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Abstract—We consider the well-studied cake cutting problem
in which the goal is to find an envy-free allocation based on
queries from n agents. The problem has received attention in
computer science, mathematics, and economics. It has been a
major open problem whether there exists a discrete and bounded
envy-free protocol. We resolve the problem by proposing a
discrete and bounded envy-free protocol for any number of
agents. The maximum number of queries required by the protocol

is nnnnnn

. Even if we do not run our protocol to completion, it
can find in at most nn+1 queries an envy-free partial allocation
of the cake in which each agent gets at least 1/n of the value of
the whole cake.

I. INTRODUCTION

The existence of a discrete and bounded envy-free cake

cutting protocol has remained a major open problem for

at least two decades. In this paper, we settle the problem

by presenting a general discrete envy-free protocol for any

number of agents. The protocol is for the cake cutting setting

that is a versatile mathematical model for allocation of a

heterogeneous divisible good among multiple agents with

possibly different preferences over different parts of the cake.

The main applications of cake cutting are fair scheduling,

resource allocation, and conflict resolution [10]. Cake cutting

has been extensively studied within computer science [18]

and the social sciences [26]. Since various important divisible

resources can be captured by cake cutting, the problem of

fairly dividing the cake is a fundamental one within the area

of fair division and multiagent resource allocation [7, 17, 20].

A cake is represented by an interval [0, 1] and each of the

n agents has a valuation function over pieces of the cake that

specifies how much that agent values a particular subinterval.

The main goal is to divide the cake fairly. Among various

fairness concepts proposed by social scientists, a prominent

one is envy-freeness. An allocation is envy-free if no agent

would prefer to take another agent’s allocation instead of his

own. Although an envy-free allocation is guaranteed to exist

even with n − 1 cuts [25]1, finding an envy-free allocation

is a challenging problem which has been termed “one of the

most important open problems in 20th century mathematics”

by Garfunkel [13].

1Su [25] pointed out that the existence of an envy-free cake allocation can
be shown via an interesting connection with Sperner’s Lemma.

a) Motivation and Contribution: Since the valuations of

agents over the cake can be complex, eliciting each agent’s

complete valuations function over the cake is computationally

infeasible. A natural approach in cake cutting protocols is to

query agents about their valuations of different portions of

the cake and based on these queries propose an allocation. A

cake cutting protocol is envy-free if each agent is guaranteed

to be non-envious if he reports his real valuations. For the case

of two agents, the problem has a well known solution in the

form of the Divide and Choose protocol: one agent is asked to

cut the cake into equally preferred pieces and the other agent

is asked to choose the preferred piece. For the case of three

agents, an elegant and bounded protocol was independently

discovered by John L. Selfridge and John H. Conway around

1960 [Page 116, 7]. Since then, an efficient general envy-free

protocol for any number of agents has eluded researchers.

In 1995, Brams and Taylor [6] made a breakthrough by

presenting an envy-free protocol for any number of agents.

Although the protocol is guaranteed to terminate in finite time,

there is one drawback of the protocol: the running time or

number of queries and even the number of cuts required is

unbounded even for four agents. In other words, the number

of queries required to identify an envy-free allocation can be

arbitrarily large for certain valuations functions. Procaccia [18]

terms unboundedness as a “serious flaw”. Brams and Taylor

mentioned the problem of proposing a bounded envy-free

protocol even for n = 4. The problem has remained open

and has been highlighted in several works [6, 7, 11, 22, 17,

18, 14, 20, 21]. Procaccia [17] calls it an interesting challenge

within theoretical computer science. In recent work, Aziz and

Mackenzie [1] proposed a bounded and discrete envy-free

protocol for n = 4. Despite this progress, the general problem

for any number of agents had remained unaddressed.

In this paper, we present a discrete envy-free protocol for
any number agents that requires a bounded number of queries
and hence a bounded numbers of cuts of the cake thereby

closing the central open problem in the field of cake cutting.

The bound for the number of queries is nnnnnn

. Previously, no

discrete protocol was known that even uses bounded number

of cuts. Apart from using some classic ideas in cake-cutting,

our protocol requires some radically different techniques. Our

result is surprising because leading experts in the area have
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conjectured that a bounded and discrete envy-free protocol

does not exist [18].

We additionally show that even if we do not run our

protocol to completion, it can find in at most nn+1 queries

a partial allocation of the cake that achieves proportionality

(with respect to the whole cake) and envy-freeness.

Apart from introducing new techniques, our protocol relies

on some ideas from previous protocols. At the heart of our pro-

tocol is the idea of domination or ‘irrevocable advantage’ [6].

An agent i dominates another agent j if he is not envious

of j even if the unallocated cake is given to j. Note that if

agents in subset S ⊂ N dominate all the agents in N \S, then

agents in S can simply let the agents in N \S worry about the

remaining cake since they will not be envious if a single agent

in N \S got all the remaining unallocated cake. Our protocol

uses some high level ideas from our previous protocol for four

agents: (i) We use a ‘Core Protocol’ over the unallocated cake

(aka residue) with one agent as the specified cutter that results

in an envy-free partial allocation and a smaller residue. The

Core Protocol is called again and again on the latest residue

so as to make the residue even smaller. As the new calls to the

Core Protocol are made, the partial allocation remains envy-

free. (ii) Every time agents make trims or evaluate pieces of

cake, we keep track of information gathered. (iii) We make

agents exchange some parts of their already allocated pieces

to obtain new dominations. The exchange was referred to as

a permutation in [1]. In some steps, our protocol also uses a

simple fact: envy-freeness implies proportionality with respect

to the allocated cake (i.e., each agent gets at least 1/n value

of the allocated cake).

Throughout the overall protocol, we have cake that has been

allocated and some cake that is the unallocated residue. During

the protocol, we ensure that the cake that has been allocated to

the agents has been done so in an envy-free manner. Overall,

our envy-free protocol (Main Protocol) takes as input cake and

a set of agents and returns an envy-free allocation of the whole

cake. In order to obtain the envy-free allocation, the Main

Protocol calls three other protocols. It repeatedly calls the

Core Protocol a bounded number of times. The Core Protocol

is the work-horse of the overall protocol that is called again

and again to further allocate unallocated cake in any envy-

free manner. The other protocols—GoLeft and Discrepancy

are used to make one set of agents dominate the others so

that the problem reduces to finding an envy-free allocation for

fewer agents and the Main Protocol can be called again for

this sub-problem.

After calling the Core Protocol many times, if there is still

some unallocated cake and there is sufficient difference in

the estimation of the value of a cake piece between some

agents, then the Discrepancy Protocol is called by the Main

Protocol. The goal of the Discrepancy Protocol is to either

exploit difference in valuations or else to ensure that on

a very rough scale, agents have similar valuations. If after

calling the Discrepancy Protocol, the cake still has not been

completely allocated, the GoLeft Protocol is called by the

Main Protocol. The GoLeft Protocol is used to reallocate

pieces of the cake among the agents after additionally adding

some crumbs from the residue. The reallocation is useful

to obtain new dominations until one set of agents dominate

the remaining agents which means that we have reduced the

problem to allocating the remainder of the cake among the

dominated agents. The different protocols that we present are

summarized in Figure 1. For complete details of the protocols,

please see the accompanying technical report [2].

