as pseudo-distributions, which generalize classical

probability distributions in a way that takes computational ef-

ficiency into account.1 More concretely, pseudo-distributions

are indistinguishable from actual distributions with respect

to tests captured by a restricted system of proofs, called

sum-of-squares proofs.
An interesting feature of how we use pseudo-distributions

is that our relaxations search for pseudo-distributions of

large entropy (via an appropriate surrogate). This objective

is surprising, because when we consider convex relaxations

of NP-hard search problems, the intended solutions typically

correspond to atomic distributions which have entropy 0.

Here, high entropy in the pseudo-distribution allows us

to ensure that rounding results in a useful solution. This

appears to be related to the way in which many randomized

rounding procedures use maximum-entropy distributions [20],

but differs in that the aforementioned rounding procedures

focus on the entropy of the rounding process rather than the

entropy (surrogate) of the solution to the convex relaxation.

A measure of “entropy” has also been directly ascribed to

pseudo-distributions previously [21], and the principle of

maximum entropy has been applied to pseudo-distributions

as well [22], but these have previously occurred separately,

1In particular, the set of constant-degree moments of n-variate pseudo-
distributions admits an nO(1)-time separation oracle based on computing
eigenvectors.

and our application is the first to encode a surrogate notion

of entropy directly into the sum-of-squares proof system.

Our work also takes inspiration from a recent work

that uses sum-of-squares techniques to design fast spectral

algorithms for a range of problems including tensor decom-

position [7]. Their algorithm also proceeds by constructing

surrogates for higher moments and applying a classical tensor

decomposition algorithm on these surrogates. The difference

is that the surrogates in [7] are explicitly constructed as low-

degree polynomial of the input tensor, whereas our surrogates

are computed by sum-of-squares relaxations. The explicit

surrogates of [7] allow for a direct (but involved) analysis

through concentration bounds for matrix polynomials. In

our case, a direct analysis is not possible because we have

very little control over the surrogates computed by sum-of-

squares relaxations. Therefore, the challenge for us is to

understand to what extent classical tensor decomposition

algorithms are compatible with the sum-of-squares proof

system. Our analysis ends up being less technically involved

compared to [7] (using the language of pseudo-distributions

and sum-of-squares proofs).

This version of the paper is an abbreviated version

containing only rough overviews and proof sketches. See the

full version for the complete arguments.

A. Results for tensor decomposition

Let {a1, . . . , an} ⊆ R
d be a set of unit vectors. We study

the task of approximately recovering this set of vectors

given (noisy) access to its first k moments (1). We organize

this overview of our results based on different kinds of

assumptions imposed on the set {a1, . . . , an} and the order of

tensor/moments that we have access to. All of our algorithms

are randomized and may fail with some small probability

over their internal randomness, say probability at most 0.01.

(Standard arguments allow us to amplify this probability at

the cost of a small increase in running time.)
Orthogonal vectors.: This scenario often captures

the case of general linearly independent vectors because

knowledge of the second moments of a1, . . . , an allows us

to orthonormalize the vectors (this process is sometimes

called “whitening”). Many efficient algorithms are known

in this case. Our contribution here is in improving the error

tolerance. For a symmetric 3-tensor E ∈ (Rd)⊗3, we use

‖E‖{1},{2,3} to denote the spectral norm of E as a d-by-

d2 matrix (using the first mode of E to index rows and

the last two modes of E to index the columns). This norm

is at most
√
d times the injective norm ‖E‖{1},{2},{3} (the

maximum of 〈E, x⊗y⊗z〉 over all unit vectors x, y, z ∈ R
d).

