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Abstract—The geometric complexity theory program is an ap-
proach to separate algebraic complexity classes, more precisely to
show the superpolynomial growth of the determinantal complex-
ity dc(perm) of the permanent polynomial. Mulmuley and Sohoni
showed that the vanishing behaviour of rectangular Kronecker
coefficients could in principle be used to show some lower bounds
on dc(perm) and they conjectured that superpolynomial lower
bounds on dc(perm) could be shown in this way. In this paper we
disprove this conjecture by Mulmuley and Sohoni, i.e., we prove
that the vanishing of rectangular Kronecker coefficients cannot
be used to prove superpolynomial lower bounds on dc(perm).

Index Terms—geometric complexity theory; determinant;
permanent; occurrence obstructions; Kronecker coefficients;
plethysm coefficients;

I. GEOMETRIC COMPLEXITY THEORY AND KRONECKER

POSITIVITY

The flagship problem in algebraic complexity theory

is the determinant vs permanent problem, as introduced

by Valiant [38]. For n ∈ N the polynomial detn :=∑
π∈Sn

sgn(π)X1,π(1) · · ·Xn,π(n) is the well-known de-

terminant polynomial, while for m ∈ N perm :=∑
π∈Sm

X1,π(1) · · ·Xm,π(m) is the permanent polynomial,

a polynomial of interest in particular in graph theory and

physics. From a complexity theory standpoint the determinant

is complete for the complexity class VPs [38], [37], while the

permanent is complete for VNP [38] and also for #P [39].

By definition we have VPs ⊆ VNP and a major conjecture

in algebraic complexity theory related to the famous P �= NP
conjecture is VPs �= VNP. This conjecture can be phrased

independently of the definition of these complexity classes

as a question about expressing permanents as determinants

of larger matrices as follows. Valiant showed that for every

polynomial f there exists an integer n ∈ N such that f can

be written as a determinant of an n× n matrix whose entries

are affine linear forms in the variables of f . The smallest such

number n is called the determinantal complexity of f , denoted

by dc(f). The VPs �= VNP conjecture can be equivalently

stated as “The sequence dc(perm) grows superpolynomially

in m.” Finding lower bounds for dc(perm) is an important re-

search area in algebraic complexity theory, see for example the

recent progress in [25], [12], [20], [15], [1], [40]. Mulmuley

and Sohoni [27], [28] proposed an approach to this problem

using algebraic geometry and representation theory and coined

the term geometric complexity theory.

A. Complexity lower bounds via representation theory

In the following we outline how one can prove lower bounds

on dc(perm) using rectangular Kronecker coefficients, see (I.3)

below.

A partition λ of N , written λ � N , is defined to be

a finite nonincreasing sequence of positive integers λ =
(λ1, λ2, . . . , λ�(λ)), where the length �(λ) denotes the number

of entries in λ and
∑�(λ)

i=1 λi = N . We write |λ| := N . To a

partition λ we associate its Young diagram, which is a top-

aligned and left-aligned array of boxes such that in row i
we have i boxes. Thus for λ � N the corresponding Young

diagram has N boxes. For example, for λ = (6, 6, 3, 2, 1, 1)
the associated Young diagram is

.

If we transpose a Young diagram at the main diagonal we

obtain another Young diagram, which we call λt. The row

lengths of λt are the column lengths of λ. In the example

above we have λt = (6, 4, 3, 2, 2, 2). For natural numbers

n and d let n × d denote the partition (d, d, . . . , d), i.e, the

partition whose Young diagram is rectangular with n rows

and d columns. For two partitions λ and μ let λ + μ denote

the rowwise sum. Moreover, for an integer a let aλ denote

the rowwise scaling by a. For N ∈ N let SN denote the

symmetric group on N symbols. For a partition λ � N
let [λ] denote the irreducible SN -representation of type λ.

For partitions λ, μ, ν of nd let g(λ, μ, ν) ∈ N denote the

Kronecker coefficient, i.e., the multiplicity of the irreducible

Snd-representation [λ] in the tensor product [μ] ⊗ [ν], where

[μ] ⊗ [ν] is interpreted as an Snd-representation via the

diagonal embedding Snd ↪→ Snd × Snd, π �→ (π, π). A

combinatorial interpretation of g(λ, μ, ν) is known only in

special cases, see [22], [32], [33], [34], [35], [2], [4], [23],

[17], [14], and finding a general combinatorial interpretation

is problem 10 in Stanley’s list of positivity problems and

conjectures in algebraic combinatorics [36]. In geometric

complexity theory the main interest is focused on rectangular
Kronecker coefficients, i.e., the coefficients g(λ, n×d, n×d).
These will be the main objects of study in this paper, as it was

conjectured by Mulmuley and Sohoni [28] that their vanishing

behaviour could be used to separate VPs from VNP. This
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conjecture spiked interest in these coefficients and has already

led to several publications inspired by geometric complexity

theory. Our main result says that it is impossible to separate

VPs from VNP in this way.

For a partition λ � dn and a vector space V of dimension at

least �(λ) let {λ} denote the irreducible GL(V )-representation

of type λ. The plethysm coefficient aλ(d[n]) is the multiplicity

of {λ} in the GL(V )-representation Symd(Symn(V )), where

Sym• denotes the symmetric power, i.e., Symn(V ) can be

identified with the vector space of homogeneous degree n
polynomials in dim(V ) variables. Analogous to the situation

for the Kronecker coefficient, finding a general combinatorial

interpretation for aλ(d[n]) is a fundamental open problem,

listed as problem 9 in [36].