Core Protocol

(Algorithm 1)

SubCore

Protocol

(Algorithm 2)

GoLeft

Protocol

(Algorithm 5)

Discrepancy

Protocol

(Algorithm 4)

Main Protocol

(Algorithm 3)

Fig. 1: The envy-free protocol for n agents relies on various

protocols. A protocol points to another protocol if it calls

the latter. The Main Protocol is called to get an envy-free

allocation.

b) New Techniques and Ideas: Despite some high level

similarities with the approach of the recent protocol for four

agents [1], our general protocol requires a number of new

concepts and techniques. These concepts and techniques will

be formalized and explained in the later sections but we

mention them briefly and informally. We first rely on a notion

of discrepancy that is based on the idea of how differently

agents view a piece of cake. It is well known in fair division

that the more different the agents’ valuations are, the easier

it is to achieve fairness. We use this high-level idea but make

sure that discrepancy is not based on the absolute difference

or ratio of the values of two agents for a cake piece but is

based on the ratio of each agent’s value of the piece of cake

to that of their value for the remaining unallocated cake (called

residue). This approach is one of the key ideas for obtaining

a bounded protocol rather than simply a finite protocol.

Another key idea to achieve a bounded protocol is that

we run the Core Protocol enough times to ensure there are

a sufficient number of Core Protocol allocation snapshots

(allocation outcomes of various calls of the Core Protocol)

that are isomorphic.2 We will keep track of these snapshots to

later make more agents dominate each other.

Further operations such as exchanges of allocated pieces

are then implemented on such isomorphic core snapshots by

exploiting their structure. In order to achieve boundedness of

the protocol, we also define and work with four carefully

chosen bounds that are functions of the number of agents. The

biggest of the four bounds is the maximal number of query

operations required to complete the protocol.

We use a new technique called extraction whereby part

of the residue is systematically trimmed off so that it can

potentially be combined with some agent’s allocation in the

Core Protocol. When a particular extracted piece of cake is

given to an agent in addition to his allocated piece in a single

snapshot of the Core Protocol, we refer to this as attachment.

2The notion of isomorphic snapshots will be defined later.
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Attachment is helpful to systematically enable more agents to

exchange each others’ pieces in snapshots of the Core Protocol

without causing any agent to be envious. The exchange of

pieces consequently allows for ‘permutations’ and helps agents

dominate each other.

In order to methodically track the possible permuta-

tions/exchanges, we keep track of a permutation graph in

which nodes correspond to agents and an agent i points to

agent j if i is willing to replace his allocation in a subset of

isomorphic snapshots of the Core Protocol with j’s allocated

pieces along with extracted pieces attached to j’s allocated

pieces. The tiny bit more cake attached to attract agent i
can in principle cause other agents to be envious so we

have to compensate the other agents elsewhere so that envy

is not introduced. This is done in the Goleft protocol by

discarding isomorphic snapshots from the set of working

snapshots in which further exchanges will take place. The

attachments and exchanges take place in the GoLeft Protocol.

The interplay between the permutation graph and the working

set of isomorphic core snapshots is technically one of the most

interesting parts of the overall protocol and is the central part

of the GoLeft Protocol.
c) Related Work: Cake cutting problems originated in

the 1940’s when famous mathematicians such as Banach,

Knaster, and Steinhaus initiated serious mathematical work

on the topic of fair division.3 Since then, the theory of cake

cutting algorithms has become a full-fledged field with at least

three books written on the topic [4, 7, 20]. The central problem

within cake cutting is finding an envy-free allocation [12].

When formulating efficient cake cutting protocols, a typical

goal is to minimize the number of cuts while ignoring the

number of valuations queried from the agents. In principle,

the actual complexity of a problem or a protocol depends

on the number of queries. When considering how efficient

a protocol is, it is useful to have a formal query model for

cake cutting protocols. Robertson and Webb [20] formalized a

simple query model in which there are two kinds of queries:

Evaluation and Cut. In an Evaluation query, an agent is asked

how much he values a subinterval. In a Cut query, an agent

is asked to identify an interval, with a fixed left endpoint, of

a particular value. Although, the query model of Robertson

and Webb [20] is very simple, it is general enough to capture

all known protocols in the literature. Note that if the number

of queries is bounded, it implies that the number of cuts is

bounded in the Robertson and Webb model. The protocol that

we present in this paper uses a bounded number of queries in

the Robertson and Webb model.

There is not too much known about the existence of a

bounded envy-free protocol for general n except that any

envy-free cake cutting algorithm requires Ω(n2) queries in

the Robertson-Webb model [16, 18]. Also, for n ≥ 3, there

exists no finite envy-free cake cutting algorithm that outputs

contiguous allocations in which agents get a connected piece

3Hugo Steinhaus presented the cake cutting problems to the mathematical
and social science communities on Sep. 17, 1947, at a meeting of the
Econometric Society in Washington, D.C. [20, 23].

with no gaps [24]. Brams et al. [8] and Barbanel and Brams

[5] presented envy-free protocols for four agents that require

13 and 5 cuts respectively. However, the protocols are not

only unbounded but also not finite since they are continuous
protocols that require the notion of a moving knife. Apart

from the unbounded Brams and Taylor envy-free protocol

for n agents, there are other general envy-free protocols by

Robertson and Webb [19] and Pikhurko [15] that are also

unbounded. Aziz and Mackenzie [1] proposed a bounded and

discrete envy-free protocol for n = 4. There are positive

algorithmic results concerning envy-free cake cutting when

agents have restricted valuations functions [3, 9, 10] or when

some part of the cake is left unallocated [22, 21].

II. PRELIMINARIES

a) Model: We consider a cake which is represented

by the interval [0, 1]. A piece of cake is a finite union of

disjoint subintervals of [0, 1]. We will assume the standard

assumptions in cake cutting. Each agent i in the set of agents

N = {1, . . . , n} has his own valuation function Vi that

specified his values over subintervals of interval [0, 1]. The

valuations are (i) defined on all finite unions of the intervals;

(ii) non-negative: Vi(X) ≥ 0 for all X ⊆ [0, 1]; (iii) additive:

for all disjoint X,X ′ ⊆ [0, 1], Vi(X∪X ′) = Vi(X)+Vi(X
′);

(iv) divisible i.e., for every X ⊆ [0, 1] and 0 ≤ λ ≤ 1, there

exists X ′ ⊆ X with Vi(X
′) = λVi(X).

In order to ascertain the complexity of a protocol, Robertson

and Webb presented a computational framework in which

agents are allowed to make two kinds of queries: (1) for

given x ∈ [0, 1] and r ∈ R
+, CUT query asks an agent to

return a point y ∈ [0, 1] such that Vi([x, y]) = r (2) for given

x, y ∈ [0, 1], EVALUATE query asks an agent to return a value

r ∈ R
+ such that Vi([x, y]) = r. A cake cutting protocol

specifies how agents interact with queries and cuts. All well-

known cake cutting protocols can be analyzed in terms of the

number of queries required to return a fair allocation. A cake

cutting protocol is bounded if the number of queries required

to return a solution is bounded by a function of n irrespective

of the valuations of the agents.
b) Terms and Conventions: We now define some terms

and conventions that we will use in the paper. An allocation

is partial if it does not necessarily allocate the whole cake.

Given an envy-free partial allocation X of the cake and an

unallocated residue R, we say that agent i dominates agent j
if i does not become envious of j even if all of R were to be

allocated to j: Vi(Xi) ≥ Vi(Xj) + Vi(R).
In the cake cutting protocols we will describe, an agent may

be asked to trim a piece of cake so that its value equals the

value of a less valuable piece. Agents will be asked to trim

various pieces of the cake to make a given piece equal to

the value of another piece. When an agent trims a piece of

cake, he will trim it from the left side: the main piece (albeit

trimmed) will be on the right side.

