
A Nearly Tight Sum-of-Squares Lower Bound for
the Planted Clique Problem

Boaz Barak∗, Samuel B. Hopkins†, Jonathan Kelner‡, Pravesh Kothari§, Ankur Moitra¶, and Aaron Potechin‖
∗ John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA, b@boazbarak.org

†Cornell University Department of Computer Science, Ithaca, NY, USA. samhop@cs.cornell.edu
‡MIT Department of Mathematics, Cambridge, MA, USA. kelner@mit.edu

§ UT Austin Department of Computer Science, Austin, TX, USA. kothari@cs.utexas.edu
¶ MIT Department of Mathematics, Cambridge, MA, USA. moitra@mit.edu

‖ Cornell University Department of Computer Science, Ithaca, NY, USA. aaronpotechin@gmail.com

Abstract—We prove that with high probability over the
choice of a random graph G from the Erdős-Rényi distribution
G(n, 1/2), the nO(d)-time degree d Sum-of-Squares semidefinite
programming relaxation for the clique problem will give a value
of at least n1/2−c(d/ logn)1/2 for some constant c > 0. This yields a
nearly tight n1/2−o(1) bound on the value of this program for any
degree d = o(log n). Moreover we introduce a new framework
that we call pseudo-calibration to construct Sum-of-Squares lower
bounds. This framework is inspired by taking a computational
analogue of Bayesian probability theory. It yields a general recipe
for constructing good pseudo-distributions (i.e., dual certificates
for the Sum-of-Squares semidefinite program), and sheds further
light on the ways in which this hierarchy differs from others.

Index Terms—algorithm design and analysis; mathematical
programming; computational complexity

I. INTRODUCTION

The planted clique (also known as hidden clique) problem

is a central question in average-case complexity. Arising from

the 1976 work of Karp [1], the problem was formally defined

by Jerrum [2] and Kucera [3] as follows: given a random

Erdős-Rényi graph G from the distribution G(n, 1/2) where

every edge is chosen to be included with probability 1/2
independently of all others in which we plant an additional

clique (i.e., set of vertices that are all neighbors of one another)

S of size ω, find S. It is not hard to see that the problem

can be solved by brute force search which in this case takes

quasipolynomial time whenever ω > c log n for any constant

c > 2. Despite considerable effort, the best polynomial-time

algorithms only work when ω = ε
√
n, for any constant ε > 0

[4].

Over the years planted clique and related problems have

found applications to important questions in a variety of

areas including community detection [5], finding signals in
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molecular biology [6], discovering motifs in biological net-

works [7], [8], computing Nash equilibrium [9], [10], prop-

erty testing [11], sparse principal component analysis [12],

compressed sensing [13], cryptography [14], [15] and even

mathematical finance [16].

Thus, the question of whether the currently known algo-

rithms can be improved is of great interest. Unfortunately,

it is unlikely that lower bounds for planted clique can be

derived from conjectured complexity class separations such as

P �= NP, precisely because it is an average-case problem [17],

[18]. Our best evidence for its difficulty comes from showing

limitations on powerful classes of algorithms. In particular,

since many of the algorithmic approaches for this and related

problems involve spectral techniques and convex programs,

limitations for these types of algorithm are of significant

interest. One such negative result was shown by Feige and

Krauthgamer [19] who proved that the nO(d)-time degree d
Lovász-Schrijver semidefinite programming hierarchy (LS+

for short) can only recover the clique if its size is at least√
n/2d.1

However, recently it was shown that in several cases, the

Sum-of-Squares (SOS) hierarchy [20], [21], [22] — a stronger

family of semidefinite programs which can be solved in time

nO(d) for degree parameter d — can be significantly more

powerful than other algorithms such as LS+ [23], [24], [25].

In particular, it was conceivable that the SOS hierarchy might

be able to find planted cliques that are much smaller than
√
n

in polynomial time, or at least be able to beat brute force

search.

The first SOS lower bound for planted clique was shown

by Meka, Potechin and Wigderson [26] who proved that

the degree d SOS hierarchy cannot recover a clique of size

Õ(n1/d). This bound was later improved on by Deshpande

and Montanari [27] and then Hopkins et al [28] to Õ(n1/2)
for degree d = 4 and Õ(n1/(�d/2�+1)) for general d. However,

1As we discuss in Remark I.2 below, formally such results apply to the
incomparable refutation problem, which is the task of certifying that there
is no ω-sized clique in a random G(n, 1/2) graph. However, our current
knowledge is consistent with these variants having the same computational
complexity.
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this still left open the possibility that the constant degree (and

hence polynomial time) SoS algorithm can significantly beat

the
√
n bound, perhaps even being able to find cliques of

size nε for any fixed ε > 0. This paper answers this question

negatively by proving the following theorem:

Theorem I.1 (Main Theorem). There is an absolute constant
c so that for every d = d(n) and large enough n, the SOS
relaxation of the planted clique problem has integrality gap at
least n1/2−c(d/ logn)1/2 .

Beyond improving the previously known results, our proof

is significantly more general and we believe provides a better

intuition behind the limitations for SOS algorithms by viewing

them from a “computational Bayesian probability” lens that

is of its own interest. Moreover, there is some hope (as we

elaborate below) that this view could be useful not just for

more negative results but for SOS upper bounds as well. In

particular our proof elucidates some aspects of the way in

which the SOS algorithm is more powerful than the LS+

algorithm.

Remark I.2 (The different variants of the planted clique prob-
lem). Like other average-case problems in NP, the planted

clique problem with parameter ω has three variants of search,
refutation, and decision. The search variant is the task of

recovering the clique from a graph in which it was planted.