Not much is known about the third quantity we use, which

is specialized to the permanent. For fixed n and m, n > m,

let pernm := (X1,1)
n−mperm ∈ Symn

C
n2

denote the padded
permanent polynomial (this is not the standard definition found

in the literature, but it gives the same main result, see the

appendix V). Let GLn2 pernm denote its orbit and GLn2 pernm
its orbit closure (Zariski or Euclidean), which is an affine

subvariety of the ambient space Symn
C

n2

. For λ � dn let

qmλ (d[n]) denote the multiplicity of {λ} in the homogeneous

degree d component of the coordinate ring C[GLn2 pernm].
Since the orbit closure is a subvariety of the ambient space

we have

qmλ (d[n]) ≤ aλ(d[n]). (I.1)

Theorem I.2 (see for example [11, eq. (5.2.7)]). If qmλ (d[n]) >
g(λ, n× d, n× d), then dc(perm) > n.

Kronecker coefficients are #P-hard to compute as they

are generalizations of the well-known Littlewood-Richardson

coefficients [29]. But the positivity of Littlewood-Richardson

coefficients can be decided in polynomial time [13], [26],

even by a combinatorial max-flow algorithm [9]. Even though

deciding positivity of Kronecker coefficients is NP-hard in

general, see [17], the same paper provides evidence that the

rectangular Kronecker coefficient case is significantly simpler.

Thus to implement Thm. I.2 [28] proposed to focus on the

positivity of representation theoretic multiplicities in order to

use the weaker statement

If qmλ (d[n]) > 0 = g(λ, n× d, n× d), then dc(perm) > n
(I.3)

to prove lower bounds, see also [21, Sec. 6.6] and [5, Prob-

lem 3.13], where this approach is explained. The results in [7],

[8], [19] already indicate that vanishing of g(λ, n× d, n× d)
might be rare. In [17] sequences of partition triples (λ, μ, μ)
are constructed that satisfy g(λ, μ, μ) = 0. Unfortunately μ has

not the necessary rectangular shape. Indeed, our main result

Thm. I.4 completely rules out the possibility that (I.3) could

be used to prove superpolynomial lower bounds on dc(perm).

Theorem I.4 (Main Theorem). Let n > 3m4, λ � nd. If
g(λ, n× d, n× d) = 0, then qmλ (d[n]) = 0.

Thm. I.4 holds in higher generality: In the proof of Thm. I.4

we do not use any specific property of the permanent other

than it is a family of polynomials whose degree and number

of variables is polynomially bounded in m. For all these

families of polynomials no superpolynomial lower bounds

on the determinantal complexity can be shown using the

vanishing of g(λ, n× d, n× d).
To use (I.3) it is required by (I.1) that aλ(d[n]) > 0 =

g(λ, n × d, n × d). An example is λ = (13, 13, 2, 2, 2, 2, 2)
and d = 12, n = 3, where we have aλ(d[n]) = 1 > 0 =
g(λ, n× d, n× d), see [16, Appendix].

We remark that—inspired by our paper—the very recent

paper [10] generalizes Thm. I.4 by showing qmλ (d[n]) = 0 even

if we only require that λ does not occur in the coordinate ring

C[GLn2 detn] of orbit closure of the determinant (although

they require a much larger n in terms of m). That disproves a

stronger conjecture by Mulmuley and Sohoni. While our paper

uses representation theory to prove the main result, [10] uses

a more geometric approach. We discuss more similarities and

differences to the proof in [10] at the end of this section, after

explaining the proof idea for Thm. I.4.

A natural generalization of our main theorem would be to

consider symmetric rectangular Kronecker coefficients instead

of just g(λ, n× d, n× d), because those are the multiplicities

in the coordinate ring of the orbit GLn2 detn. Our proof does

not immediately work for those coefficients as they lack the

important transposition symmetry, but an equivalent no-go

result for these coefficients follows directly from [10].

For a partition λ we write λ̄ to denote λ with its first row

removed, so |λ̄|+ λ1 = |λ|. Vice versa, for a partition ρ and

N ≥ ρ1 we write ρ(N) := (N −|ρ|, ρ) to denote the partition

ρ with an additional new first row containing N − |ρ| boxes.

The following theorem gives a very strong restriction on the

shape of the partitions λ that we have to consider.

Theorem I.5 ([18]). If qmλ (d[n]) > 0, then |λ̄| ≤ md and
�(λ) ≤ m2.

We sometimes write λ1 ≥ d(n−m) instead of |λ̄| ≤ md.

The main ingredients for the proof of Thm. I.4 are the

following Corollary I.6 and Thm. I.7.

Corollary I.6 (Degree lower bound). If |λ̄| ≤ md with
aλ(d[n]) > g(λ, n× d, n× d), then d > n

m .

Corollary I.6 is proved in Section II.

Note that if n > 3m4 and d > n
m , then d > 3m3.

Theorem I.7 (Kronecker positivity). Let X be the set of the
following 6 exceptional partitions.

X := {(1), (2× 1), (4× 1), (6× 1), (2, 1), (3, 1)}.
Let d ∈ N, n ∈ N, λ � dn.
(a) If λ̄ ∈ X , then aλ(d[n]) = 0.
(b) If λ̄ /∈ X and there exists m ≥ 3 such that �(λ) ≤ m2,
|λ̄| ≤ md, d > 3m3, and n > 3m4, then g(λ, n×d, n×d) > 0.