III. THE PROTOCOL

The overall protocol we present is essentially the Main

Protocol that calls other protocols. The overall idea of the

417418418



protocol is as follows. We make an agent (the cutter) divide the

cake into n equally preferred pieces. The cake is then allocated

to the agents with each agent getting a part of one of the

pieces. The subroutine will be referred to as the Core Protocol.
The Core Protocol itself relies on recursively applying the

SubCore Protocol. When running the Core Protocol, if all

the cake is already allocated, we are done. Otherwise, the

Core Protocol is run repeatedly on the left-over cake. If some

cake is still unallocated, we repeat it with another agent as

cutter. After the Core Protocol has been run repeatedly, it is

checked whether agents have discrepancy on a part of the

cake. Discrepancy implies that agents have radically different

valuations over two segments of the cake. This works to our

advantage because we can run the Discrepancy Protocol in

which we let the differing agents concentrate on the segments

they prefer much more which simplifies our problem to envy-

free cake cutting for a smaller number of agents. Otherwise,

we exchange some parts of the cake that certain agents hold

using the GoLeft Protocol in a systematic way to obtain further

dominations between agents. After the GoLeft routine has

been implemented, some agents dominate all other agents. At

this point, we have decomposed the problem into a smaller

problem with less number of agents. Hence the envy-free

algorithm can be called recursively on the unallocated cake

to divide the cake among the specified subset of agents.

A. Core Protocol

We first present the Core Protocol that calls the SubCore

Protocol. The Core Protocol is helpful in allocating additional

residue in an envy-free manner. The main challenge is that

just by running the Core Protocol repeatedly on the residue,

there is no guarantee that the cake will be allocated completely

in bounded or even finite number of steps. Hence, we will

introduce other protocols in addition to the Core protocol that

help us allocate the whole cake in an envy-free manner.

Algorithm 1 Core Protocol

Input: Specified cutter (say agent i ∈ N ), agent set N such that i ∈ N ,
and unallocated cake R.

Output: An envy-free allocation of cake R′ ⊂ R for agents in N and
updated unallocated cake R \R′.

1: Ask agent i to cut the cake R into n equally preferred pieces.
2: Run SubCore Protocol on the n pieces with agents set N \ {i} which

gives an allocation to the agents in N \{i} such that one of the n pieces
is untrimmed and unallocated.

3: Give i one of the unallocated untrimmed pieces from the previous step.
4: return envy-free partial allocation (in which each agent gets a connected

piece) as well as the unallocated cake.

The Core Protocol asks a specified agent termed as the cutter

to cut the unallocated cake into n equally preferred pieces. It

then calls the SubCore Protocol that allocates to each of the

agents one of the pieces (possibly partially) in an envy-free

manner. No agent is given cake from any other piece. The

name of the protocol is the same as the Core Protocol used by

Aziz and Mackenzie [1] for the case of 4 agents which returns

an envy-free partial allocation in which one agent cuts the cake

into four equally preferred pieces and the cutter as well as at

Algorithm 2 SubCore Protocol

Input: Cake cut into n pieces to be allocated among agents in a set N ′ ⊂
N with n′ = |N ′|.

Output: An envy-free partial allocation for agents in N ′ in which each agent
gets a connected piece.

1: Take permutation 1, 2, 3, . . . , n′ as the order of agents in N ′.
2: for m = 1 to n′ do
3: we ask the m-th agent his most preferred piece among the n pieces.
4: if he has a most preferred piece that is not one of the tentatively

allocated pieces then
5: we can tentatively give the m-th agent that piece and go the next

iteration of the ‘for’ loop.
6: else the first m agents are contesting for the same m− 1 tentatively

allocated pieces. Then each agent in [m] is asked to trim pieces among
the m− 1 tentatively allocated pieces that are of higher value than his
most preferred piece outside the m− 1 allocated pieces so that value of
the former is same as the value of the latter.

7: Set W to be the set of agents who trimmed most (had the rightmost
trim) in some piece. {W is the set of agents who are guaranteed to have
an envy-free allocation where each agent gets a piece that he trimmed
most. In fact there exists an envy-free neat allocation for agents in W
because one of the agents can take a most preferred full piece outside
of the contested pieces. We will now try to increase the size of W .}

8: while |W | < m do
9: Ignore previous trims of agents in W from now on and forget

the previous allocation.
10: Run SubCore Protocol on all of the n pieces with W as the target

set of agents and for each piece, the left side of the right-most trim by
an agent in [m] \W is ignored.

11: The result of SubCore is an allocation that gives a (partial) piece
to each of the agents in W and an agent i ∈ [m] \W can be given
a most preferred piece that is full and unallocated: W ←− W ∪ {i}.
At this point the allocation due to the recursive call is tentative and not
permanently made.

12: end while
13: end if
14: Each agent can get the right hand side of the piece that he trimmed

most. Such a piece is connected.
15: end for
16: return envy-free partial cake for agents in N ′ (such that each agent gets

a connected piece that is on the right hand side of the original piece he
trimmed most) as well as the unallocated cake.

least one other agent gets one of these four pieces. The new

Core Protocol can be considered as a useful generalization

of Core Protocol for the four-agent algorithm of Aziz and

Mackenzie [1]. Unlike the Core Protocol for the four-agent

case, the new Core Protocol requires a more sophisticated

recursive SubCore Protocol. The SubCore Protocol results in

an allocation that satisfies some ‘neat’ properties.

Definition 1 (Neat Allocation). Consider a cake divided into
n pieces and m < n agents. An allocation of the cake into
m agents is neat if (i) each agent’s allocation is a (not
necessarily whole) part of one of the pieces; (ii) one piece
is unallocated; (iii) no agent prefers an unallocated piece
over his allocation; and (iv) no agent prefers another agent’s
allocation over his allocation.

We can prove that the Core Protocol results in an envy-

free partial allocation in which the cutter cuts the cake into n
pieces, each agent gets a part of exactly one of the pieces, at

least one non-cutter agent gets a complete piece and at least

one piece is unallocated which no non-cutter agent envies

over his allocation. Since two agents get full pieces, from

418419419



the cutter’s perspective, 2/n of the cake is allocated after an

iteration of the Core Protocol.

Most of the technical work in the Core Protocol is done

when it calls the SubCore Protocol. In the SubCore Protocol,

the main idea is that we start from a single agent and gradually

grow the number of agents in a specified order while making

sure that a neat allocation exists for the growing set of agents

{1, . . . ,m} in which at least one agents gets a full piece. We

denote {1, . . . ,m} by [m]. All the allocations encountered

during the course of the SubCore Protocol are considered

tentative until the final step. If the next agent in the specified

order most prefers a piece that is not currently (tentatively)

allocated, we can easily handle the new agent as he can get the

unallocated piece without causing envy for anyone. Otherwise,

we have to do more work to ensure that the previously handled

agents as well as the new agent can simultaneously get a neat

allocation in which at least one agent gets a full piece. This

includes calling the SubCore Protocol recursively for a smaller

number of agents.

In the SubCore Protocol, if the m-th agent is also interested

in one of the m−1 tentatively assigned pieces, then each agent

in [m] is asked to trim pieces among the m − 1 tentatively

allocated pieces that are of higher value than his most preferred

piece outside the m − 1 allocated pieces so that value of the

former is the same as the value of the latter. The set of agents

who have the rightmost trim in some piece is referred to as

W . Note that W is the set of agents who are guaranteed to

have an envy-free allocation where each agent gets a piece

that he trimmed most. In fact there exists an envy-free neat

allocation for agents in W because one of the agents can take

a most preferred full piece outside of the contested pieces.

The protocol then increases the size of W until W = [m].
W is expanded as follows. The previous trims of agents in

W are ignored. Run the SubCore Protocol on all of the n
pieces with W as the target set of agents and for each piece,

the left side of the right-most trim by an agent in [m] \W is

ignored. Note that by ignoring the trims of agents in W , we

have more cake that could potentially be allocated than the

allocation where the trims of agents in W are not ignored but

each agent in W gets the right hand side of the piece where he

had the rightmost trim. The result of the SubCore recursive

call is an envy-free allocation that gives a (partial) piece to

each of the agents in W and an agent i ∈ [m] \W can be

given a most preferred piece that is full and unallocated. Thus

W can always be expanded until W = [m] in which case we

exit the while loop. Due to the recursive nature of SubCore, it

requires nn queries. Given that SubCore is envy-free, Core is

envy-free as well because the cutter gets a full piece and no

one else is envious of the cutter. For n = 2, the Core Protocol

coincides with the well-known Divide and Choose protocol.