The refutation variant is the task of certifying that a random

graph in G(n, 1/2) (where with high probability the largest

clique has size (2 + o(1)) log n) does not have a clique of

size ω. The decision problem is to distinguish between a

random graph from G(n, 1/2) and a graph in which an ω-sized
clique has been planted. The decision variant can be reduced

to either the search or the refutation variant, but we know

of no reduction between the latter two variants. Integrality

gaps for mathematical relaxations such as the Sum-of-Squares

hierarchy are most naturally stated as negative results for

the refutation variant, as they show that such relaxations

cannot certify that a random graph has no ω-sized clique by

looking at the maximum value of the objective function. Our

result can also be viewed as showing that the natural SoS-

based algorithm for the decision problem (which attempts to

distinguish on the objective value) also fails. Moreover, our

result also rules out some types of SoS-based algorithms for

the search problem as it shows that in a graph with a planted

clique, there exists a solution with an objective value of ω
based only on the random part, which means that it does not

contain any information about which nodes participate in the

clique and hence is not useful for rounding algorithms.

II. PLANTED CLIQUE AND PROBABILISTIC INFERENCE

We now discuss the ways in which planted clique differs

from problems for which strong SOS lower bounds have

been shown before, and how this relates to a “computational

Bayesian” perspective. There have been several strong lower

bounds for the SOS algorithm before, in particular for prob-

lems such as 3SAT, 3XOR and other constraint satisfaction

problems as well as the knapsack problem [29], [30], [31].

However, obtaining strong lower bounds for the planted clique

problem seems to have required different techniques. A high-

level way to describe the difference is that lower bounds for

planted clique require accounting for weak global constraints
rather than strong local ones. In the random 3SAT/3XOR

setting, the effect of one variable on another is either extremely

strong (if they are "nearby" in the formula) or essentially zero.

In contrast in planted clique each variable has a weak global
effect on all of the other variables. We now explain this in

more detail.

Consider a random graph G in which a clique S of size ω
has been planted. If someone tells us some simple statistics

of G and then tells us that vertex 17 is not in S, this new

informatoin makes it slightly less likely that 17’s neighbors

are in S and slightly more likely that 17’s non-neighbors

are in S. So, this information has a weak global effect. In

contrast, when we have a random sparse 3SAT formula ϕ in

which an assignment x has been planted, if someone tells us

that x17 = 0 then it gives us a lot of information about the

local neighborhood of the 17th variable (the variables that

are involved in constraints with 17 or one that have a short

path of constraints to it) but there is an exponential decay

of these correlations and so this information tells us almost

nothing about the distribution of most of the variables xi

(that are far away from 17 in the sparse graph induced by

ϕ)2. Thus, in the random 3SAT setting information about the

assignments of individual variables has a strong local effect.
Indeed, previous Sum-of-Squares lower bounds for random

3SAT and 3XOR [29], [30] could be interpreted as producing

a "distribution-like" object in which, conditioned on the value

of a small set of variables S, some of the variables "close"

to S in the formula were fixed, and the rest were completely

independent.

This difference between the random SAT and the planted

clique problems means that some subtleties that can be ignored

in setting of random constraint satisfaction problems need

to be tackled head-on when dealing with planted cliques.

However to make this clearer, we need to take a detour and

discuss Bayesian probabilities and their relation to Sum-of-

Squares.

A. Computational Bayesian Probabilities and Pseudo-
distributions

Strictly speaking, if a graph G contains a unique clique S
of size ω, then for every vertex i the probability that i is in S
is either zero or one. But, a computationally bounded observer

may not know whether i is in the clique or not, and we

could try to quantify this ignorance using probabilities. These

2This exponential decay can be shown formally for the case of satisfiable
random 3SAT or 3XOR formulas whose clause density is sufficiently smaller
than the threshold. In our regime of overconstrainted random 3SAT/3XOR
formulas there will not exist any satisfying assignments, and so to talk about
“correlations” in the distributions of assignments we need to talk about the
“Bayesian estimates” that arise from algorithms such as Sum-of-Squares or
belief propagation. Both these algorithms exhibit this sort of exponential decay
we talk about; see also Remark II.1
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can be thought of as a computational analogue of Bayesian
probabilities, that, rather than aiming to measure the frequency

at which an event occurs in some sample space, attempts to

capture the subjective beliefs of some observer.
That is, the Bayesian probability that an observer B assigns

to an event E can be thought of as corresponding to the odds

at which B would make the bet that E holds. Note that this

probability could be strictly between zero and one even if

the event E is fully determined, depending on the evidence

available to B. While typically Bayesian analysis does not

take into account computational limitations, one could imagine

that even if B has access to information that fully determines

whether E happened or not, he could still rationally assign

a subjective probability to E that is strictly between zero

and one if making the inferences from this information is

computationally infeasible. In particular, in the example above,

even if a computationally bounded observer has access to

the graph G, which information-theoretically fully determines

the planted ω-sized clique, he could still assign a probability

strictly between zero and one to the event that vertex 17 is in

the planted ω-sized clique, based on some simple to compute

statistics such as how many neighbors 17 has, etc.
The Sum-of-Squares algorithm can be thought of as giving

rise to an internally consistent set of such "computational

probabilities". These probabilities may not capture all possible
inferences that a computationally bounded observer could

make, but they do capture all inferences that can be made

via a powerful proof system.
a) Bayesian estimates for planted clique.: To get a sense

for our results and techniques, it is instructive to consider the

following scenario. Let G(n, 1/2, ω) be the distribution over

pairs (G, x) of an n-vertex graphs G and a vector x ∈ R
n

which is obtained by sampling a random graph in G(n, 1/2),
planting an ω-sized clique in it, and letting G be the resulting

graph and x the 0/1 characteristic vector of the planted clique.

Let f : {0, 1}(n2) × R
n → R be some function that maps a

graph G and a vector x into some real number fG(x). Now

imagine two parties, Alice and Bob (where Bob can also stand

for "Bayesian") that play the following game: Alice samples

(G, x) from the distribution G(n, 1/2, ω) and sends G to Bob,

who wants to output the expected value of fG(x). We denote

this value by ẼGfG.
If we have no computational constraints then it is clear

that Bob can simply output ẼGfG be equal to Ex|G fG(x),
by which we mean the expected value of fG(x) where x is

chosen according to the conditional distribution on x given the

graph G.3 In particular, the value ẼGfG will be calibrated in

the sense that

E
G∈RG(n,1/2,ω)

ẼGfG = E
(G,x)∈RG(n,1/2,ω)

fG(x) (II.1)

Now if Bob is computationally bounded, then he will not

necessarily be able to compute the value of Ex|GfG(x) even

3The astute reader might note that this expectation is somewhat degenerate
since with very high probability the graph G will uniquely determine the
vector x, but please bear with us, as in the computational setting we will be
able to treat x as "undetermined".

for a simple function such as fG(x) = x17. Indeed, as we

mentioned, since with high probability the clique x is uniquely

determined by G, Ex|G x17 will simply equal 1 if vertex 17
is in the clique and equal 0 otherwise. However, note that

we don’t need to compute the true conditional expectation to

obtain a calibrated estimate. In the above example, if Bob

simply outputs Ẽx17 = ω/n then his estimate will satisfy

(II.1).