Thm. I.7 is proved in Section IV. The proof cuts the partition

λ into smaller pieces in several significantly different ways and

makes heavy use of the following three properties:
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• The semigroup property: If for 6 partitions

λ, μ, ν, λ′, μ′, ν′ of N we have that g(λ, μ, ν) > 0 and

g(λ′, μ′, ν′) > 0, then also g(λ+ λ′, μ+ μ′, ν + ν′) > 0,

where we interpret partitions as integer vectors in order

to define the sum of two partitions.

• The transposition property: g(λ, μ, ν) = g(λ, μt, νt) =
g(λt, μt, ν) = g(λt, μ, νt).

• The square positivity: For all positive k we have g(k ×
k, k × k, k × k) > 0.

The first property is easy to see if we interpret g(λ, μ, ν) as

the dimension of the (λ, μ, ν)-highest weight vector space in

the coordinate ring of V ⊗ V ⊗ V . Here the acting group is

GL(V )×GL(V )×GL(V ) and the semigroup property follows

from multiplying highest weight vectors. The second and third

property follow from the character theory of the symmetric

group. While the second property is immediate, the third

property (in [3]) requires reduction to the alternating group

and specific properties of characters of symmetric partitions,

later generalized in [31] and further in [30].

Proof of Thm. I.4. The proof is now straightforward. Let n >
3m4 and λ � nd such that g(λ, n × d, n × d) = 0. If |λ̄| >
md or �(λ) > m2, then qmλ (d[n]) = 0 by Thm. I.5 and we

are done. Thus we assume from now on that |λ̄| ≤ md and

�(λ) ≤ m2. If d ≤ n
m , then by Cor. 1.6 we have aλ(d[n]) ≤

g(λ, n×d, n×d) = 0. By (I.1) it follows qmλ (d[n]) = 0 and we

are done. Thus we also assume from now that d > n
m > 3m3.

From g(λ, n × d, n × d) = 0 we conclude with Thm. I.7(b)

that λ̄ ∈ X . But Thm. I.7(a) implies that aλ(d[n]) = 0, which

by (I.1) implies qmλ (d[n]) = 0 and we are done.

B. Consequences for geometric complexity theory

Algebraic geometry and representation theory guarantee that

if (X1,1)
n−mperm /∈ GLn2 detn, then there exists a homoge-

neous polynomial P in an irreducible representation {λ} ⊆
Symd(Symn

C
n2

) such that P vanishes on GLn2 detn and

P ((X1,1)
n−mperm) �= 0. One suggestive way of finding these

P was (I.3). Although Thm. I.4 rules out this possibility, there

are several ways in which these P could still be found. One

such way, namely finding irreducible GLn2 -representations

in the coordinate ring C[GLn2(X1,1)n−mperm] that do not

occur in the coordinate ring C[GLn2 detn] has been proved

impossible [10]. Not much is known if we study the actual

multiplicities of irreducible GLn2 -representations in the coor-

dinate rings.

We remark that the overall proof structure in [10] closely

mimics the proof structure of our Thm. I.4: [18] is used to

prove a degree lower bound and then an analog to Thm. I.7

is proved, also by cutting the partition λ into smaller pieces.

The details and the methods used in [10] are very different

from our paper though.
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II. PROOF OF THE DEGREE LOWER BOUND

In this section we prove the degree lower bound Cor. I.6.

The main ingredients are Manivel’s result about limit rect-

angular Kronecker coefficients (Section II (a)) and Valiant’s

insights about finite determinantal complexity (Section II (b)).

A. Stable rectangular Kronecker coefficients
The main contribution to the specific limits of Kronecker

coefficients that we are interested in in this paper comes from

Manivel.

Theorem II.1 ([24, Thm. 1]). Fix a partition ρ. The function
g(ρ(nd), n × d, n × d) is symmetric and nondecreasing in n
and d. If n ≥ |ρ| we have that g(ρ(nd), n×d, n×d) = aρ(d),
where aρ(d) denotes the dimension of the SLd invariant space(
Sρ(S(2,1d−2)C

d)
)SLd , where Sρ and S(2,1d−2) denote Schur

functors.

We remark that since g(ρ(nd), n × d, n × d) is symmetric

in n and d, if both d ≥ |ρ| and n ≥ |ρ|, then g(ρ(nd), n ×
d, n×d) = aρ and aρ depends only on ρ. The pairs (n, d) for

which the Kronecker coefficient g(ρ(nd), n×d, n×d) reaches

its maximum form the stable range St(ρ), a monotone subset

of Z
2, which we denote by St(ρ) := {(n, d) | g(ρ(nd), n ×

d, n×d) = aρ}. Analogously, the 1-stable range is defined as

St1(ρ) := {(n, d) | g(ρ(nd), n× d, n× d) = aρ(d)}.
B. Complexity lower bounds literally too good to be true

In this section we prove Corollary I.6 by using the finiteness

of the determinantal complexity.
Define the finite dimensional vector space Vm :=

Symm
C

m2

of homogeneous degree m polynomials in m2

variables X1,1, X1,2, . . . , Xm,m. For n ≥ m and f ∈ Vm

let f �n ∈ Vn denote the product (X1,1)
n−mf . Let

Γn
m := {gf �n | g ∈ GLn2 , f ∈ Vm} ⊆ Vn

denote the variety of padded polynomials. We define omλ (d[n])
to be the multiplicity of the irreducible GLn2 -representation

{λ} in the coordinate ring C[Γn
m]. In the notation from

Section I (a) we have qmλ (d[n]) ≤ omλ (d[n]). Since Γn
m ⊆ Vn is

an affine subvariety, we have 0 ≤ omλ (d[n]) ≤ aλ(d[n]), where

d := |λ|/n. If |λ| is not divisible by n, then 0 = omλ (d[n]) =
aλ(d[n]).