B. Ground Work for the Main Protocol

We now prepare the ground work for the Main Protocol as

well as the other protocols it calls by establishing important

terms and concepts.

Definition 2 (Snapshots). When we run the Core Protocol we
end up with an envy-free partial allocation of the cake and a
residue. We call the partial allocation a snapshot.

The algorithm will keep track of certain snapshots which

we will label pj with j ∈ {1, . . . , C ′}. The pieces allocated

in each snapshot pj are labelled cjk where k ∈ {1, . . . , n}
indicates which agent got the piece. Since the allocation in

each snapshot is envy-free, each agent thinks he got at least

as much value for his piece as any other allocated piece.

Therefore each agent thinks he has some (possible zero or

more) bonus value over another agent in the core snapshot.

Our protocol will make use of these bonuses. In our protocol,

we repeatedly call the Core Protocol over the resultant residue

thereby making the residue smaller until the set of snapshots

have enough structure that we will exploit later.

a) Parameters: We will use four parameters to represent

the bounds we work with. These are C � C ′ � B � B′.
These are constant once n is fixed, however they are dependent

on n. Since the Main Protocol calls itself on a strict subset

of the agents, we will use the notation B′n−1 to label the

bound on the Main Protocol run on n− 1 agents. The bounds

correspond to the following concepts. C ′ is the number of

snapshots generated by the main algorithm that we label and

keep track of. All subsequent partial allocations generated by

runs of the Core Protocol simply serve the purpose of making

the residue smaller from the cutter’s perspective. Once the

main algorithm has extracted all the pieces it needs from

the residue and if a discrepancy has not been successfully

exploited, the GoLeft Protocol will be run. When we run

GoLeft we look at a subset of C isomorphic snapshots from

the C ′ total snapshots. The value B′ corresponds to the total

number of queries required to run the whole protocol. B
is used to define what we call significant pieces or values.

Running the Core Protocol guarantees that a piece of cake is

made smaller from the perspective of the cutter. The value B
is a bound on the number of times the algorithm allows us to

run the Core Protocol to make the residue smaller.

For the sake of achieving our boundedness results, the

following values of the parameters work. (i) C = nnn

(ii) C ′ = nnnn

(iii) B = nnnnn

(iv) B′ = nnnnnn

. We have

not optimized the values of the bounds so we expect that our

general algorithmic approach works for more optimal bounds.

In the protocol we often want to make a piece of cake (the

residue) smaller. To do so we run the Core Protocol on it. To

make descriptions more succinct we define a function which

converts the number of times we run the Core Protocol on

a piece of cake to how much smaller it is from the cutter’s

perspective. Note that when the Core Protocol is run, at least

2/n value of the cake is allocated to the agents because the

cutter cuts the cake into n equally preferred pieces and at least

two pieces are fully allocated. By running the Core Protocol

B times, the cutter thinks only f(B) = (n−2
n )

B
value of the

cake is unallocated.

Definition 3 (Bound function f ). f(B) = (n−2
n )

B
.
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For any piece of cake c in a given snapshot, each agent has

a bonus value which corresponds to how much more cake he

thinks he got in that snapshot than he would have got had he

been allocated c instead.

Definition 4 (Bonus value). An agent i’s bonus value on piece
of cake cjk in snapshot pj is the value Vi(cji)−Vi(cjk), where
cji is the piece that was allocated to agent i in pj by the Core
Protocol.

In a core snapshot, a bonus value is significant if we can

make the residue smaller than that value from each agent’s

perspective in a bounded number of steps. Note that the

significance of a piece of cake does not depend on the absolute

value that an agent ascribes to it but it is relative to the value

of the unallocated cake (residue).

Definition 5 (Significant value). An agent i thinks a value is
significant if the value is more than or equal to Vi(R)f(B)
where R is the unallocated residue. A piece is significant for
an agent if it has significant value for him.

Note that if an agent i finds a piece of cake significant, he

will still find it significant if the residue becomes smaller than

before. We also observe the following about the core protocol

and the cutter getting a significant advantage over at least one

other agent.

Remark 1. When the Core Protocol is run once, the cutter
has a significant bonus over at least one agent (the agent who
gets the smallest value piece from the cutter’s perspective).
This bonus results in a domination of the cutter over the agent
in k = (log n)(n−2

n ) + 1 iterations of the Core Protocol on
the residue with same cutter.

1 2 3 4

1 2 3 4

R

24 3

(a) Agents 2, 3, 4 first make trims on the residue so that left side of the
trim is of same value as their bonus over agent 1 in the core snapshot.

1 2 3 4

1 2 3 4

R

24 3

(b) The trims of the agents on the residue result in a partition
of the residue into small pieces.

1 2 3 4

1 2 3 4

R

(c) The pieces resulting from the trims are extracted from the residue
and associated with the corresponding piece.

Fig. 2: Process of extraction for the piece allocated to agent

1 in the core snapshot.

cjk: piece allocated to agent kejk1ejk2ejkl′ . . .

Fig. 3: For any allocated piece in some core snapshot, we

consider extracted pieces to be attached to the piece. In the

figure, piece cjk is allocated to agent k in snapshot pj . The

pieces ejk1, ejk2, . . . , ejkl′ are extracted from the residue and

are in consideration for attachment to the piece cjk.

If we run the Core Protocol repeatedly with the same

agent as cutter and we are lucky that the cutter has a sig-

nificant advantage over each agent in some snapshot, then in

(log n)(n−2
n ) + 1 extra iterations of the Core Protocol with

the same cutter, we can make the cutter dominate each agent.

This simplifies our problem, because we now only need to

allocate the remaining cake among the dominated agents in

an envy-free manner. In general, we may not be so lucky that

the cutter dominates all other agent due to which we have to

do more work to ensure that a set of agents dominates the

other agents. For this, the process of extraction is crucial:

b) Extraction: For each piece allocated in each of the

core snapshots and for each agent, the Main Protocol tries

to associate a piece of the cake extracted from the residue.

For each of the C ′ snapshots, there are C ′n pieces allocated

to the agents. For each of the pieces, all the agents extract
corresponding pieces from the residue that is the unallocated

cake. Take for example, a piece c allocated to some agent (say

agent 1) in a snapshot. In the snapshot in which c is allocated

to 1, each agent i gets a piece that is of value (according

to i) at least as much as c. In the residue, each agent i is

asked to put a trim so that cake from the left extreme of the

residue to the trim is of value equal to i’s value of his piece

minus his value for c. The trims of the agents on the residue

give rise to pieces of cake corresponding to the agents’ bonus

value over piece c. These pieces are extracted (cut away from

the residue) and associated with c (kept in consideration with

piece c). When agents make trim marks on the residue in

accordance with their bonus (over a piece in a snapshot), each

pair of successive trim marks gives rise to a separate piece that

can be extracted. For piece cjk in snapshot pj , we will denote

by ejk1, ejk2, . . . , ejkl′ the set of pieces that are extracted in

the same order with ejk1 as the leftmost in the residue and

which is extracted first (see Figure 3). Note that l′ ≤ n − 1
because for each allocated piece in a snapshot, at most n− 1
other agents can put trim marks on the residue so as to obtain

n − 1 extracted pieces. We say that a piece ejkl is extracted

by agent i if during extraction, the right hand extreme of the

piece coincided with the trim of agent i on the residue. Each

extracted piece has a clear corresponding allocated pieces in

a core snapshot with which it is associated. In our protocol,

pieces are extracted from the residue only if each agent finds

the pieces not significant. The reason is that we want to keep

sufficient residue to do further extractions on the residue as

well as maintain structure.