Our Sum-of-Squares lower bound amounts to coming up

with some reasonable “pseudo-expectation” that can be ef-

ficiently computed, where ẼG is meant to capture a “best

effort” of a computationally bounded party of approximat-

ing the Bayesian conditional expectation Ex|G. Our pseudo-

expectation will be far from the true conditional expectations,

but will be internally consistent in the sense that for all

“simple” functions f it will satisfy (II.1). The key property

is that our pseudo-expectation will not distinguish between

a graph G drawn from G(n, 1/2, ω) and a random G from

G(n, 1/2). In particular, it will also satisfy the following

pseudo-calibration condition:

E
G∈RG(n,1/2)

ẼGfG = E
(G,x)∈RG(n,1/2,ω)

fG(x) (II.2)

for all “simple” functions f = f(G, x). Note that (II.2) does

not make sense for the estimates of a truly Bayesian (i.e.,

computationally unbounded) Bob, since almost all graphs G
in G(n, 1/2) are not even in the support of G(n, 1/2, ω).
Nevertheless, our pseudo-distributions will be well defined

even for a random graph and hence will yield estimates for

the probabilities over this hypothetical object (i.e., the ω-sized
clique) that does not exist. The “pseudo-calibration” condition

(II.2) might seem innocent, but it turns out to imply many

useful properties. In particular is not hard to see that (II.2)

implies that for every simple strong constraint of the clique

problem — a function f such that f(G, x) = 0 for every x that

is a characteristic vector of an ω-clique in G — it must hold

that ẼGfG = 0. But even beyond these “strong constraints”,

(II.2) implies that the pseudo-expectation satisfies many weak
constraints as well, such as the fact that a vertex of high degree

is more likely to be in the clique and that if i is not in the

clique then its neighbors are less likely and non-neighbors are

more likely to be in it.

Indeed, the key conceptual insight of this paper is to

phrase the pseudo-calibration property (II.2) as a desiderata

for our pseudo-distributions. Namely, we say that a function

f = f(G, x) is “simple” if it is a low degree polynomial in

both the entries of G’s adjacency matrix and the variables x,
and then require (II.2) to hold for all simple functions. It turns

out that once you do so, the choice for the pseudo-distribution

is essentially determined, and hence proving the main result

amounts to showing that it satisfies the constraints of the SOS

algorithm. In the next section we will outline the main ideas

of our proof.

Remark II.1 (Planted Clique vs 3XOR). In the light of the

discussion above, it is instructive to consider the case of

429430430



random 3XOR discussed before. Random 3XOR instances

on n variables and Θ(n) constraints are easily seen to be

maximally unsatisfiable (that is, at most ≈ 1/2 the constraints

can be satisfied by any assignment) with high probability. On

the other hand, Grigorev [29] constructed a sum of squares

pseudoexpectation that pretends that such instances instances

are satisfiable with high probability, proving a sum of squares

lower bound for refuting random 3XOR formulas.

Analogous to the planted distribution G(n, 1/2, ω), one can

define a natural planted distribution over 3XOR instances -

roughly speaking, this corresponds to first choosing a random

Boolean assignment x∗ to n variables and then sampling

random 3XOR constraints conditioned on being consistent

with x∗. It is not hard to show that pseudo-calibrating with

respect to this planted distribution a la (II.2) produces precisely

the pseudoexpectation that Grigoriev constructed. However,

unlike in the planted clique case, in the case of 3XOR, the

pseudo-calibration condition implies that for every low-degree

monomial xS , either the value of xS is completely fixed (if

it can be derived via low width resolution from the 3XOR

equations of the instance) or it is completely unconstrained.

The pseudoexpectations considered in previous works [32],

[26], [27]) are similar to Grigoriev’s construction, in the sense

that they essentially respect only strong constraints (e.g., that if

A is not a clique in the graph, then the probability that it is con-

tained in the planted clique is zero), but other than that assume

that variables are independent. However, unlike the 3XOR

case, in the planted clique problem respecting these strong

constraints is not enough to achieve the pseudo-calibration

condition (II.2) and the pseudoexpectation of [32], [26], [27]

can be shown to violate weak probabilistic constraints imposed

by (II.2) even at degree four. See Observation II.4 for an

example.

B. From Calibrated Pseudo-distributions to Sum-of-Squares
Lower Bounds

What does Bayesian inference and calibration have to do

with Sum-of-Squares? In this section, we show how calibration

is almost forced on any pseudodistribution feasible for the

Sum-of-Squares algorithm. In order to show that the degree d
SOS algorithm fails to certify that a random graph does not

contain a clique of size ω, what we need is to show that for

a random G, with high probability we can come up with an

operator that maps a degree at most d, n-variate polynomial

p to a real number ẼGp satisfying the following constraints:

1) (Linearity) The map p �→ ẼGp is linear.
2) (Normalization) ẼG1 = 1.
3) (Booleanity constraint) ẼGx

2
i p = Ẽxip for every p of

degree at most d− 2 and i ∈ [n].
4) (Clique constraint) ẼGxixjp = 0 for every (i, j) that is

not an edge and p of degree at most d− 2.
5) (Size constraint) ẼG

∑n
i=1 xi = ω.

6) (Positivity) ẼGp
2 � 0 for every p of degree at most d/2.

Definition II.2. A map p �→ ẼGp satisfying the above

constraints 1–6 is called a degree d pseudo-distribution (w.r.t.

the planted clique problem with parameter ω).