Definition II.2 (m-obstruction of quality n). An m-
obstruction of quality n is defined to be a partition λ such that
|λ| = nd for some d ∈ N and g(λ, n× d, n× d) < omλ (d[n]).

As the following proposition shows, the existence of an m-

obstruction of quality n proves the existence of an f ∈ Vm

that cannot be written as an n× n determinant.

Proposition II.3. If there exists an m-obstruction of quality
n, then dc(f) > n for some f ∈ Vm.

Proof. By the algebraic Peter-Weyl theorem [11, eq. (5.2.7)]

it follows: multλ(C[GLn2 detn]) ≤ g(λ, n × d, n × d). Since

an m-obstruction of quality n exists, it follows that

multλ(C[GLn2 detn]) < omλ (d[n]). (∗)
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Assume for the sake of contradiction that dc(f) ≤ n for all

f ∈ Vm. This implies that Γn
m ⊆ GLn2 detn as an affine

subvariety. The restriction of functions is a GLn2 equivariant

surjection between the homogeneous degree d parts of the

coordinate rings: C[GLn2 detn]d � C[Γn
m]d. By Schur’s

lemma it follows multλ(C[GLn2 detn]) ≥ multλ(C[Γ
n
m]) =

omλ (d[n]), which is a contradiction to (∗).
Proposition II.4 ([18]). (a) Given λ � nd, if |λ̄| > dm, then

omλ (d[n]) = 0.
(b) Given λ � md, we have omλ+(dn−dm)(d[n]) ≥ aλ(d[m]).

Proof. Part (a) is the first part of [18, Thm 1.3]. Part (b)

follows from the proof of the second part of [18, Thm

1.3]: From a highest weight vector P of weight λ � md
in Symd(Vm) they construct a highest weight vector P �n

of weight λ + (d(n − m)) � nd in Symd(Vn) such that

the evaluations P (f) = P �n(f �n) coincide. Take a basis

P1, . . . , Paλ(d[m]) of the highest weight vector space of weight

λ in Symd(Vm) and take general points f1, . . . , faλ(d[m]) from

Vm. Then the evaluation matrix
(
Pi(fj)

)
1≤i,j≤aλ(d[m])

has

full rank. Thus
(
P �n
i (f �n

j )
)
1≤i,j≤aλ(d[m])

has full rank, which

implies the statement.

Let dcmax(m) denote the maximum max{dc(f) | f ∈ Vm}.
The following lemma shows that dcmax(m) is a well-defined

finite number.

Lemma II.5. Fix m ∈ N. There is a number dcmax(m) ∈ N

such that for all f ∈ Vm we have dc(f) ≤ dcmax(m).

Proof. From [38] it follows that if f has r monomials, then

dc(f) ≤ rm. In particular, since every f ∈ Vm has at most(
m+m2−1

m

)
monomials, it follows that ∀f ∈ Vm : dc(f) ≤(

m+m2−1
m

)
m.

Proposition II.6 (Inequality of Multiplicities). Fix ρ, and let
(n, d) ∈ St1(ρ), which is true in particular if n ≥ |ρ|. Let
λ = ρ(nd). Then g(λ, n× d, n× d) ≥ aλ(d[n]).

Interestingly the proof of this purely representation theoretic

statement uses the finiteness of the determinantal complexity.

Proof of Prop. II.6. Assume the contrary, i.e., there exists a

ρ and (m, d) ∈ St1(ρ) with g(ρ(md),m × d,m × d) <
aρ(md)(d[m]). Since (m, d) ∈ St1(ρ), the Kronecker coeffi-

cient g(ρ(nd), n × d, n × d) is the same for all (n, d) with

n ≥ m. Thus we have g(ρ(nd), n× d, n× d) < aρ(md)(d[m])
for all n with n ≥ m. By Prop. II.4(b) we have omρ(nd)(d[n]) ≥
aρ(md)(d[m]) for all n ≥ m. This implies ρ(nd) is an m-

obstruction of quality n for all n ≥ m. By Prop. II.3 there exist

functions fn ∈ Vm such that dc(fn) > n for every n > m. In

particular we have dc(fdcmax(m)) > dcmax(m), in contradiction

to Lem. II.5.

Proof of Corollary I.6. The proof is now immediate. By as-

sumption we have |λ̄| ≤ md. By Prop. II.6 we have (n, d) /∈
St1(λ̄), so |λ̄| > n. Thus dm ≥ |λ̄| > n and therefore

d > n
m .

III. KRONECKER POSITIVITY: A SIMPLIFIED VERSION

In this section we prepare the reader for the combinatorially

intricate arguments to come in the proof of Thm. I.7. This

section is a purely didactical one. We prove a weaker statement

(Thm. III.1) than Thm. I.7 in the following sense. The bound

we obtain is weaker and we exclude column lengths 2, 3, 5,

and 7 from λ, which are the column lengths that cause most

of the technical issues. The paper is self-contained without

this section III. Neither Thm. III.1 nor its proof are referenced

later. On the contrary, to prove Thm. III.1 we use two positivity

results (Lem. IV.2 and Cor. IV.5) that will be proved in

section IV.

Theorem III.1. Let m ≥ 3 and let n > m9 and d > m8. Let
λ � nd with |λ̄| ≤ md and �(λ) ≤ m2. If λ has no column of
length 2, 3, 5, or 7, then g(λ, n× d, n× d) > 0.

Let (i, 1j) denote the hook partition of i + j with j + 1
boxes in the first column.