The previous best error tolerance for this problem required

the error tensor E = T − ∑n
i=1 a

⊗3
i to have injective

norm ‖E‖{1},{2},{3} 
 1/d. Our algorithm requires only

‖E‖{1},{2,3} 
 1, which is satisfied in particular when

‖E‖{1},{2},{3} 
 1/
√
d.
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Theorem 1. There exists a polynomial-time algorithm that
given a symmetric 3-tensor T ∈ (Rd)⊗3 outputs a set of
vectors {a′1, . . . , a′n′} ⊆ R

d such that for every orthonormal
set {a1, . . . , an} ⊆ R

d, the Hausdorff distance2 between the
two sets is at most

distH ({a1, . . . , an} , {a′1, . . . , a′n′})2

≤ O(1) ·
∥∥∥T −∑n

i=1
a⊗3
i

∥∥∥
{1},{2,3}

. (2)

With an additional assumption ‖T−∑n
i=1 a

⊗3
i ‖{1},{2,3} ≤

1/ log d, the running time of the algorithm can be improved

to O(d1+ω) ≤ d3.33 using fast matrix multiplication, where ω
is the number such that two n×n matrices can be multiplied

together in time nω (See full version of this paper for precise

statement and proof).

It is also possible to replace the spectral norm ‖·‖{1},{2,3}
in the above theorem statement by constant-degree sum-of-

squares relaxations of the injective norm of 3-tensors. If the

error E has Gaussian distribution N (0, σ2 · Id⊗3
d ), then this

norm is w.h.p. bounded by σ · d3/4(log d)O(1) [6], whereas

the norm ‖·‖{1},{2,3} has magnitude Ω(σ · d).
Random vectors.: We consider the case that a1, . . . , an

are chosen independently at random from the unit sphere

of R
d. For n ≤ d, this case is roughly equivalent to the

case of orthonormal vectors. Thus, we are interested in the

“overcomplete” case n� d, when the rank is larger than the

dimension. Previous work found the decomposition in quasi-

polynomial time when n ≤ d3/2/ logO(1) d [5], or in time

subquadratic in the input size when n ≤ d4/3/ logO(1) d [7].

Our polynomial-time algorithm therefore is an improvement

when n is between d4/3 and d3/2 (up to logarithmic factors).

Theorem 2. There exists a polynomial-time algorithm A
such that with probability 1 − d−ω(1) over the choice of
random unit vectors a1, . . . , an ∈ R

d, every symmetric 3-
tensor T ∈ (Rd)⊗3 satisfies

distH

(
A(T ), {a1, . . . , an}

)2

≤ O

(( n

d1.5

)Ω(1)

+
∥∥∥T −∑n

i=1
a⊗3
i

∥∥∥
{1},{2,3}

)
. (3)

Again we may replace the spectral norm ‖·‖{1},{2,3} in

the above theorem statement by constant-degree sum-of-

squares relaxations of the injective norm of 3-tensors, which

as mentioned before give better bounds for Gaussian error

tensors.

Smoothed vectors.: Next, we consider a more general

setup where the vectors a1, . . . , an ∈ R
d are smoothed,

i.e., randomly perturbed. This scenario is significantly more

general than random vectors. Again we are interested in the

2The Hausdorff distance distH(X,Y ) between two finite sets X
and Y measures the length of the largest gap between the two sets.
Formally, distH(X,Y ) is the maximum of maxx∈X miny∈Y ‖x − y‖
and maxy∈Y minx∈X‖x− y‖.

overcomplete case n� d. The previous best work [9] showed

that the fifth moment of smoothed vectors a1, . . . , an with

n ≤ d2/2 is enough to approximately recover the vectors

even in the presence of a polynomial amount of error. For

fourth moments of smoothed vectors, no such result was

known even for lower overcompleteness, say n = d1.01.

We give an interpretation of the 4-tensor decomposition

algorithm FOOBI3 [23] as a special case of a sum-of-squares

based decomposition algorithm. We show that the sum-of-

squares based algorithm works in the smoothed setting even

in the presence of a polynomial amount of error. We define

a condition number κ(·) for sets of vectors a1, . . . , an ∈
R

d (a polynomial in the condition number of two matrices,

one with columns {a⊗2
i | i ∈ [n]} and one with columns

{ai⊗ (ai⊗aj−aj⊗ai)⊗aj | i �= j ∈ [n]}). First, we show

that the algorithm can tolerate error 
 1/κ which could be

independent of the dimension. Concretely, our algorithm will

output a set of vectors â1, . . . , ân which will be close to

{a1, . . . , an} up to permutations and sign flip with a relative

error that scales linearly in the error of the input and the

condition number κ. Second, we show that for smoothed

vectors this condition number is at least inverse polynomial

with probability exponentially close to 1.