We can now restate our main result as follows:

Theorem II.3 (Theorem I.1, restated). There is some con-
stant c such that if ω � n1/2−c(d/ logn)1/2 then with high
probability over G sampled from G(n, 1/2), there is a degree
d pseudodistribution ẼG satisfying constraints 1–6 above.

Note that all of these constraints would be satisfied if ẼGp was

obtained by taking the expectation of p over a distribution on

ω-sized cliques in G. However, with high probability there is

no 2.1 logn-sized clique in G (and let alone a roughly
√
n-

sized one) so we will need a completely different mechanism

to obtain such a pseudo-distribution.

Previously, the choice of the pseudo-distribution seemed to

require a “creative guess” or an “ansatz”. For problems such

as random 3SAT this guess was fairly natural and almost

“forced”, while for planted clique as well as some related

problems [33] the choice of the pseudo-distribution seemed

to have more freedom, and more than one choice appeared in

the literature.

For example, Feige and Krauthgamer [32] (henceforth FK)

defined a very natural pseudo-distribution Ẽ
FK for a weaker

hierarchy. For a graph G on n vertices, and subset A ⊆ [n],
Ẽ
FK
G xA is equal to zero if A is not a clique in G and equal

to 2(
|A|
2 )

(
ω
n

)|A|
if A is a clique, and extended to degree d

polynomials using linearity.4 [32] showed that that for every

d, and ω < O(
√

n/2d), this pseudo-distribution satisfies the

constraints 1–5 as in Definition II.2 as well as a weaker

version of positivity (this amounts to the so called “LovÃąsz-

Schrijver+” SDP). Meka, Potechin and Wigderson [26] proved

that the same pseudo-distribution satisfies all the constraints

1–6 (and hence is a valid degree d pseudo-distribution) as

long as ω < Õ(n1/d). This bound on ω was later improved

to Õ(n1/3) for d = 4 by [27] and to Õ(n(�d/2�+1)−1

) for a

general d by [34].

Interestingly, the FK pseudo-distribution does not satisfy

the full positivity constraint for larger values of ω. The issue

is that while the FK pseudo-distribution satisfies the “strong”

constraints that Ẽ
FK
G xA = 0 if A is not a clique, it does

not satisfy weaker constraints that are implied by (II.2). For

example, for every constant �, if vertex i participates in√
n more �-cliques than the expected number then one can

compute that the conditional probability of i belonging in the

clique should be a factor 1+ cω/
√
n larger for some constant

c > 0. However, the FK pseudo-distribution does not make

this correction. In particular, for every �, there is a simple

polynomial that shows that the FK pseudoexpectation is not

calibrated.

Observation II.4. Fix i ∈ [n] and let � be some constant.

If pG = (
∑

j Gi,jxj)
� then (i) EG∼G(n,1/2) Ẽ

FK
G [p2G] �

ω� and (ii) E(G,x)∼G(n,1/2,ω)[pG(x)
2] � ω2�+1

n . In par-

4The actual pseudo-distribution used by [32] (and the followup works
[26], [27]) was slightly different so as to satisfy ẼG(

∑m
i=1 xi)

� = ω� for
every � ∈ {1, . . . , d}. This property is sometimes described as satisfying the
constraint {∑i xi = ω}.
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ticular, when ω 	 n
1

�+1 , EG∼G(n,1/2) Ẽ
FK
G [p2G] 


E(G,x)∼G(n,1/2,ω) pG(x).

Proof sketch. For (ii) note that with probability (ω/n) vertex

i is in the clique, in which case
∑

j Gi,jxj = ω, and hence

the expectation of p2G is at least (ω/n)ω2�. For (i), we open

up the expectation and the definition to get (up to a constant

depending on �)∑
j1,...,j2�

Gi,j1 . . . Gi,j2�(ω/n)
2�

E
G∼G(n,1/2)

1{i1,...,i2�} is clique

Since this expectation is zero unless every variable Gi,j is

squared, in which case the number of distinct j’s is at most

�, we can bound the sum by n�(ω/n)� = ω�. This completes

the proof sketch.

Observation II.4 captures the failure of calibration for a

specific polynomial pG(x) where the coefficients are low-

degree functions of the graph G. The polynomial pG above

can be used to show that degree d Ẽ
FK does not satisfy the

positivity constraint for ω 	 n1/( d
2+1). This observation is

originally due to Kelner, see [34]

Fact II.5. Let pG be as in the Observation II.4. Then, there
exists a C such that for q = qG = (Cω�xS − pG) with high
probability over the graph G ∼ G(n, 1/2), ẼFK [q2G] < 0 for
ω 	 n

1
�+1 .

For the case d = 4, Hopkins et al [28] proposed an “ad

hoc” fix for the FK pseudo-distribution that satisfies positivity

up to ω = Õ(
√
n), by explicitly adding a correction term

to essentially calibrate for the low-degree polynomials qG
from Fact II.5. However, their method did not extend even

for d = 6, because of the sheer number of corrections that

would need to be added and analyzed. Specifically, there are

multiple families of polynomials such that their Ẽ
FK value

departs significantly from their calibrated value in expectation

and gives multiple points of failure of positivity in a manner

similar to Observation II.4 and Fact II.5. Moreover, "fixing"

these families by the correction as in case of degree four

leads to new families of polynomials that fail to achieve their

calibrated value and exhibit negative pseudoexpectation for

their squares and so on.

The coefficients of the polynomial pG of Observation II.4

are themselves low degree polynomials in the adjacency matrix

of G. This turns out to be a common feature in all the

families of polynomials one encounters in the above works.

Thus our approach is to fix all these polynomials by fiat,
by placing the constraint that the pseudo-distribution must

satisfy (II.2) for every such polynomial, and using that as our

implicit definition of the pseudo-distribution. Indeed it turns

our that once we do so, the pseudo-distribution is essentially

determined. Moreover, (II.2) guarantees that it satisfies many

of the “weak global constraints” that can be shown using

Bayesian calculations.