Later on, the extracted pieces may be attached to c so

that piece c is now attractive to other agents because of the
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additional extracted pieces combined with c. We clarify that

when pieces are extracted and associated with a given piece

in a core snapshot, such extracted pieces have not yet been

allocated to any particular agent. Extracted pieces can only be

allocated after they are officially attached to their associated

piece. For the protocol we need to restrict our focus to a subset

of the snapshots where the same set of agents extracted pieces

in the same order:

Definition 6 (Isomorphic snapshots/snapshot pieces/ extracted

pieces). We call a set of snapshots isomorphic to each other if
for each piece ci in the snapshot allocated to agent i, the set
of agents who extracted cake from the residue and associated
to ci are the same and did so in the same order. We extend this
notion to allocated pieces in snapshots. Two allocated pieces
of cake belonging to two isomorphic snapshots are isomorphic
if they were allocated to the same agent. We also extend the
notion of isomorphism to extracted pieces. We say that for two
isomorphic snapshots pj and pj′ , two extracted pieces ejkl
and ej′kl are isomorphic if they are associated respectively to
isomorphic pieces cjk and cj′k and that ejkl and ej′kl were
extracted by the same agent.

Our protocol will keep track of a set of isomorphic snap-

shots, progressively discarding (not changing) some so that we

can make manipulations on the ones we keep in an envy-free

way. The pieces of cake we are working with are labelled cjk
for allocated pieces or ejkl for extracted pieces. We use the

notation ck, S and ekl, S to denote the set of pieces of cake

cjk or ejkl in snapshots in S. Abusing the notation, we will

simply say ck or ekl to mean the set of pieces which are in the

snapshots we are working with. Note that we will generally

use index j for the snapshot number, k for the piece number

in a given snapshot, and l for the l-th extracted piece.

C. The Main Protocol
The Main Protocol is the engine which runs our overall

envy-free protocol. It is responsible for allocating the whole

cake among all the agents in an envy-free manner.
The Main Protocol works recursively. If the number of

agents is four or less, a previously known bounded envy-free

algorithm can directly be called. Otherwise, the Main Protocol

divides part of the cake in an envy-free manner and identifies

a set of agents N \ A that all dominate agents in A wrt the

cake that is unallocated. The Main Protocol then recursively

calls itself to divide the remaining cake among agents in A.
If the number of agents is more than four, the Main Protocol

(Algorithm 3) calls the Core Protocol sequentially on the

updated residue so that the residue becomes smaller than

before after each call of the Core Protocol. The repeated calls

of the Core Protocol help generate a number of snapshots each

containing n pieces of cake. In each snapshot, each agent has

been allocated a piece of cake. Envy-freeness is maintained

throughout for the allocated cake, and in the Core Protocol

each agent thinks he got the highest value piece.

Remark 2. When we call the Core Protocol n times each
time with a different cutter, each agent gets at least 1/n of the

Algorithm 3 Main Protocol

Input: A cake R and a set of agents N with n = |N |.
Output: An envy-free allocation that completely allocates R among agents

in N .

Base Case
1: if |N | ≤ 4 then
2: allocate the residue among the agents in N in an envy-free allocation

by using a known constant-time envy-free protocol for |N | ≤ 4.
3: else
Generate Core Snapshots

4: for all j : 1 . . . C′ do
5: For some i ∈ N who has acted as cutter in the Core Protocol least

number of times, run Core protocol(i, N , R); Update R to the cake that
is unallocated. The Core Protocol allocation gives us snapshot pj and n
pieces of cake cjk with k : 1, . . . , n.

6: end for {We have now generated C′ core snapshots. After generating
the first n snapshots, we already have an envy-free allocation in which
each agent gets 1/n value of the original cake.}

7: while for agent i ∈ N and some piece cjk Vi(R)f(B)2 <
Vi(cjk) < Vi(R)f(B) do {We ensure that the values are either
significant or smaller than significant by a large factor dependent on
our bound B.}

8: Run Core Protocol(i, N , R).
9: end while

10: if some set of agents N \A dominates all agents in set A then Call
Main Protocol(R, A) to divide the unallocated cake R.

11: return allocation of the cake to the agents.
12: end if

Extraction
13: Define Boolean a and set it to 0 {This Boolean is used to reset the

whole trimming process when running the Discrepancy Protocol causes
a bonus value to become significant.}

14: while a = 0 do
{We now attempt to extract pieces corresponding to the non-

significant bonus values from the residue, resetting the whole process
when a discrepancy in agents’ valuations has forced us to shrink the
residue}

15: Set a to 1.
16: for all pieces of cake cjk do
17: for all agents i do
18: if i’s bonus value is not significant on piece cjk then
19: Ask i to place a trim on the residue such that the piece

stretching from the left of the residue to the trim is equal to the agent’s
bonus value for that piece, which we will label bicjk .

20: end if
21: end for
22: Label from left to right the pieces delimited by those trims with

labels ejkl with l : 1, . . . ,m where m is the number of agents who
placed a trim on the residue (did not have significant bonus) and j and
k are used as previously {if two or more agents’ trims coincide we
break ties lexicographically and ascribe empty cake to the latter agents’
extractions.}

{For a given piece of cake cjk the m agents with non-significant
bonus value have now delimited a piece of cake corresponding to that
value from the residue, and those pieces have been labelled.}

23: for all l : 1, . . . ,m do
24: if no agent thinks the piece ejkl is significant then { Everyone

agrees piece is insignificant.}
25: Extract piece ejkl from the residue, associate it to piece cjk

and update R to R− ejkl {See Figure 2}.
26: end if

value of the cake allocated in that call. Moreover when an
agent himself is the cutter, he gets at least 1/n of the value of
the remaining cake. Hence after the Main Protocol has made
the first n calls of the Core Protocol, we have an envy-free
allocation in which agents get at least 1/n value of the original
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27: {continued}
Discrepancy
28: if some agents think ejkl is significant but others do not (agents

think the piece is discrepant) then
{There is a large discrepancy between agents’ valuation, this

causes a problem because some agents might think we are taking too
much away from the residue. However discrepancy can be exploited or
eliminated.}

29: Run Discrepancy(ejkl,b
u
cjk

,{ejkl},R) with the discrepant

piece ejkl, the bonus value bucjk of the agent u who made the rightmost

trim delimiting the piece, the set of previously extracted pieces of cake
{ejkl} and the residue R as input. This will return the Boolean value
DISCREPANCY and when that value is 1 the protocol also returns two
sets D ⊂ N and D′ ⊂ N such that D and D′ partition N .

30: if DISCREPANCY= 1 then {The discrepancy can be
exploited.}

31: Main Protocol(ejkl, D).
32: Main Protocol(R, D′).
33: return allocation of the cake to the agents.
34: else{The discrepancy cannot be exploited but bucjk is now

a significant bonus value.}
35: Add ejkl to R and Set a to 0.
36: end if
37: end if
38: end for
39: end for
40: end while
GoLeft
41: Run GoLeft(N, {pj}, {cjk}, {ejkl}, R) Protocol with the set of

labelled snapshots {pj}, the set of allocated pieces of cake {cjk}, the
set of extracted pieces {ejkl} and the residue R as input. The output
of GoLeft is a set A ⊂ N .

42: for all agents i do
43: Run Core Protocol(i,N ,R) 2B times each time on the updated

smaller residue R.
44: end for

{The previous for loop converts significant bonus values into
dominance wrt the residue R.}

Recursion of the Main Protocol
45: Call Main Protocol(R, A ⊂ N ), that is the Main Protocol on a subset

of agents A ⊂ N output by the GoLeft Protocol and with R as the input
cake.