Theorem 3. There exists a polynomial-time algorithm such
that for every symmetric 4-tensor T ∈ (Rd)⊗4 and every set
{a1, . . . , an} ⊆ R

d (not necessarily unit length), the output
{a′1, . . . , a′n} of the algorithm on input T satisfies

min
π : [n]

bij.−→[n]

max
i∈[n]

∥∥∥a⊗2
i − a′i

⊗2
∥∥∥2

∥∥a⊗2
i

∥∥2

≤ O(1) ·
∥∥∥T −∑n

i=1
a⊗4
i

∥∥∥
{1,2},{3,4}

· κ(a1, . . . , an) .
(4)

We say that a distribution over vectors a1, . . . , an ∈ R
d is

γ-smoothed if ai = a0i + γ · gi, where a01, . . . , a
0
n are fixed

vectors and g1, . . . , gn are independent Gaussian vectors from

N (0, 1
d Idd).

Theorem 4. Let ε > 0 and n, d ∈ N with n ≤ d2/10. Then,
for any γ-smoothed distribution over vectors a1, . . . , an in
R

d,

P

{
κ(a1, . . . , an) ≤ poly(d, γ)

}
≥ 1− exp(−dΩ(1)) .

The above theorems together imply a polynomial-time

algorithm for approximately decomposing overcomplete

smoothed 4-tensors even if the input error is polynomially

large. The error probability of the algorithm is exponentially

small over the choice of the smoothing. It is an interesting

3The FOOBI algorithm is known to work for overcomplete 4-tensors
when there is no error in the input. Researchers [9] asked if this algorithm
tolerates a polynomial amount of error. Our work answers this question
affirmatively for a variant of FOOBI (based on sum-of-squares).
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open problem to extend this result to overcomplete smoothed

3-tensors, even for lower overcompleteness n = d1.01.

Separated unit vectors.: In the scenario, when inner

products among the vectors a1, . . . , an ∈ R
d are bounded

by ρ < 1 in absolute value, the previous best decomposition

algorithm shows that moments of order (log n)/ log ρ suffice

[24]. Our algorithm requires moments of higher order (by

a factor logarithmic in the desired accuracy) but in return

tolerates up to constant spectral error. This increased error

tolerance also allows us to apply this result for dictionary

learning with up to constant sparsity (see Section I-B).

Theorem 5. There exists an algorithm A with polynomial
running time (in the size of its input) such that for all
η, ρ ∈ (0, 1), σ ≥ 1, for every symmetric 2k-tensor
T ∈ (Rd)⊗2k with k ≥ O

(
1+log σ
log ρ

)
· log(1/η) and every set

of unit vectors {a1, . . . , an} ⊆ R
d with ‖∑n

i=1 aiai
T‖ ≤ σ

and maxi�=j〈ai, aj〉2 ≤ ρ,

distH

(
A(T ), {a⊗2

1 , . . . , a⊗2
n }

)2

≤ O

(
η +

∥∥∥T −∑n

i=1
a⊗2k
i

∥∥∥
{1,...,k},{k+1,...,2k}

)
(5)

We also show (in the full version of this paper) that a

simple spectral algorithm with running time close to d2k (the

size of the input) achieves similar guarantees. However, the

error tolerance of this algorithm is in terms of an unbalanced
spectral norm: ‖T − ∑n

i=1 a
⊗2k
i ‖{1,...,2k/3},{2k/3+1,...,2k}

(the spectral norm of the tensor viewed as a d2k/3-by-d4k/3

matrix). This norm is always larger than the balanced spectral

norm in the theorem statement. In particular, for dictionary

learning applications, this norm is larger than 1, which renders

the guarantee of the simpler spectral algorithm vacuous in

this case.

General unit vectors.: In this scenario, the number of

moments that our algorithm requires is constant as long as∑
i aiai

T has constant spectral norm and the desired accuracy

is constant.