Lemma III.2. Let m ≥ 3 and d ≥ m2. Let 1 ≤ j < m2,
j /∈ {1, 2, 4, 6}. Then g((dm2 − j, 1j), d×m2, d×m2) > 0.

Proof. This follows from Cor. IV.5, because m4−6 > m2.

Together with Lem. IV.2 we now have all the building

blocks to prove Thm. III.1.

Proof of Thm. III.1. We forget about the first row of λ and

treat each column length k ∈ {2, . . . ,m2} in λ separately.

For the ease of notation let k̄ := k − 1. For each k let ck
be the number of columns of length k in λ. We divide ck
by k, formally ck = xkk + rk with rk < k. The partition λ̄
decomposes as follows:

λ̄ =

m2∑
k=2

xk(k̄ × k) +
m2∑
k=2

rk(k̄ × 1).

Note that by assumption on λ both sums exclude the four

values k ∈ {2, 3, 5, 7}. We now group together the (k̄ × k)
rectangles into groups of roughly d

k , so that the result is

roughly of size k̄ × d. Formally we define sk := d/k� and

divide xk = hksk + tk with tk < sk. Now λ̄ decomposes as

follows:

λ̄ =
m2∑
k=2

hk(k̄ × ksk) +
m2∑
k=2

(k̄ × ktk) +
m2∑
k=2

rk(k̄ × 1).

We prove Kronecker positivity for the summands separately.

For the leftmost sum, g((k̄ × ksk)(dk), d × k, d × k) > 0
by Lem. IV.2 with a = d. For the middle sum, g((k̄ ×
ktk)(dk), d × k, d × k) > 0 with the same argument. For

the rightmost sum, g((dm2 − k̄, 1k̄), d×m2, d×m2) > 0 by

Lem. III.2. According to these observations we add a new first

row to λ̄. Formally μ :=

m2∑
k=2

hk(k̄×ksk)(dk)+

m2∑
k=2

(k̄×ktk)(dk)+

m2∑
k=2

rk(k̄×1)(m2d).
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Using the semigroup property the above three positivity con-

siderations we show that

g(μ, d× ñ, d× ñ) > 0, (III.3)

where ñ =
∑m2

k=2 hkk +
∑m2

k=2 k + rkm
2.

We now show ñ ≤ n using very coarse estimates for the

sake of simplicity. Since |λ̄| ≤ md we have xk ≤ md for

2 ≤ k ≤ m2. By definition, sk ≥  d
m2 � ≥ d

m3 . Thus hk ≤
xk/sk ≤ md/(d/m3) ≤ m4. Since rk < k ≤ m2 we have

that ñ ≤ m4 ·m2 ·m2 +m2 ·m2 +m3 ≤ m9 ≤ n.

Set n′ := n − ñ ≥ 0. Since both |λ| and |μ| are divisible

by d we can use the semigroup property and add the positive

Kronecker triple ((n′d), d×n′, d×n′) to (III.3). Since λ̄ = μ̄
we conclude g(λ, n× d, n× d) > 0.

IV. PROOF OF KRONECKER POSITIVITY

In this section we prove Thm. I.7. If λ̄ ∈ X , a finite

calculation reveals aλ̄ = 0. Combining this with Prop. II.6

gives aλ(d[n]) = 0. Thus we are left to analyze the case

λ̄ /∈ X .

Given a partition ν /∈ X we want to decompose it into

smaller partitions and use the semigroup property to show

the positivity of g(ν(ab), a× b, a× b). We use the following

decomposition theorem to write ν as a sum of partitions that

are not in X .

Lemma IV.1 (Partition decomposition). Given ν /∈ X let
� := �(ν) + 1. We can find xk ∈ N, yk ∈ N, 2 ≤ k ≤ �, and
a partition ξ such that

ν = ρ+ ξ +
∑�

k=2 xk((k − 1)× k) +
∑�

k=2 yk((k − 1)× 2),

with yk < k and where all columns in ξ have distinct lengths
and no column in ξ has length 1, 2, 4, or 6, and where ρ is
of one of the following shapes:
(1) ρ has only columns of length 1, 2, 4, 6, all column lengths

are distinct, and ρ /∈ X .
(2) ρ = (i × 1) + η, where i /∈ {1, 2, 4, 6}, i ≤ � − 1, and

η ∈ X \ {(3, 1)}.
(3) ρ = (i×2)+η, where i ∈ {2, 4, 6} and η ∈ X \{(3, 1)}.
(4) ρ = (4) + η, where η ∈ X \ {(3, 1)}.
(5) ρ ∈ {(3, 1, 1, 1, 1, 1), (3, 1, 1, 1), (3), (4, 1)}.
Proof. We start by treating each k independently. Let ck
denote the number of columns of length k−1 in ν. In a greedy

manner cut off from ν as many rectangles of size (k−1)×k as

possible. Formally, we divide ck = x′kk+ r′k with r′k < k. We

are left with a (k−1)×r′k rectangle. We now join (if possible)

one of the (k−1)×k rectangles with the (k−1)×rk rectangle:

If x′k ≥ 1, define rk := r′k + k and xk := x′k − 1. If x′k = 0,

define rk := r′k and xk := x′k. We obtain a (k − 1) × rk
rectangle and call it Rk. Note that rk < 2k.

Cut off from Rk rectangle as many rectangles of size (k−
1)× 2 as possible. Formally, define yk := rk/2�, so yk < k
as required in the claim. After cutting we are left with either

the empty partition or a column (k − 1) × 1. In the former

case (i.e., rk is even) define bk := 0, otherwise bk := 1.