Ultimately we will construct the map G �→ ẼG as a low

degree polynomial in G. Why is it OK to make such a

restriction? One justification is the heuristic that the pseudo-

distribution itself must be simple since we know that it

is efficiently computable (via the SOS algorithm) from the

graph G. Another justification is that by forcing the pseudo-

distribution to be low-degree we are essentially making it

smooth or “high entropy”, which is consistent with the Jaynes

maximum entropy principle [35], [36]. Most importantly —

and this is the bulk of the technical work of this paper and the

subject of the next subsection — this pseudo-distribution can

be shown to satisfy all the constraints 1–6 of Definition II.2

including the positivity constraint.

We believe that this principled approach to designing

pseudo-distributions elucidates the power and limitations of

the SOS algorithm in cases such as planted clique, where

accounting for weak global correlations is a crucial aspect of

the problem.

Remark II.6 (Where does the planted distribution arise from?).
Theorem II.3 (as well as Theorem I.1) makes no mention of

the planted distribution G(n, 1/2, ω) and only refers to an

actual random graph. Thus it might seem strange that we

base our pseudo-distribution on the planted distribution via

(II.2). One way to think about the planted distribution is that

it corresponds to a Bayesian prior distribution on the clique.

Note that this is the maximum entropy distribution on cliques

of size ω, and so it is a natural choice for a prior per Jaynes’s

principle of maximum entropy. Our actual pseudo-distribution

can be viewed as correcting this planted distribution to a

posterior that respects simple inferences from the observed

graph G.

C. Towards Proving Positivity: Structure vs. Randomness

We have seen that pseudo-calibration is desirable both a
priori and in light of the failure of previous lower-bound

attempts. Now we turn to the question: How do we formally

define a pseudo-calibrated linear map ẼG, and show that

it satisfies constraints 1–6 with high probability, to yield

Theorem II.3?

We will require (II.2) to hold with respect to every function

f = f(G, x) that has degree at most τ in the entries of the

adjacency matrix G and degree at most d in the variables x,
and in addition we require that the map G �→ ẼG is itself of

degree at most τ in G, then this completely determines ẼG.

For any S ⊆ [n], |S| � d, using the Fourier transform we can

write ẼG[xS ] as an explicit low degree polynomial in Ge:

ẼG[xS ] =
∑

T⊆([n]
2 )

|V(T )∪S|�τ

(ω
n

)|V(T )∪S|
χT (G), (II.3)

where V(T ) is the set of nodes incident to the subset of edges

(i.e., graph) T and χT (G) =
∏

e∈T Ge. (This calculation is

carried out in the full version.) For ω ≈ n0.5−ε, we will need

to choose the truncation threshold τ � d/ε. It turns out that

constraints 1–5 are easy to verify and thus we are left with

proving the positivity constraint. Indeed this is not surprising
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as verifying this constraint is always the hardest part of a

Sum-of-Squares lower bound.

As is standard, to analyze this positivity requirement

we work with the moment matrix of ẼG. Namely, let

M be the
(

n
�d/2

) × (
n

�d/2

)
matrix where M(I, J) =

ẼG

∏
i∈I xi

∏
j∈J xj for every pair of subsets I, J ⊆ [n] of

size at most d/2. Our goal can be rephrased as showing that

M� 0 (i.e., M is positive semidefinite).

Given a (symmetric) matrix N , to show that N � 0 our first

hope might be to diagonalize N . That is, we would hope to

find a matrix V and a diagonal matrix D so that N = V DV †.
Then as long as every entry of D is nonnegative, we would

obtain N � 0. Unfortunately, carrying this out directly can be

far too complicated. Even the eigenvectors of simple random

matrices are not completely understood, let alone matrices like

ours with intricate dependencies among the entries. However,

as the next example demonstrates, it is sometimes possible

to prove positivity for a random matrix using what we call

approximate diagonalization.

a) Example: Planted Clique Lower Bound for d = 2
(a.k.a. Basic SDP).: Consider the problem of producing a

pseudo-distribution Ẽ satisfying constraints 1–6 of Defini-

tion II.2, with d = 2. In this simple case, many subtleties

can be safely be ignored, but can still provide some intuition.

For d = 2, it is enough to define Ẽxi and Ẽxixj for every

i ∈ [n] and {i, j} ⊆ [n]. Let Ẽxi = (ω/n) for every i, and

set Ẽxixj to be
(
ω
n

)2
if (i, j) is an edge in G and zero

otherwise. It is not hard to show that positivity reduces to

showing that N � 0 where N is the n × n matrix with

Ni,j = Ẽxixj . Using standard results on random matrices,

N has one eigenvalue (whose corresponding eigenvector is

close to the vector u = (1/
√
n, . . . , 1/

√
n)) of value ω2/n,

while all others are distributed in the interval ω
n ±O

(
ω2

n2

√
n
)

which is strictly positive as long as ω 
 √
n. Thus, while we

cannot explicitly diagonalize N , we have enough information

to conclude that it is positive semidefinite. In other words, it

was enough for us to get an approximate diagonalization for

N of the form N ≈ ω2

n uu† + ω
n Id+E for some sufficiently

small (in spectral norm) “error matrix” E. Ultimately we will

need to do something similar, but with many eigenvalues and

many error matrices that are inter-dependent.

b) Approximate Factorization forM.: We return now to

the moment matrix M for our (pseudo)calibrated pseudodis-

tribution. Our goal is to give an approximate diagonalization

of M. There are several obstacles to doing so:

1) In the case d = 2 there was just one rank-1 approximate

eigenspace to be handled. The number of these approx-

imate eigenspaces will grow with d, so we will need a

more generic way to handle them.

2) Each approximate eigenspace corresponds to a family of

polynomials {p} whose calibrated pseudoexpectations are

all roughly equal. (In the case d = 2, the only interesting

polynomial was the polynomial
∑

j xj whose coefficients

are proportional to the vector u = (1/
√
n, . . . , 1/

√
n).)

As we saw in Observation II.4, if pG is a polyno-

mial whose coefficients depend on the graph G, even

in simple ways, the calibrated value ẼGpG may also

depend substantially on the graph. Thus, when we write

M ≈ LQL† for some approximately-diagonal matrix

Q, we will need the structured part L = L(G) to itself

be graph-dependent.