Theorem 6. There exists an algorithm A (see full version
of this paper) with polynomial running time (in the size of
its input) such that for all ε ∈ (0, 1), σ ≥ 1, for every set of
unit vectors {a1, . . . , an} ⊆ R

d with ‖∑n
i=1 aiai

T‖ ≤ σ and
every symmetric 2k-tensor T ∈ (Rd)⊗2k with k ≥ (1/ε)O(1)·
log(σ) and

∥∥T −∑
i a
⊗2k
i

∥∥
{1,...,k},{k+1,...,2k} ≤ 1/3, we

have

distH

(
A(T ), {a⊗2

1 , . . . , a⊗2
n }

)2

≤ O (ε) .

The previous best algorithm for this problem needed

tensors of order (log σ)/ε and required running time

dO((log σ)/εO(1)+logn) [14, Theorem 4.3]. We require the

same order of the tensor and the runtime is improved to be

polynomial in the size of the inputs (that is, npoly((log σ)/ε)).

B. Applications of tensor decomposition

Tensor decomposition has a wide range of applications.

We focus here on learning sparse dictionaries, which is an

example of the more general phenomenon of using tensor

decomposition to learn latent variable models. Here, we

obtain the first polynomial-time algorithms that work in the

overcomplete regime up to constant sparsity.

Dictionary learning is an important problem in multiple

areas, ranging from computational neuroscience [25]–[27],

machine learning [28], [29], to computer vision and image

processing [30]–[32]. The general goal is to find a good basis

for given data. More formally, in the dictionary learning

problem, also known as sparse coding, we are given samples

of a random vector y ∈ R
n, of the form y = Ax where A is

some unknown matrix in R
n×m, called dictionary, and x is

sampled from an unknown distribution over sparse vectors.

The goal is to approximately recover the dictionary A.

We consider the same class of distributions over sparse

vectors {x} as [14], which as discussed in [14] admits a

wide-range of non-product distributions over sparse vectors.

(The case of product distributions reduces to the significantly

easier problem of independent component analysis.) We

say that {x} is (k, τ)-nice if Exk
i = 1 for every i ∈ [m],

Ex
k/2
i x

k/2
j ≤ τ for all i �= j ∈ [m], and Exα = 0 for every

non-square degree-k monomial xα. Here, τ is a measure of

the relative sparsity of the vectors {x}.
We give an algorithm that for nice distributions solves the

dictionary learning problem in polynomial time when the

desired accuracy is constant, the overcompleteness of the

dictionary is constant (measured by the spectral norm ‖A‖),
and the sparsity parameter τ is a sufficiently small constant

(depending only on the desired accuracy and ‖A‖). The

previous best algorithm [14] requires quasi-polynomial time

in this setup (but works in polynomial-time for polynomial

sparsity τ ≤ n−Ω(1)).

Theorem 7. There exists an algorithm R parameterized by
σ ≥ 1, η ∈ (0, 1), such that for every dictionary A ∈ R

n×m

with ‖A‖ ≤ σ and every (k, τ)-nice distribution {x} over
R

m with k ≥ k(η, σ) = O((log σ)/η) and τ ≤ τ(k) =
k−O(k), the algorithm given nO(k) samples from {y = Ax}
outputs in time nO(k) vectors a′1, . . . , a

′
m that are O(η)1/2-

close to the columns of A.

Since previous work [14] provides a black box reduction

from dictionary learning to tensor decomposition, the theorem

above follows from Theorem 6. Our Theorem 5 implies a

dictionary learning algorithm with better parameters for the

case that the columns of A are separated.

C. Polynomial optimization with few global optima

Underlying our algorithms for the tensor decomposition

is an algorithm for solving general systems of polynomial

constraints with the property that the total number of different

440441441



solutions is small and that there exists a short certificate for

that fact in form of a sum-of-squares proof.
Let A be a system of polynomial constraints over real

variables x = (x1, . . . , xd) and let P : Rd → R
d�

be a poly-

nomial map of degree at most 
—for example, P (x) = x⊗�.

We say that solutions a1, . . . , an ∈ R
d to A are unique under

the map P if the vectors P (a1), . . . , P (an) are orthonormal

up to error 0.01 (in spectral norm) and every solution a to

A satisfies P (a) ≈ P (ai) for some i ∈ [n]. We encode this

property algebraically by requiring that the constraints in A
imply the constraint

∑n
i=1〈P (ai), P (x)〉4 ≥ 0.99 · ‖P (x)‖4.