Looking at all k together we define two remainder par-

titions ρ :=
∑

k−1=1,2,4,6 bk((k − 1) × 1) and ξ :=∑
k−1∈[1,�−1]\{1,2,4,6} bk((k − 1)× 1). Clearly

ν = ρ+ ξ +
∑�

k=2 xk((k − 1)× k) +
∑�

k=2 yk((k − 1)× 2),

as required in the statement of the claim. Moreover, ξ has the

correct shape. Clearly ρ has only columns of length 1, 2, 4,

6 and all column lengths are distinct. If ρ /∈ X , then we are

done by property (1).

The rest of the proof is devoted to the case where ρ ∈ X .

We will use that if yk = 0, then ν has at most 1 column

of length k − 1, by definition of Rk. Note that ρ �= (3, 1),
because no two columns in ρ have the same length. If ν has

a column of length i different from 1, 2, 4, 6, then such a

column appears in ξ or we have that yi+1 > 0 and ξ has no

column of length i. If it appears in ξ, then we remove it from

ξ and add it to ρ and we are done by property (2). If it does

not appear in ξ but yi+1 > 0, then we decrease yi+1 by 1 and

add a column of length i to both ξ and ρ, so that we are done

by property (2).

So from now on we assume that ν only has columns of

length 1, 2, 4, or 6 (and thus xk = 0 for all k /∈ {2, 3, 5, 7}).
If yi+1 > 0 for some i ∈ {2, 4, 6}, then we can decrease

yi+1 by 1 and set ρ ← ρ + (i × 2), so we are done by

property (3).

Thus from now on we assume yi+1 = 0 for all i ∈ {2, 4, 6}.
Note that y2 corresponds to the columns of length 1 in ν. If

y2 ≥ 2, then we can decrease y2 by 2 and set ρ ← ρ + (4),
so we are done by property (4).

At this point the possible shapes of ν are quite limited:

ci+1 = 0 for all i /∈ {1, 2, 4, 6}, ci+1 ≤ 1 for i ∈ {2, 4, 6},
c2 ≤ 3.

If y2 = 0, then ν = ρ by construction, which is impossible

because ν /∈ X and ρ ∈ X .

Recall ρ ∈ X \{(3, 1)}. If y2 = 1, then ν = ρ+(2), so ν ∈
{(3, 1, 1, 1, 1, 1), (3, 1, 1, 1), (3, 1), (3), (4, 1)}. Since ν /∈ X
it follows ν ∈ {(3, 1, 1, 1, 1, 1), (3, 1, 1, 1), (3), (4, 1)}. Now

we set y2 ← 0 and ρ ← ν and we are done by property (5).

All summands in the partition decomposition will yield a

positive rectangular Kronecker coefficient, but we will need

to group large blocks of (k − 1)× k rectangles. This is done

with the following lemma.

Lemma IV.2. Let μ = (k × (ks)) and a ≥ ks, then g(k ×
(ks) + (k(a− ks)), a× k, a× k) > 0.

Proof. For all k we have g(k× k, k× k, k× k) > 0 as shown

in [3]. By the semigroup property we can add these square

triples s times and obtain g(k× (ks), k× (ks), k× (ks)) > 0.
Let (k(a− ks)) denote the single row partition of k(a− ks).
Clearly g((k(a−ks)), k×(a−ks), k×(a−ks)) > 0. Adding

these two triples with the semigroup property we get g(k ×
(ks)+ (k(a− ks)), k× a, k× a) > 0. Finally, transposing the

last two partitions we obtain the statement.
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The following proposition will be used to prove positivity

for building blocks of partitions like hooks and fat hooks.

Here, for a set S and a number x we denote by x−S the set

{x− y | y ∈ S}.
Proposition IV.3. Let ρ be a partition of length � or ρ = ∅
with � = 0, and denote by νk := k × 1 + ρ for k ≥ � and
let Rρ := |ρ| + ρ1 + 1. Suppose that there exists an integer
a > max(

√
Rρ + � + 3, �

2 − 1, 6) and subsets H1
ρ , H

2
ρ ⊆

[max(�, 1), 2a + 1] such that g(νk(a2), a × a, a × a) > 0
for all k ∈ [�, a2 − Rρ] \

(
H1

ρ ∪ (a2 −H2
ρ)

)
. Then for every

b ≥ a we have that g(νk(b2), b × b, b × b) > 0 for all k ∈
[�, b2 −Rρ] \

(
H1

ρ ∪ (b2 −H2
ρ)

)
.

Note that Rρ is the size of the partition obtained from ρ by

adding a shortest possible top row and one extra box at the

top left corner, so that the largest possible column we can add

is h2 −Rρ to still have a valid partition.

Proof. The proof is by induction on b and repeated application

of the semigroup property. We have that the statement is

true for b = a by the given condition. Assume that the

statement holds for b = c for some c, we show that it

holds for b = c + 1. We do this by showing the following

claim which helps us extend from positivity for b = c to

b = c + 1. Let Pc := {k : g(νk(c2), c × c, c × c) > 0}
be the set of values of k for which the Kronecker coef-

ficient is positive. The inductive step is equivalent to the

statement: if [�, c2 − Rρ] \
(
H1

ρ ∪ (c2 −H2
ρ)

) ⊂ Pc, then

[�, (c+ 1)2 −Rρ] \
(
H1

ρ ∪ ((c+ 1)2 −H2
ρ)

) ⊂ Pc+1.

Claim: Suppose that k ∈ Pc, then k, k + 2c+ 1 ∈ Pc+1.

Proof of claim: To show that k ∈ Pc+1 we apply the semi-

group property by successively adding triples ((x), x×1, x×1)
for x = c and then x = c+ 1 and transposing the rectangles.