46: end if
47: return allocation of the cake to the agents.

cake.

After the first n calls. the Main Protocol does not stop

making calls to the Core Protocol if there is still some

unallocated cake. After calling the Core Protocol C ′ times,

C ′ core snapshots are obtained. The Core Protocol may be

further called (in the while loop in step 7) to make the residue

even smaller. This ensures that each agent considers each piece

in the first C ′ snapshots significant or smaller than significant

by a large factor dependent on our bound B.

For each piece of cake c in the C ′ snapshots, agents can

ascribe what we refer to as a bonus value, which corresponds

to how much more value they got in that snapshot than their

value for piece c. In the Main Protocol, for each piece of cake

c in the snapshots, we ask all agents with a non-significant

bonus value to make a cut on the residue equal to their bonus

value. The pieces obtained from these cuts are then taken

from the residue and associated (but not yet attached) to piece

of cake c. We refer to this process as extraction. A piece is

extracted only if all agents find it insignificant. The extracted

pieces will potentially be attached to their associated piece of

cake c in the GoLeft Protocol. Most of them however will be

sent back to the residue or shared amongst a subset of agents

in an envy-free way. The process of attaching the extracted

pieces to their associated piece in the GoLeft Protocol is to

make that piece desirable to the agent whose bonus value was

used to extract the piece from the residue. The Main Protocol

also calls the Discrepancy Protocol in case there is some

piece in consideration for extraction that some agents consider

significant and others do not. The goal of the Discrepancy

Protocol is to exploit any such discrepancy and to ensure that

when the GoLeft Protocol is called by the Main Protocol, then

there is no discrepancy in how the extracted pieces are viewed

i.e., no actually extracted piece is considered significant by

some agent.

D. Discrepancy Protocol

When pieces are being extracted from the residue during the

Main Protocol, it may be the case that one of the pieces ejkl
in consideration for extraction is significant for some agent.

In that case, the piece is not extracted and the Discrepancy

Protocol (Algorithm 4) is called in line 29 that either exploits

or ‘eliminates’ this discrepancy. The discrepant piece ejkl is

kept aside from the residue. On the other hand, all previously

extracted pieces are added back to the residue. Since the

difference between a piece that is just above significant or just

below significant can be arbitrarily small, the Core Protocol

is used to create a gap so that the discrepant piece either has

value at least Vi(R)n or value at most Vi(R)/n. This gap is

highly useful because the goal of the Discrepancy Protocol is

to either ensure that (1) everyone thinks that the discrepant

piece is significant or (2) the problem of finding an envy-free

allocation can be broken into two sub-problems where some

agents D are allocated the discrepant piece and the rest D′ are

allocated the residue. In this, we use the fact we mentioned

earlier that envy-freeness implies proportionality.

In case of (1), the process of extraction in the Main Protocol

is reset and the discrepant piece as well as all the pieces

that had been extracted are sent back to the residue. This

may appear to be a waste of work but when we do this, we

have ensured that at least one agent has significant advantage

over another’s piece for a given snapshot. This ‘setback’ can

only happen C ′n2 times before each agent dominates each

other agent in which case the remaining cake can be allocated

arbitrarily without causing envy.

We note that Discrepancy makes the residue smaller as it

calls the Core Protocol. When the residue becomes smaller, it

may be that a piece of cake that was not significant for an agent

becomes significant because significance is defined wrt the

residue. Hence any agent i who thinks that
Vi(R)

n ≤ Vi(ejkl) ≤
Vi(R)n will eventually think that Vi(ejkl) ≥ Vi(R)n when

the Core Protocol has been run to reduce the residue. Note

that the Discrepancy Protocol is envy-free as long as the Core

Protocol is envy-free. The Discrepancy Protocol is bounded

by Bn× nn.
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Algorithm 4 Discrepancy Protocol

Input: Residue R, discrepant piece ejkl, bonus value bucjk on cjk of

the agent u who wanted to extract the discrepant piece (but could not
extract), set of extracted pieces of cake {ejkl : extracted pieces} , and
agent set N .

Output: Possibly modified residue R, a Boolean value called DISCREP-
ANCY, a set of agents D, and a set of agents D′.

1: Take out the discrepant piece ejkl from R; Reinsert all the extracted
pieces back into the residue, relabel the aggregate piece R.

Run Core
2: while for some agent i, it is the case that

Vi(R)
n

≤ Vi(ejkl) ≤ Vi(R)n
do

3: Run Core Protocol(i, N , R) B times iteratively on the updated residue
R.

4: end while
Exploit Discrepancy

5: if ejkl still has some agents consider it significant and others not then
{In this case we can exploit the discrepancy and ‘separate’ the agents.}

6: Set D to {i ∈ N : Vi(ejkl) ≥ Vi(R)n}.

7: Set D′ to {i ∈ N : Vi(ejkl) ≤ Vi(R)
n
}. {Note that N = D ∪D′.}

8: Set DISCREPANCY to 1.
9: return R, DISCREPANCY, D and D′.

10: else
Cannot Exploit Discrepancy — but all agents now on the same page
{ This means that we cannot exploit a discrepancy but now all agents
think that the bonus value of whoever made the trim delimiting the
discrepant piece is significant, including agent u who made the trim.}

11: Set DISCREPANCY to 0.
{bucjk is now considered significant by agent u.}

12: return R and DISCREPANCY.
13: end if

E. Groundwork for the GoLeft Protocol

The GoLeft Protocol is the heart of our overall protocol

and is crucial to allocate the cake that is still not allocated.

All the other steps in the Main Protocol can be viewed as

preparing the ground for the GoLeft Protocol to work. By

calling the Core Protocol sufficient number of times in the

Main Protocol, enough C ′ core snapshots are obtained that

are helpful to identify C isomorphic snapshots in the GoLeft

Protocol (these isomorphic snapshots constitute the working

set of snapshots over which the GoLeft Protocol does further

operations). Moreover, by calling Discrepancy before GoLeft,

it is ensured that all agents are on the same page: all agents

consider all the extracted pieces as insignificant.

The GoLeft Protocol (Algorithm 5) is called by the Main

Protocol. The goal of the GoLeft Protocol is to identify a set

of nodes N \ A that dominate agents in A. This means that

the remaining residue can be allocated among agents in A in

an envy-free manner without worrying about agents in N \A
envying them. The goal of the GoLeft protocol is achieved

by attaching extracted pieces to the pieces in the working

set of snapshots in a methodical manner while maintaining

envy-freeness of the allocated cake. In order to maintain envy-

freeness, the working set of snapshots is modified in various

ways. The main thing is that when all extracted pieces for the

working set of snapshots have been attached, we can identify

a set of agents that all dominate the other agents. For example,

if we end up with core snapshots in which for one isomorphic

allocated piece, there are a total of less than n − 1 extracted

pieces that have all been attached and are held by a certain

agent i, then agents who did not manage to extract pieces

corresponding to the main piece have a significant advantage

over i as well as all other agents who extracted pieces before

i for that main piece. This significant advantage translates into

dominance.

The GoLeft Protocol makes operations on a working set

of isomorphic snapshots. The main operations of the GoLeft

Protocol are to attach extracted pieces to the core snapshot

allocation and to implement exchanges in which there is

sequence of agents ao, a1, . . . , ak−1 where each agent ai in

the sequence gets the pieces of agent ai+1 mod k. When

operations such as attachments and exchanges happen, the iso-

morphic snapshots change but remain isomorphic nonetheless.

The GoLeft Protocol involves two key mathematical struc-

tures: a working set S of isomorphic snapshots and the

permutation graph that is defined wrt the working set of iso-

morphic snapshots. During the GoLeft Protocol, each structure

gets updated based on the information provided by the other

structure.

a) Working Set of Isomorphic Snapshots: During the

course of the GoLeft Protocol, the isomorphic snapshots in

S get changed in the following way: (1) some subset of S
is removed from S (2) agents exchange their pieces and (3)

extracted pieces are attached to pieces in the snapshots in S.