We say that the solutions a1, . . . , an are 
-certifiably unique
if in addition this implication has a degree-
 sum-of-squares

proof.
The following theorem shows that if polynomial constraints

have certifiably unique solutions (under a given map P ), then

we can find them efficiently (under the map P ).

Theorem 8 (Informal statement: see full version of this

paper for precise formulation and proof). Given a system
of polynomial constraints A and a polynomial map P such
that there exists 
-certifiably unique solutions a1, . . . , an
for A, we can find in time dO(�) vectors 0.1-close to
P (a1), . . . , P (an) in Hausdorff distance.

II. TECHNIQUES

Here is the basic idea behind using sum-of-squares

for tensor decomposition: Let a1, . . . , an ∈ R
d be unit

vectors and suppose we have access to their first three

moments M1,M2,M3 as in (1). Since the task of recov-

ering a1, . . . , an is easier the more moments we know, we

would make a lot of progress if we could compute higher

moments of a1, . . . , an, say the fourth moment M4. A

natural approach toward that goal is to compute a probability

distribution D over the sphere of Rd such that D matches the

moments of a1, . . . , ak that we know, i.e., ED(u) u =M1,

ED(u) u
⊗2 = M2, ED(u) u

⊗3 = M3, and then use the

fourth moment ED u⊗4 as an estimate for M4.
There are two issues with this approach: (1) computing

such a distribution D is intractable and (2) even if we could

compute such a distribution it is not clear if its fourth moment

will be close to the fourth moments M4 we are interested

in.
We address issue (1) by relaxing D to be a pseudo-

distribution (solution to sum-of-squares relaxations). Then,

we can match the given moments efficiently.
Issue (2) is related to the uniqueness of the tensor

decomposition, which relies on properties of the vectors

a1, . . . , an. Here, the general strategy is to first prove that

this uniqueness holds for actual distributions and then transfer

the uniqueness proof to the sum-of-squares proof system,

which would imply that uniqueness also holds for pseudo-

distributions.
In subsection II-A below, we demonstrate our key rounding

idea on the (nearly) orthogonal tensor decomposition problem.

Then in subsection II-B we discuss the high level insight for

the robust 4th-order tensor decomposition algorithm and in

subsection II-C the techniques for random 3rd-order tensor

decomposition.

A. Rounding pseudo-distributions by small spectral gaps

Our main departure from previous tensor decomposition

algorithms based on sum-of-squares [5], [14] lies in rounding:

the procedure to extract an actual solution from a pseudo-

distribution over solutions. The previous algorithms rounded a

pseudo-distribution D by directly using the first moments (or

the mean) ED(u) u, which requires D to concentrate strongly

around the desired solution. Our approach here instead uses

Jennrich’s (simultaneous) matrix diagonalization [15], [16],

to extract the desired solution as a singular vector of a matrix

of the form ED(u)〈g, u〉uuT, for a random vector g. 4 This

serves to permit much weaker conditions on D to be required.

For the rest of this subsection, we assume that we have

an actual distribution D that is supported on vectors close

to some orthonormal basis a1, . . . , ad of R
d, and we will

design a rounding algorithm that extracts the vectors ai from

the low-degree moments of D. This is a much simpler task

than rounding from a pseudo-distribution, though it captures

most of the essential difficulties. Since pseudo-distributions

behave similarly to actual distributions on the low-degree

moments, the techniques involved in rounding from actual

distributions will turn out to be easily generalizable to the

case of pseudo-distributions.

Let D be a distribution over the unit sphere in R
d. Suppose

that this distribution is supported on vectors close to some

orthonormal basis a1, . . . , ad of R
d, in the sense that the

distribution satisfies the constraint{
d∑

i=1

〈ai, u〉3 ≥ 1− ε

}
D(u)

. (6)

(This constraint implies {maxi∈[d]〈ai, u〉 ≥ 1 − ε}D(u)

because
∑d

i=1〈ai, u〉3 ≤ maxi∈[d]〈ai, u〉 by orthonormality.)