Let c̃ := c+ 1.

0 < g(νk(c2), c× c, c× c) ≤ g(νk(c2) + (c), c× c̃, c× c̃)

= g(νk(c2) + (c), c̃× c, c̃× c)

≤ g(νk(c2) + (c) + c̃, c̃× c̃, c̃× c̃)

= g(νk(c̃2), c̃× c̃, c̃× c̃).

Next, to show that k+2c+1 ∈ Pc+1 we first transpose νk(c2)
and one of the squares, apply the argument from above to it,

and then transpose again:

0 < g(νk(c2), c× c, c× c) = g((νk(c2))t, c× c, c× c)

≤ g((νk(c2))t + (c), c× c̃, c× c̃)

= g((νk(c2))t + (c), c̃× c, c̃× c)

≤ g((νk(c2))t + (2c+ 1), c̃× c̃, c̃× c̃)

= g(νk+2c+1(c̃2), c̃× c̃, c̃× c̃). �

The claim implies that Pc ∪ (2c+ 1 + Pc) ⊂ Pc+1.

Now we apply the claim to our sets. By hypothesis, we have

that Sc := [�, c2 −Rρ] \
(
H1

ρ ∪ (c2 −H2
ρ)

) ⊂ Pc.

Suppose that Sc+1 �⊂ Pc+1, so there exists a k ∈ Sc+1, such

that k �∈ Pc+1. By the claim, we must then have that both

k �∈ Pc and k− (2c+1) �∈ Pc. Since Sc ⊂ Pc, this means that

k, k−(2c+1) ∈ (−∞, �)∪H1
ρ∪(c2−H2

ρ)∪[c2−Rρ+1,+∞).
Translating the sets by 2c+1 and observing that c2+(2c+1) =
(c + 1)2, and using that k ∈ [�, (c + 1)2 − Rρ] already, we

must have that

k ∈ (
H1

ρ ∪ (c2−H2
ρ) ∪ [c2−Rρ+1, (c+1)

2−Rρ]
)

(IV.4)

∩ (
[�, 2c+1+�] ∪ (2c+1+H1

ρ) ∪ ((c+1)2−H2
ρ)

)
︸ ︷︷ ︸

=:I

We now consider the intersection of the first 3 sets above

with I and show that it is contained in H1
ρ∪((c+1)2−H2

ρ). If

H1
ρ = ∅ or H2

ρ = ∅, so by definition c2−H2
ρ = (c+1)2−H2

ρ =
∅ as well, then the intersections considered below involving

such sets are trivially empty. We thus set min ∅ = ∞ and

max ∅ = 0 for the arguments below to apply universally. Since

c ≥ a ≥ 7 we have that min(c2 − H2
ρ) = c2 − maxH2

ρ ≥
c2 − 2a− 1 ≥ 2c+ 1 + 2a+ 1 ≥ max(2c+ 1 + �,max(2c+
1 + H1

ρ)), and also max(c2 − H2
ρ) ≤ c2 − 1 < (c + 1)2 −

(2c+ 1) ≤ min((c+ 1)2 −H2
ρ). Thus (c2 −H2

ρ) ∩ I = ∅, so

it doesn’t contribute to the overall intersection. Since c ≥ a >√
Rρ + �+3, we have c2−Rρ+1 > c2−(a−3)2+�+1 ≥ 2c+

2a+ 2, where the last inequality is equivalent to the obvious

(c−1)2− (a−1)2+2a−10+� ≥ 0 since (c−1)2 ≥ (a−1)2
and 2a − 10 > 0. Thus c2 − Rρ + 1 > max(2c + 1 + H1

ρ)
and also c2 − Rρ + 1 > 2c + 2a + 2 ≥ 2c + 1 + �, and so

[c2−Rρ+1, (c+1)
2−Rρ]∩ I ⊂ ((c+1)2−H2

ρ). Putting all of

this together equation (IV.4) becomes

k ∈ (
H1

ρ ∪ (c2−H2
ρ) ∪ [c2−Rρ+1, (c+1)

2−Rρ]
) ∩ I =(

H1
ρ ∩ I

)∪((c2−H2
ρ) ∩ I

)∪([c2−Rρ+1, (c+1)
2−Rρ] ∩ I

)

⊂ H1
ρ ∪ ∅ ∪ ((c+1)2−H2

ρ)

and we see that k /∈ Sk+1, in contradiction to k ∈ Sk+1. Thus

the assumption is wrong and we conclude Sc+1 ⊂ Pc+1, so

the induction is complete.

Let 1j denote the rectangular partition j × 1. Let (i, 1j)
denote the hook partition of i + j with i boxes in the first

row and j + 1 boxes in the first column. So (k− j, 1j) has k
boxes. The next corollary says that most hooks have positive

rectangular Kronecker coefficient.

Corollary IV.5. Let w ≥ h ≥ 7, then g((hw − j, 1j), h ×
w, h×w) > 0 for all j ∈ [0, h2 − 1] \ {1, 2, 4, 6, h2 − 2, h2 −
3, h2 − 5, h2 − 7}.
Proof. We apply Prop. IV.3 with ρ = ∅, a = 7, Rρ = 1
and H1

ρ = {1, 2, 4, 6} and H2
ρ = {2, 3, 5, 7}. The values at

a = 7 are readily verified by direct computation. Then we

have for all b ≥ 7 that g((b2− j, 1j), b× b, b× b) > 0 for j ∈
[0, b2−1]\(H1

ρ∪(b2−H2
ρ)). Let h = b and use the semigroup

property once to add the positive triple ((h(w−h)), h× (w−
h), h× (w − h)) in order to obtain the statement.