When we update S, we maintain isomorphism and other

invariant properties as follows. If an agent holds a piece cjk,

he holds the whole set ck of isomorphic pieces in S. If he

holds an extracted piece ejkl, he holds the whole set ekl of

isomorphic extracted pieces associated with S as well. When

we implement an exchange, we are essentially making |S|
exchanges – one in each of the snapshots. These are exchanges

that not only involve the pieces in the snapshots but also

involve those extracted pieces that have been attached to the

pieces. When we attach an extraction to a piece in a snapshot

in S, we simultaneously attach isomorphic extractions to

the corresponding isomorphic allocated piece in each of the

snapshots.

We also ensure that the extracted pieces are attached in

the appropriate order so that each associated piece in ek(l+1)

gets attached after the previous associated pieces have been

attached. For example, if we were focusing on the snapshot in

Figure 2, the extracted associated piece due to agent 3 will get

attached after the extracted associated piece due to agent 4.

Note that if we attach an extracted piece ejkl to an allocated

piece cjk (along with its previously attached extracted pieces)

in a snapshot in the working set S, we perform a similar

attachment for all such isomorphic extracted pieces in the

set ekl to their corresponding pieces in set ck. Also, if an

agent i currently holds an extracted piece, he also holds all

earlier extracted pieces as well. We remark about a consistency

condition that we enforce.

Remark 3. We enforce a consistency condition whereby an
agent cannot hold extracted pieces beyond the extraction he
himself made. Therefore, when we attach an extracted piece
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to agent j’s piece in a snapshot to attract agent i to it, agent
j does not actually hold the latest attachment because it is
beyond j’s extraction. However in an exchange, if i were to
get j’s piece along with its attachments, then i will also get the
latest attachments that were originally extracted by i himself.

In the GoLeft Protocol, we operate on an increasingly small

set of isomorphic snapshots. The goal is to reach a set of iso-

morphic snapshots that can be used to find a set of agents who

all dominate other agents. As the GoLeft Protocol proceeds,

we discard snapshots to allow us to focus on others where

extracted pieces from E have been ‘attached’ in an envy-free

way to the allocated pieces in C to which they were associated.

The set of isomorphic snapshots S becomes smaller when a

set of isomorphic extractions ek(l+1) are attached to set of

isomorphic pieces ck in the snapshots S with each particular

extracted piece in ek(l+1) getting attached to its corresponding

piece in ek. By discarding a set a core snapshots, we mean that

these snapshots and their allocations are not further worked

upon and their associated unattached extracted pieces are sent

back to the residue. Intuitively, the purpose of discarding

snapshots will be to preserve the remaining advantages of

agents over other agents.

The GoLeft procedure gradually attaches the extracted

pieces to the allocated pieces in the working set of snapshots.

The reason we call the protocol ‘go left’ is because we

can visualize that for each piece in the set of snapshots we

work with, we want to add the next extracted pieces to the

isomorphic allocated pieces that are kept to the left of the

isomorphic allocated pieces. By attaching the next extracted

pieces, we are ‘going left’.

b) Permutation Graph: The permutation graph keeps

track of which agent is willing to move to which piece in the

snapshots. The high level idea is that nodes of the permutation

graph correspond to the agents and an agent i points to another

agent j if he will be as happy taking j’s allocated pieces along

with the attachments on those pieces.

Definition 7 (Permutation graph). The permutation graph is a
directed graph where the set of nodes correspond to the set of
agents. Hence when we refer to the graph, we will use agents
and nodes interchangeably. The arcs of the permutation graph
depend on the current state of the working set of isomorphic
snapshots S. In particular, they depend on which extracted
pieces have been attached to the originally allocated pieces
in the isomorphic snapshots in S. Agent i points to agent j if
j holds isomorphic pieces in S that have had all attachments
up till i’s extracted pieces. We build the initial permutation
graph with each node pointing only to itself. Throughout the
protocol, we ensure that each node in the permutation graph
has in-degree at least one.

The permutation graph itself gets updated when isomorphic

extractions are attached to isomorphic pieces in S. The process

of extracted pieces being attached to an allocated piece results

in the aggregated piece becoming attractive to a new agent

who then wants to point to the agent holding that piece.

The permutation graph also suggests a natural way to

exchange pieces. It has a similar idea as the trading graph used

in top trading cycles algorithm for housing markets. If there

is a cycle in the graph, we have the possibility of exchanging

the allocations of agents in the cycle by giving an agent

the piece of the agent he points to. The permutation graph

is more intricate because updates on the permutation graph

reflect simultaneous updates on the working set of isomorphic

snapshots S. Also by Remark 3, an agent in an exchange

does not offer what he holds but can offer more because of

the additional attachments beyond his own extraction.

F. The GoLeft Protocol

When the GoLeft Protocol starts, it first identifies a working

set S of C core snapshots from out of the C ′ core snapshot that

we focus on. The protocol then constructs a permutation graph

corresponding to the working set of isomorphic snapshots.

In the permutation graph, each node i corresponds to an

agent i who holds a set of isomorphic pieces along with their

attached extracted pieces in the working set of isomorphic

snapshots S. We divide the nodes of the permutation graph

into sets T and T ′. Set T is the set of nodes/agents such

that the isomorphic pieces held by them in S have not had

n − 1 attachments). T ′ is the set of nodes/agents such that

the isomorphic pieces held by them in S have had n − 1
attachments.

The protocol identifies a cycle in the permutation graph

that includes at least one node i from T . Such a cycle always

exists. In each of the working set S of isomorphic snapshots,

we implement an exchange of pieces held by agents in the

cycle: each agent in the cycle is given the piece corresponding

to the node that the agent points to in the cycle. After

implementing the exchange, the permutation graph is updated

to reflect the exchange. If in the exchange, an agent now gets

isomorphic pieces that he thought were inferior, he always

gets the additional extracted pieces associated with the inferior

piece up till the agent’s extractions. Hence, each agent’s total

value in each isomorphic snapshot in S stays the same. For

any agent i, as long as no agent gets extracted pieces beyond

i’s extraction, i will not be envious. In the GoLeft protocol, it

can be the case that some agent j gets extracted pieces beyond

i’s extracted pieces but before any such attachments in the last

part of the GoLeft protocol, we ensure that no envy arises.

After implementing the cycle, we focus on a node i ∈ T
that was in the cycle. For agent/node i we know that for all

snapshots in the working set S, agent i has been allocated

the original isomorphic pieces ck as well as all associated

pieces up till i’s extracted piece. If the piece of cake agent i
is currently allocated in the snapshots S has no more extracted

pieces left to attach to it, but it has not had n−1 attachments,

this means that all agents who have not had their correspond-

ing piece extracted/attached have a significant advantage over

agents who have had an extracted piece attached. In this case,

the GoLeft Protocol returns the set of dominated agents to

the Main Protocol and we are left with a smaller envy-free

allocation problem because it involves less number of agents.
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Algorithm 5 GoLeft Protocol

Input: A set N , a set C′ of snapshots pj , a set of corresponding pieces
{cjk}, a set of extracted pieces {ejkl}, and a residue R.

Output: A set of agents A ⊂ N such that all agents in N \A dominate all
agents in A.

Isomorphic Snapshots and build Permutation Graph
1: Select from the C′ snapshots a set of size C of isomorphic snapshots
2: Relabel the C snapshots pj with j now ranging from 1 to C.
3: Declare set S in which we add all C snapshots {pj : j ∈ {1, . . . , C}}.
4: Build the permutation graph with nodes corresponding to the agents.