The analysis of [14] shows that reweighing the distribution

D by a function of the form u �→ 〈g, u〉2k for g ∼ N (0, Idd)
and some k ≤ O(log d) creates, with significant probability,

a distribution D′ such that for one of the basis vectors ai,
almost all of the probability mass of D′ is on vectors close

to ai, in the sense that

max
i∈[d]

E
D′(u)

〈ai, u〉 ≥ 1−O(ε) ,where D′(u) ∝ 〈g, u〉2kD(u).

In this case, we can extract a vector close to one of

the vectors ai by computing the mean ED′(u) u of the

4 In previous treatments of simultaneous diagonalization, multiple matrices
would be used for noise tolerance—increasing the confidence in the solution
when more than one matrix agrees on a particular singular vector. This is
unnecessary in our setting, since as we’ll see, the SoS framework itself
suffices to certify the correctness of a solution.
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reweighted distribution. This rounding procedure takes quasi-

polynomial time because it requires access to logarithmic-

degree moments of the original pseudo-distribution D.

To avoid this quasi-polynomial running time, our strategy is

to instead modify the original distribution D in order to create

a small bias in one of the directions ai such that a modified

moment matrix of D has a one-dimensional eigenspace close

to ai. (This kind of modification is much less drastic than the

kind of modification in previous works. Indeed, reweighing

a distribution such that it concentrates around a particular

vector seems to require logarithmic degree.)

Concretely, we will study the spectrum of matrices of the

following form, for g ∼ N (0, Idd):

Mg = E
D(u)

〈g, u〉 · uuT.

Our goal is to show that with good probability, Mg has a

one-dimensional eigenspace close to one of the vectors ai.
However, this is not actually true for a naïve distribution:

although we have encoded the basis vectors ai into the

distribution D by means of (6), we cannot yet conclude

that the eigenspaces of Mg have anything to do with them.

We can understand this as the error allowed in (6) being

highly under-constrained. For example, the distribution could

be a uniform mixture of vectors of the form ai + εw for

some fixed vector w, which causes w to become by far

the most significant contribution to the spectrum of Mg.

More generally, an arbitrary spectrally small error could still

completely displace all of the eigenspaces of Mg .

An interpretation of this situation is that we have permitted

D itself to contain a large amount of information that we do

not actually possess. Equation (6) is consistent with a wide

range of possible solutions, yet in the pathological example

above, the distribution does not at all reflect this uncertainty,

instead settling arbitrarily on some particular biased solution:

it is this bias that disrupts the usefulness of the rounding

procedure.

A similar situation has previously arisen in strategies for

rounding convex relaxations—specifically, when the variables

of the relaxations were interpreted as the marginals of some

probability distribution over solutions, then actual solutions

were constructed by sampling from that distribution. In that

context, a workaround was to sample those solutions from

the maximum-entropy distributions consistent with those

marginals [20], to ensure that the distribution faithfully

reflected the ignorance inherent in the relaxation solution

rather than incorporating arbitrary information. Our situation

differs in that it is the solution to the convex relaxation

itself which is misbehaving, rather than some aspect of the

rounding process, but the same approach carries over here

as well.

Therefore, suppose that D satisfies the maximum-entropy

constraint ‖ED(u) uu
T‖ ≤ 1/n. This essentially enforces D

to be a uniform distribution over vectors close to a1, . . . , an.

For the sake of demonstration, we assume that D is a

uniform distribution over a1, . . . , an. Moreover, since our

algorithm is invariant under linear transformations, we may

assume that the components a1, . . . , an are the standard basis

vectors e1, . . . , en ∈ R
d. We first decompose Mg along the

coordinate g1,

Mg = g1 ·Me1 +Mg′ , where g′ = g − g1 · e1 .
Note that under our simplified assumption for D, by simple

algebraic manipulation we have Me1 = ED(u) u1uu
T =

e1e1
T. Moreover, by definition, g1 and g′ are independent.

It turns out that the entropy constraint implies Eg′‖Mg′‖ �√
log d · 1/n (using concentration bounds for Gaussian

matrix series [18]). Therefore, if we condition on the event

g1 > η−1
√
log d, we have that Mg = g1e1e1

T + Mg′

consists of two parts: a rank-1 single part g1e1e1
T with with

eigenvalue larger than η−1
√
log d, and a noise part which has

spectral norm at most �
√
log d. Hence, by the eigenvector

perturbation theorem we have that the top eigenvector is

O(η1/2)-close to e1 as desired.