3) The errors in our diagonalization ofM— corresponding

in our d = 2 example to the matrix E — will not be small

enough to ignore as we did above. Instead, each error

matrix will itself have to be approximately diagonalized,

recursively until these errors are driven down sufficiently

far in magnitude.

We now discuss at a high level our strategy to address items

(1) and (2). The resolution to item (3) is the most technical

element of our proof, and we leave it for later. Consider the

vector space of all polynomials f : {0, 1}(n2)×R
n → R which

take a graph and an n-dimensional real vector and yield a real

number. (We write fG(x), where G is the graph and x ∈ R
n.)

If we restrict attention to the subspace of those of degree at

most d in x, we obtain the polynomials in the domain of our

operator ẼG. If we additionally restrict to the subspace of

polynomials which are low degree in G, we obtain the family

of polynomials so that EG ẼGfG(x) is calibrated. Call this

subspace V .
Our goal would to be find an approximate diagonalization

for all the non-trivial eigenvalues of M using only elements

from V . The advantage of doing so is that for every f ∈ V , we

can calculate EG ẼGf
2
G using the pseudo-calibration condition

(II.2). In particular it means that if we find a function f such

that fG is with high probability an approximate eigenvector

of G, then we can compute the corresponding expected

eigenvalue λ(f).

A crucial tool in finding such an approximate eigenbasis

is the notion of symmetry. For every f , if f ′ is obtained

from f via a permutation of the variables x1, . . . , xn, then

EG ẼGf
2
G = EG ẼGf

′2
G . The result of this symmetry, for us, is

that our approximate diagonalization requires only a constant

(depending on d) number of eigenspaces. This argument al-

lows us to restrict our attention to a constant number of classes

of polynomials, where each class is determined by some finite

graph U that we call its shape. For every polynomial f with

shape U , we compute (approximately) the value of EG ẼGf
2
G

as a function of a simple combinatorial property of U , and

our approximate eigenspaces correspond to polynomials with

different shapes.

We can show that that in expectation our approximate

eigenspaces will have non-negative eigenvalues since the

pseudo-calibration condition (II.2) in particular implies that

for every f that is low degree in both G and x, EG ẼGf
2
G � 0.

However, the key issue is to deal with the error terms that arise

from the fact that these are only approximate eigenspaces.

One could hope that, like in other “structure vs. randomness”

partitions, this error term is small enough to ignore. Alas, this

is not the case, and we need to handle it recursively, which is

the crux of item (3) and the cause of much of the technical
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complications of our paper.

Remark II.7 (Structure vs. randomness). At a high level our

approach can be viewed as falling into the general paradigm

of “structure vs. randomness” as discussed by Tao [37]. The

general idea of this paradigm is to separate an object O
into a “structured” part that is simple and predictable, and

a “random” part that is unpredictable but has small magnitude

or has some global statistical properties.
One example of this is the Szemerédi regularity lemma [38]

as well variants such as [39] that partition a matrix into a

sum of a low rank and pseudorandom components. Another

example arises from the random models for the primes (e.g.,

see [40], [41]). These can be thought of positing that, as far as

certain simple statistics are concerned, (large enough) primes

can be thought of as being selected randomly conditioned on

not being divisible by 2, 3, 5 etc.. up to some bound w.
All these examples can be viewed from a computationally

bounded Bayesian perspective. For every object O we can con-

sider the part of O that can be inferred by a computationally

bounded observer to be O’s structured component, while the

remaining uncertainty can be treated as if it is random, even

if in actuality it is fully determined. Thus in our case, even

though for almost every particular graph G from G(n, 1/2, ω),
the clique x is fully determined by G, we still think of x as

having a “structured” part which consists of all the inferences

a “simple” observer can make from G (e.g., that if i and j
are non-neighbors then xixj = 0), and a “random” part that

consists of the remaining uncertainty. As in other cases of

applying this paradigm, part of the technical work is bounding

the magnitude (in our case in spectral norm) that arises from

the “random” part, though as mentioned above in our case we

need a particularly delicate control of the error terms which

ends up causing much of the technical difficulty.

III. PROVING POSITIVITY: A TECHNICAL OVERVIEW

We now discuss in more detail how we prove that the

moment matrix M corresponding to our pseudo-distribution

is positive semidefinite. (For full details, see the full ver-

sion at https://arxiv.org/abs/1604.03084) Recall that this is

the
(

n
�d/2

) × (
n

�d/2

)
matrix M such that M(I, J) =

ẼG

∏
i∈I xi

∏
j∈J xj for every pair of subsets I, J ⊆ [n] of

size at most d/2, and that it is defined via (II.3) as

M(I, J) =
∑

T⊆([n]
2 )

|V(T )∪I∪J|�τ

(ω
n

)|V(T )∪I∪J|
χT (G) . (III.1)

The matrix M is generated from the random graph G,

but its entries are not independent. Rather, each entry is a

polynomial in Ge, and there are some fairly complex depen-

dencies between different them. Indeed, these dependencies

will create a spectral structure forM that is very different from

the spectrum of standard random matrices with independent

entries and makes proving that M is positive semidefinite

challenging. Our approach to showing that M is positive

semidefinite is through a type of “symbolic factorization” or

“approximate diagonalization,” which we explain next.

A. Warm Up

It is instructive to begin with the tight analysis presented in

[34] of the moments constructed in [26]5. These moments can

in fact obtained by using truncation threshold τ = |S| in (II.3).

This choice of τ is the smallest possible for which the resulting

construction satisfies the hard clique constraints. [34] show

that this construction satisfies positivity for ω � n1/( d
2+1).

For the purpose of this overview, let us work with the

principal submatrix F indexed by subsets I and J of size

exactly d. The analysis in [34] proceeds by first splitting F
into d + 1 components F = F0 + F1 + · · · + Fd where

Fi(I, J) = F (I, J) if |I ∩ J | = i and 0 otherwise. Below,

we discuss two of the key ideas involved that will serve as an

inspiration for us.

As discussed before, we must approximately diagonalize

the matrix F in the sense that the off diagonals blocks must

be "small enough" to be charged to the on diagonal block.