Throughout the algorithm, we maintain two sets: (1) T (set of
nodes/agents such that the isomorphic pieces held by them in S have
not had n− 1 attachments and (2) T ′ (set of nodes/agents such that the
isomorphic pieces held by them in S have had n − 1 attachments). T
and T ′ partition the nodes. Initially, (1) all nodes are placed in T so that
T ′ is empty; (2) each node points to itself in the permutation graph (3)
each agent owns his originally allocated set of pieces allocated in the
core snapshots in the working set S. Thus each node has the following
associated information: agent and his allocation in snapshots in S.

5: while there is a node in T do
Cycle and Exchange

6: Find a cycle in the permutation graph which involves a node from T .
{Since nodes in T all have in-degree exactly 1 and each node points to
each node in T ′, such a cycle exists}

7: For the agents in the cycle, exchange the allocation of the agents in
the snapshots in S as follows: if i points to j, give i the pieces of cake
that j was currently allocated in snapshots S.

8: If i points to j in the selected cycle, do as follows. Transfer all in-
edges of j to i. Replace j in set T or T ′ by i. { This update reflects
the permutation of the allocation. At this point, each node that was in
the cycle has a self-loop. }.

9: Take a node/agent i in the cycle that is from T .

Separation - the only way the while loop exits
10: if there is a node in the located cycle that is from T (has had less

than n− 1 attachments) but has no extracted pieces to be attached then
11: Focus on the set of isomorphic pieces C associated with the node.

All agents who have been given an element of C are placed in A.
12: return A.
13: else we now know that there is an agent i that was in the cycle from

T that holds pieces in S that still have extracted pieces to be attached.
We focus on this agent i in the attachment phase.

14: end if
Attachment — (to be done in a subset of the snapshots)

15: Index the agents in the order which they extracted the pieces
associated to ck so that 1 originally got ck , 2 made the next extraction
and so on. In doing so, we index agent i as l.

{We now attach in a subset of the snapshots the set of isomorphic
extracted pieces in ek(l+1) to the set of pieces ck , thus making pieces
in set ck desirable to the agent who extracted pieces in ek(l+1). The
set of pieces ck in S and its current attachments are currently owned
by agent l. At this point for each isomorphic piece ck , associated pieces
up till l’s trim have already been attached.}

16: Declare S′ ← ∅.

Attachment — making it agreeable for agents from l + 1 to n

17: for agent i ranging from l + 1 to n do
18: Ask i to choose

|S|
n−l+1

snapshots for which i values the difference

between his bonus value for ck and the extracted pieces currently
attached to ck the most.

19: end for
20: Add all chosen snapshots to S′.
21: All extracted pieces that have not been attached from snapshots in S′

are put back into the residue R and will never be attached. The new
aggregate piece is labelled R.

22: S ← S \ S′; S′′ ← ∅.
Attachment — making it agreeable for agents from 1 to l

23: for all agents i ranging from 1 to l do
24: Ask i to choose the

|S|n
ln+1

snapshots for which he values the piece

ek(l+1) the most.
25: Add those to S′′.

26: {Continued}
27: end for
28: S ← S \ S′′.
29: All extracted pieces that have not been attached from snapshots in S′′

are put back into the residue R. The new aggregate piece is labelled R.
{Again extracted pieces that will never be attached are sent back to the
residue}

30: All pieces ek(l+1) in snapshots in S′′ are aggregated into a piece a.
31: Run Main Protocol(a, {1, . . . , l}).
32: S′′ ← ∅.

Attachment — now happening
33: We now attach the piece of cake ek(l+1) to ck in the snapshots still

in S, meaning that if agent l + 1 were to move to piece ck , he would
also get ek(l+1). In other words ck is now desirable to l + 1 because
of the attachments. However in snapshots where we keep agent l as the
agent allocated piece ck , the piece ek(l+1) is sent back to the residue,
as it could not be given to l in an envy-free way { This update reflects
that we made a set of allocated pieces desirable to a new agent}.

34: Remove the self-loop of i. Replace it with an edge going from the
agent who extracted the piece that the protocol just attached to cjk .

35: If the pieces held by i have had n− 1 attachments, delete i from T
and place it in T ′ and make every node point to i.

36: end while

In case node i does not lead to an exit from the GoLeft

Protocol, we know that there are associated pieces that can still

be attached to the isomorphic pieces held by i in the working

set of core snapshots S. We focus on the next set of associated

pieces ek(l+1) that we are interested to attach to the pieces

ck that have already had associated pieces ek2, ek3
, . . . , ekl

attached in their corresponding main pieces ck. Additionally

attaching pieces ek(l+1) to pieces ck is useful in making the

agent who extracted them interested in the pieces ck because

of the additional ek(l+1) as well as the previous attachments.

However, naively attaching the pieces can be problematic and

spoil the envy-freeness of the allocation. We deal with the

issue as follows.

The agents who did not extract pieces associated with the

ck pieces as well as agents who extracted pieces that have not

been attached are asked to ‘reserve’ a big enough subset S′ ⊂
S of snapshots in which they value the difference between their

bonus value for ck and the extracted pieces currently attached

to ck the most. These snapshots S′ are removed from S and

their remaining unattached associated pieces are sent back to

the residue. By maintaining the advantages in the snapshots

S′, such agents will not be envious even if some agent in

{1, . . . , l} additionally gets the remaining pieces ek(l+1).

The agents indexed from 1 to l who have all already had

their extracted pieces attached to ck are asked to choose a

high enough fraction of the snapshots in which they value

the ek(l+1) pieces. We call these snapshots S′′. The ek(l+1)

pieces from S′′ are bunched together and the Main Protocol is

called to divide this cake in an envy-free way among the agents

indexed from 1 to l where l is strictly less than n. Since envy-

freeness implies proportionality, they derive enough value that

they will not be envious if agent indexed l+1 or higher gets all

other pieces in set ek(l+1). The corresponding set of snapshots

S′′ are then discarded. Hence each time we attach isomorphic

extracted pieces ek(l+1) to isomorphic pieces ck, we discard

snapshots S′ ∪ S′′ from the working set S and maintain an
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overall envy-free allocation.

When the protocol attaches extracted pieces ek(l+1) to

allocated pieces in ck currently held by agent l, it deletes the

incoming edge of node/agent l and replaces it by an edge

coming from agent l + 1 who extracted pieces in ek(l+1).

Intuitively, l + 1 is now willing to be allocated pieces in

ck and its attached pieces instead of his current pieces in

S. We delete previous edges to ensure that until termination,

nodes in T have in-degree strictly 1 which guarantees that

no matter the cycle involving a node in T found by the

protocol, we will make progress towards termination. By

attaching enough extracted pieces in the appropriate order

the GoLeft Protocol finally arrives at a point where there

is some isomorphic set of pieces ck in the set S for which

all possible associated pieces have been attached but there is

some set of agents N \A who do not have associated pieces.

The reason agents in N \ A could not extract such pieces is

because they have a significant advantage over pieces in ck
in each initial isomorphic snapshot. By gradually attaching

(unanimously insignificant) associated pieces to pieces in ck
and ensuring that all agents who did extract corresponding

pieces do get some isomorphic piece in ck (along with the

associated insignificant attachments), we make sure that agents

in N\A now dominate agents in A. At this point, we can return

from the GoLeft Protocol. The GoLeft Protocol is bounded by

B′n−1 + 2Cn3 + 2n2 + C ′.

IV. CONCLUSION

By analyzing the subprotocols independently, it can be

verified that not only does the overall protocol allocate all

of the cake but at each point during the protocol, the allocated

cake is envy-free. It can also be verified that the overall

protocol is bounded by B′ Robertson and Webb queries. The

bound established is huge. On the positive side, the paper

opens the door to new work on finding the optimal bound.

Getting a clearer understanding of the complexity of envy-

freeness is an interesting direction for future work.
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