Taking η = 0.1, we see with 1/ poly(d) probability

the event g1 > η−1
√
log d will happen, and therefore by

repeating this procedure poly(d) times, we obtain a vector

that is O(η1/2)-close to e1. We can find other vectors

similarly by repeating the process (in a slightly more delicate

way), and the accuracy can also be boosted (see full version

of this paper for details).

B. Overcomplete fourth-order tensor

In this section, we give a high-level description of a robust

sum-of-squares version of the tensor decomposition algorithm

FOOBI [23]. For simplicity of the demonstration, we first

work with the noiseless case where we are given a tensor

T ∈ (Rd)⊗4 of the form

T =
n∑

i=1

a⊗4
i . (7)

We will first review the key step of FOOBI algorithm and

then show how to convert it into a sum-of-squares algorithm

that will naturally be robust to noise.

To begin with, we observe that by viewing T as a d2 ×
d2 matrix of rank n, we can easily find the span of the

a⊗2
i ’s by low-rank matrix factorization. However, since the

low rank matrix factorization is only unique up to unitary

transformation, we are not able to recover the a⊗2
i ’s from

the subspace that they live in. The key observation of [23] is

that the a⊗2
i ’s are actually the only “rank-1” vectors in the

span, under a mild algebraic independence condition. Here,

a d2-dimensional vector is called “rank-1” if it is a tensor

product of two vectors of dimension d.

Lemma 9 ( [23]). Suppose the following set of vectors is
linearly independent,{

a⊗2
i ⊗ a⊗2

j − (ai ⊗ aj)
⊗2

∣∣ i �= j
}
. (8)
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Then every vector x⊗2 in the linear span of a⊗2
1 , . . . , a⊗2

n is
a multiple of one of the vectors a⊗2

i .

This observation leads to the algorithm FOOBI, which

essentially looks for rank-1 vectors in the span of a⊗2
i ’s. The

main drawback is that it uses simultaneous diagonalization

as a sub-procedure, which is unlikely to tolerate noise better

than inverse polynomial in d, and in fact no noise tolerance

guarantee has been explicitly shown for it before.

Our approach starts with rephrasing the original proof of

Lemma 9 into the following SoS proof (which only uses

polynomial inequalities that can be proved by SoS).

Proof of Lemma 9: Let α1, . . . , αn be multipliers such

that x⊗2 =
∑n

i=1 αi · a⊗2
i .5 Then, these multipliers satisfy

the following quadratic equations:

x⊗4 =
∑

i,j
αiαj · a⊗2

i ⊗ a⊗2
j ,

x⊗4 =
∑

i,j
αiαj · (ai ⊗ aj)

⊗2 .

Together, the two equations imply that

0 =
∑

i�=j
αiαj ·

(
a⊗2
i ⊗ a⊗2

j − (ai ⊗ aj)
⊗2

)
.

By assumption, the vectors a⊗2
i ⊗ a⊗2

j − (ai ⊗ aj)
⊗2 are

linearly independent for i �= j. Therefore, from the equation

above, we conclude
∑

i �=j α
2
iα

2
j = 0, meaning that at most

one of αi can be non-zero. We note that the argument here

is indeed a SoS proof since for any matrix A with linearly

independent columns, the inequality ‖x‖2 ≤ 1
σmin(A)2 ‖Ax‖2

can be proved by SoS (here σmin(A) denotes the least

singular value of matrix A).