Thus the main question before us is obtain an (approximate)

understanding of the spectrum of F that allows us to come up

with a "change of basis" in which the off diagonal blocks are

small enough to be charged to the positive eigenmass in the

on-diagonal blocks.

Let us consider the piece F0 for our discussion here. As

alluded to in Section III, we want to break F into minimal

pieces so that each piece is symmetric under the permutation

of vertices. We can hope that each piece will then essentially

have a single dominating eigenvalue that can be determined

relatively easily. Below, we will essentially implement this

plan.

First, we need to decide what kind of "pieces" we will need.

These are the graphical matrices that we define next.

Definition III.1 (Graphical Matrices (see full version for

formal definition)). Let U be a graph on [2d] with specially

identified subsets left and right subsets [d] and [2d] \ [d]. For
any I, J ∈ (

[n]
d

)
, I ∩ J = ∅, let πI,J be an injective map that

takes [d] into I and [2d] \ [d] into J using a fixed convention.

The graphical matrix MU with graph U is then defined by

MU (I, J) = χπI,J (U)(G).

The starting point of the analysis is to decompose F0 =∑
U

(
ω
n

)2d
MU , where MU is the graphical matrix with shape

U . Graphical matrices as above turn out to be the right

building blocks for spectral analysis of our moment matrix.

This is because a key observation in [34] shows that a simple

combinatorial parameter, the size of the maximum bipartite

matching between the left and right index in U (i.e. between

[d] and [2d] \ [d]), determines the spectral norm of MU .

Specifically, when U has a maximum matching of size t < d,
the spectral norm of MU is Õ(nd− t

2 ), with high probability.

Observe that when d = 2 and U is a single edge connecting the

left vertex with the right, MU is just the {−1,+1}-adjacency
matrix of the underlying random graph and it is well known

5The construction in [26] actually also satisfies
∑

xi = ω as a constraint
which causes the precise form to differ. We ignore this distinction here.

433434434



that the spectral norm in this case is Θ(
√
n) matching the

more general claim above.

In particular, this implies that when U has a perfect match-

ing, MU is pseudorandom in the sense that FU essentially has

the spectral norm ≈ nd/2, the same as that of an independent

{−1,+1} random matrix of the same dimensions. This allows

MU to be bounded against the positive eigenvalue
(
ω
n

)d
of

the diagonal matrix Fd as
(
ω
n

)d 	 (
ω
n

)2d
nd/2 (even for ω

approaching
√
n!). However for MU when U has a maximum

matching of size t < d, one can’t bound against the diagonal

matrix Fd anymore.

The next main idea is to note that for every MU there’s

an appropriate "diagonal" against which we must charge the

negative eigenvalues of MU . When U has a perfect matching,

this is literally the diagonal matrix Fd as done above. However,

when, say, U is a (bipartite) matching of size t < d, we

should instead charge against the "diagonal" matrix that can

thought of as obtained by "collapsing" each matching edge

into a vertex in U . In particular, this collapsing produces a

matrix that lies in the decomposition of Ft.

There are a two main takeaways from this analysis that

would serve as inspiration in the analysis of our actual

construction. First is the decomposition into graphical matrices

in order to have a coarse handle on the spectrum of the mo-

ment matrix. Second, the "charging" of negative eigenvalues

against appropriate "diagonals" is essentially governed by the

combinatorics of matchings in U .

B. The Main Analysis

We can now try to use the lessons from the warm up analysis

to inspire our actual analysis. To begin with, we recall that

each graphical matrix was obtained by choosing an appropriate

(set of) Fourier monomials for any entry indexed by I, J .
However, since for our actual construction we have monomials

of much higher degree, we need to extend the notion of

graphical matrices with shapes corresponding to larger graphs

U . See full version for a formal definition.

It turns out that the right combinatorial idea to generalize

the size of the maximum matching and control the spectral

norm of the graphical matrices MU is the maximum number

of vertex disjoint paths between specially designated left and

right endpoints of U (themselves the generalization of the

bipartition we had in the warmup). Using Menger’s theorem,

this is equal to the size of a minimal collection of vertices that

separates the left and right sets in the graph U , which we call

the separator size of U .

Finally, we need a "charging" argument to work with the

approximate diagonalization we end up with. Generalizing the

idea in the warm up here is the hardest part of our proof, but

relates again to the notion of vertex separators defined above.

In the warm up, we used a naive charging scheme, breaking

the moment matrix into simpler (graphical) matrices, each of

which was either a “positive diagonal” mass or a “negative

off-diagonal mass”, and pairing up the terms. Such a crude as-

sociation doesn’t work out immediately in the general setting.

Instead, large groups of graphical matrices must be treated all

at once. In each subspace of our approximate diagonalization

of the moment matrix M, we collect the "positive diagonal

mass" and the "negative off digonal mass" that needs to be

charged to it together and build an approximately PSD matrix

out of it. As alluded to before, the error in this approximation

is not negligible and thus we must further recurse on the

error terms. In what follows, we discuss the factorization

process that accomplishes the charging scheme implicitly and

the recursive factorization for the error terms in some more

detail. Consider some graph T ⊆ (
[n]
2

)
, that corresponds to

one term in the sum in (III.1) above, and let q be the minimum

size of a set that separates I from J in T . Such a set is not

necessarily unique but we can define the leftmost separator

left− sep(T ) = S� to be the q-sized separator that is closest

to I and the rightmost separator right− sep(T ) = Sr to be

the q-sized separator that is closest to J .

We can rewrite the (I, J) entry moment matrix M (III.1)

by collecting monomials T with a fixed choice of the leftmost

and rightmost separators S� and Sr. This step corresponds

to collecting terms with similar spectral norms together ac-

complishing the goal of collecting together into a term, the

"positive diagonal mass" and the "negative off diagonal mass"

that are implicitly charged to each other in the intended

approximate diagonalization.

M(I, J) =
∑

1�q�|I|,|J|

∑
S�,SR:|S�|=|Sr|=q

(III.2)

∑
T⊆([n]

2 )
|V(T )∪I∪J|�τ

left−sep(T )=S�,right−sep(T )=Sr

(ω
n

)|V(T )∪I∪J|
χT (G)

(III.3)

We can then partition T into three subsets R�, Rm and

Rr that represent the part of the graph T between I and

S�, the part between S� and Sr and the part between Sr and

J respectively (where edges within S� and edges within Sr

are all placed in Rm, see full version for details). We thus

immediately obtain that

χT (G) = χR�
(G)χRm(G)χRr (G) .
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Thus:

M(I, J) =
∑

1�q�|I|,|J|

∑
S�,SR:|S�|=|Sr|=q

∑
T⊆([n]

2 )
|V(T )∪I∪J|�τ
left−sep(T )=S�

right−sep(T )=Sr

(III.4)

((ω
n

)|V(R�)|
χR�

(G)

)
·
((ω

n

)|V(Rm)|−2q

χRm
(G)

)

(III.5)

·
((ω

n

)|V(Rr)|
χRr (G)

)
(III.6)

One could hope that we could replace the RHS of (III.4)

by

∑
1�q�|I|,|J|
τ1+τ2+τ3�τ

∑
S�⊆([n]

q )
Sr⊆([n]

q )

(III.7)

⎛
⎜⎜⎜⎜⎜⎝

∑
R�

V(R�)⊇I∪S�

|V(R�)|=τ1

(
ω
n

)|V(R�)| χR�
(G)

⎞
⎟⎟⎟⎟⎟⎠

(III.8)

·

⎛
⎜⎜⎜⎜⎝

∑
Rm

V(Rm)⊇S�∪Sr

|V(Rm)|=τ2

(
ω
n

)|V(Rm)|−2q
χRm

(G)

⎞
⎟⎟⎟⎟⎠ (III.9)

·

⎛
⎜⎜⎜⎜⎝

∑
Rr

V(Rr)⊇Sr∪J
|V(Rr)|=τ3

(
ω
n

)|V(Rr)|
χRr

(G)

⎞
⎟⎟⎟⎟⎠ (III.10)

In fact, it turns out we can focus attention (up to sufficiently

small error in the spectral norm) to the case τ1 � τ/3, τ2 �
τ/3, τ3 � τ/3 in which case if M(I, J) was equal to (III.10)

we could simply write

M =
∑
q

LqQq L†q

where for I, S ⊆ [n] with |I| � d and |S| = q, we let Lq(I, S)
be the sum of (ω/n)|V (R�)|χR�

(G) over all graphs R� of at

most τ/3 vertices connecting I to S, and for S, S′ of size q,
we let Qq(S, S

′) be the sum of (ω/n)|Rm|−2qχRm
(G) over

all graphs Rm of at most τ/3 vertices connecting S to S′.
Thus, in this case, this reduces our task of showing that

M is positive semidefinite to showing that for every q, the

matrix Q = Qq is positive semidefinite. However the main

complication is that there are cross terms in the product

LqQq L†q that correspond to repeating the same vertex (not

in S� and Sr) in more than one of R�, Rm and Rr. There is

no matching term in the Fourier decomposition of M(I, J).
So at best, for every fixed q, we can write the part of M

corresponding to indices I, J with minimal vertex separator

equal to q as

LQ0 L†−E1
for some error matrix E1 that exactly cancels out the extra

terms contributed by cross terms with repeated vertices. Unfor-

tunately, the spectral norm of this error matrix E1 is not small

enough that we could simply ignore it. Luckily however, we

can recurse and factorize E1 approximately as well. We can

form a new graph T ′ by taking the parity of the edge sets

in R�, Rm and Rr. Now we find the leftmost and rightmost

separators that separate I and J from each other, and from

all repeated vertices. This gives us another decomposition of

a graph into three pieces, from which we can write

E1 = LQ1 L†−E2
for some other matrix Q1. Continuing this argument gives us

for every q a factorization of Mq as

L(Q0 −Q1 +Q2 − . . .−Q2d−1 +Q2d)L†
− (ξ0 − ξ1 + ξ2 − . . .− ξ2d−1 + ξ2d)

The error matrices ξ0, ξ1, . . . , ξ2d arise from truncation issues,

which we have ignored in the argument above and turn out to

be negligible.

It is not hard to show that Q0 � D for some positive

semidefinite matrix D that we define later. What remains is

to bound the remaining matrices Q1, . . .Q2d−1 in order to

conclude that M is positive semidefinite. Next, we elaborate

on the structure of these matrices. It turns out that we can

define the “shape” of a graph Rm in an appropriate way so

that

QU
i (S�, Sr) =

∑
shape(Rm)=U

ci(Rm)χRm

where U is a finite (for constant d) sized graph with vertex

set A ∪ B ∪ C, where we call A the “left” side of U and

B the “right” side of U . Moreover Qi =
∑

U QU
i . Now

QU
i is a random matrix and special cases of this general

family of matrices (for particular choices of U ) arise in several

earlier works on lower bounds for planted clique. Medarametla

and Potechin [42] showed that the spectral norm of QU

can be controlled by a bound on its coefficients and a few

combinatorial parameters of U — namely |V(U)|, |A ∩ B|
and the number of vertex disjoint paths between A/B and

B/A.

A major challenge in our work is to understand and analyze

the coefficients ci. In the course of decomposing M, we are

able to characterize ci(Rm) as an appropriately weighted sum

over ci−1(R′m) where R′m ranges over the middle piece of all

graphs with leftmost and rightmost separators S� and Sr that

could have resulted in Rm due to repeated vertices. Recall

that when there are repeated vertices, we take the parity of

the edge sets of the three pieces and compute a new set of

left and rightmost vertex separators. The set of R′m’s that

could result in Rm is complicated. Instead, our approach is

to show that the various combinatorial parameters of R′m

435436436



(which affect the spectral norm bounds) tradeoff against each

other when accounting for the effect of repeated vertices. This

allows us to bound their contribution and ultimately show

that the coefficients ci decay quickly enough for all values

of ω < n1/2−ε that we can bound each Qi for i > 1 as

−D
8d � Qi � D

8d , and this completes our proof.
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