When there is noise present, we cannot find the true

subspace of the a⊗2
i ’s and instead we only have an approxi-

mation, denoted by V , of that subspace. We will modify the

proof above by starting with a polynomial inequality

‖ IdV x⊗2‖2 ≥ (1− δ)‖x⊗2‖2 , (9)

which constrains x⊗2 to be close to the estimated subspace

V (where δ is a small number that depends on error and

condition number). Then an extension of the proof of

Lemma 9 will show that (9) implies (via a SoS proof) that

for some small enough δ,∑
i �=j

α2
iα

2
j ≤ o(1) . (10)

Note that α = Kx⊗2 is a linear transformation of x⊗2,

and furthermore K is the pseudo-inverse of the matrix with

columns a⊗2
i . Moreover, if we assume for a moment that α

has 2-norm 1 (which is not true in general), then the equation

above further implies that

n∑
i=1

〈Ki, x
⊗2〉4 = ‖α‖44 ≥ 1− o(1) , (11)

5technically, α1, . . . , αn are polynomials in x so that x⊗2 =
∑n

i=1 αi ·
a⊗2
i holds

where Ki ∈ R
d2

is the i-th row of K. This effectively

gives us access to the 4-tensor
∑

i K
⊗4
i (which has ambient

dimension d2 when flattened into a matrix), since (11) is

anyway the constraint that would have been used by the

SoS algorithm if given the tensor
∑

i K
⊗4
i as input. Note

that because the Ki are not necessarily (close to) orthogonal,

we cannot apply the SoS orthogonal tensor decomposition

algorithm directly. However, since we are working with a

4-tensor whose matrix flattening has higher dimension d2,

we can whiten Ki effectively in the SoS framework and then

use the orthogonal SoS tensor decomposition algorithm to

find the Ki’s, which will in turn yield the ai’s.
Many details were omitted in the heuristic argument above

(for example, we assumed α to have norm 1). The complete

argument can be found in the full version of this paper.

C. Random overcomplete third-order tensor

In the random overcomplete setting, the input tensor is of

the form

T =

n∑
i=1

a⊗3
i + E ,

where each ai is drawn uniformly at random from the

Euclidean unit sphere, we have d < n ≤ d1.5/(log d)O(1),

and E is some noise tensor such that ‖E‖{1},{2,3} < ε
or alternatively such that a constant-degree sum-of-squares

relaxation of the injective norm of E is at most ε.
Our original rounding approach depends on the target

vectors ai being orthonormal or nearly so. But when n� d
in this overcomplete setting, orthonormality fails badly: the

vectors ai are not even linearly independent.

We circumvent this problem by embedding the vectors

ai in a larger ambient space—specifically by taking the

tensor powers a′1 = a⊗2
1 , . . . , a′n = a⊗2

n . Now the vectors

a′1, . . . , a
′
n are linearly independent (with probability 1) and

actually close to orthonormal with high probability. Therefore,

if we had access to the order-6 tensor
∑

(a′i)
⊗3 =

∑
a⊗6
i ,

then we could (almost) apply our rounding method to recover

the vectors a′i.
The key here will be to use the sum-of-squares method to

generate a pseudo-distribution over the unit sphere having

T as its third-order moments tensor, and then to extract

from it the set of order-6 pseudo-moments estimating the

moment tensor
∑

i a
⊗6
i . This pseudo-distribution would obey

the constraint {(u⊗ u⊗ u)
T
T ≥ 1− ε}, which implies the

constraint {∑i〈ai, u〉3 ≥ 1− ε}, saying, informally, that our

pseudo-distribution is close to the actual uniform distribution

over {ai}. Substituting v = u⊗2, we obtain an implied

pseudo-distribution in v which therefore ought to be close to

the uniform distribution over {a′i}, and we should therefore

be able to round the order-3 pseudo-moments of v to recover

{a′i}.
Only two preconditions need to be checked: first that∑
i (a

′
i)(a

′
i)

T
is not too large in spectral norm, and second
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that our pseudo-distribution in v satisfies the constraint

{∑i〈a′i, v〉3 ≥ 1 − O(ε)}. The first precondition is true

(except for a spurious eigenspace which can harmlessly be

projected away) and is essentially equivalent to a line of

matrix concentration arguments previously made in [7]. The

second precondition follows from a line of constant-degree

sum-of-squares proofs, notably extending arguments made in

[5] stating that the constraints {∑i〈ai, u〉3 ≥ 1− ε, ‖u‖2 =
1} imply with constant-degree sum-of-squares proofs that

{∑i〈ai, u〉k ≥ 1 − O(ε) − Õ(n/d3/2)} for some higher

powers k. The rigorous verification of these conditions is

given in the full version of this paper.
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