Let (i, 1j+ρ) denote the partition that results from ρ by first

adding an additional column with j boxes and then adding a

top row with i boxes. The next corollary treats the positivity

of hooks that are not covered by Cor. IV.5.
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Corollary IV.6. Fix w ≥ h ≥ 7. We have that g(λ, h×w, h×
w) > 0 for all λ = (hw − j − |ρ|, 1j + ρ) with ρ �= ∅ and
|ρ| ≤ 6 for all j ∈ [1, h2 − Rρ], where Rρ = |ρ| + ρ1 + 1,
except in the following cases: (i) ρ = (1) with j = 2 or
j = h2 − 4; (ii) ρ = (2) with j = 2; (iii) ρ = (12) and j = 1
or j = h2 − 5; (iv) ρ = (2, 1) and j = 1.

Proof. For all values of j ≤ 6 we have finitely many partitions

νj := 1j+ρ of length at most 6 and width at most 7, for which

we verify computationally the statement with h = w = 7 and

then by the semigroup property deduce it for λ = νj(hw), h×
w, h× w with h,w ≥ 7.

Now assume that j > 6, so that j ≥ �(ρ) and then j falls

into the conditions of Prop. IV.3, which we now apply with the

following values for ρ,Rρ, H
1
ρ , H

2
ρ . We have that �(ρ), ρ1 ≤ 6

and Rρ + �(ρ) = |ρ|+ ρ1 + �(ρ) + 1 ≤ |ρ|+ |ρ|+ 2 ≤ 14, so

7 >
√
Rρ + �(ρ) + 3, so we can apply Proposition IV.3 with

initial condition a = 7, which is verified computationally for

the following sets H1
ρ and H2

ρ .

(i) When ρ = (1) then Rρ = 3, H1
ρ = {2} and H2

ρ = {4},
we obtain g((h2 − 1 − j, 2, 1j−1), h × h, h × h) > 0 for j ∈
[1, h2 −Rρ] \ {2, h2 − 4}.

(ii) When ρ = (2) then Rρ = 5, H1
ρ = {2} and H2

ρ = ∅.
(iii) When ρ = (12) then Rρ = 4, H1

ρ = ∅ and H2
ρ = {5}.

Note that here we apply Proposition IV.3 for j ≥ �(ρ) =
2, whereas the exceptional j = 1 was already treated in the

computational verification.

(iv) When ρ = (2, 1) and j ≥ 2, then we apply Proposi-

tion IV.3 with H1
ρ = H2

ρ = ∅, and the case j = 1 was excluded

computationally.

For all other ρ with j ≥ �(ρ), set H1
ρ = H2

ρ = ∅ and

Rρ = |ρ| + ρ1 + 1. The cases j < �(ρ) were already treated

computationally.

Last, we add the positive triple (h(w−h), h× (w−h), h×
(w − h)) to (h2 − j − |ρ|, 1j + ρ), h× h, h× h to obtain the

statement.

Now we are ready to prove the main positivity theorem.

Theorem IV.7. Let ν /∈ X and � = max(�(ν) + 1, 9), a >
3�3/2, b ≥ 3�2 and |ν| ≤ ab/6. Then g(ν(ab), a×b, a×b) > 0.

Proof. We decompose ν (Lem. IV.1) into ν = ρ + ξ +∑�
k=2 xk((k−1)×k)+

∑�
k=2 yk((k−1)×2). If we encounter

a block of sk := a/k� many (k− 1)× k rectangles, then we

group it to a large (k − 1) × ak rectangle, where ak := ksk,

which is a rounded down to the next multiple of k. Formally,

we divide xk by sk to obtain xk = hksk+ tk, where tk < sk.

So we write

ν = ρ+ ξ +
∑�

k=2 hk((k − 1)× ak)

+
∑�

k=2 tk((k − 1)× k) +
∑�

k=2 yk((k − 1)× 2).

We will treat these 5 summands independently.

Using Lem. IV.2 with s = sk (recall ak = ksk) we see that

g(((k− 1)× ak)(ak), a× k, a× k) > 0. Using the semigroup

property for the hk summands we get

g(((k−1)×(akhk))(hkak), a×(khk), a×(khk)) > 0. (IV.8)

Using Lem. IV.2 again, this time with s = tk we see that

g(((k − 1)× (ktk))(ak), a× k, a× k) > 0. (IV.9)

Using Corollary IV.5 twice with the semigroup property (in

the case k /∈ {2, 3, 5, 7}) or using Corollary IV.6 we see that

g(((k − 1)× 2)(2hw), h× 2w, h× 2w) > 0 for all h,w ≥ 7,

h ≥ √k + 7, w ≥ √k + 7.

Choose h = w := max(�√�(ν) + 8�, 7) to obtain

g(((k − 1) × 2)(2w2), w × 2w,w × 2w) > 0 for all 2 ≤
k ≤ �(ν). Using the semigroup property yk times we get

g(((k−1)×(2yk))(2w2yk), w×(2ykw), w×(2ykw)) > 0 and

hence by transposition: g(((k−1)×(2yk))(2w2yk), (2ykw)×
w, (2ykw) × w) > 0. Since yk < k ≤ �(ν) + 1, we

have that a ≥ 3�3/2 ≥ 2�(ν)
√
�(ν) + 8 ≥ 2ykw we have

g(((k − 1)× (2yk))(aw), a× w, a× w) > 0. The semigroup

property gives

g((
∑�

k=2((k − 1)× (2yk)))(aw(�− 1)),

a× (w(�− 1)), a× (w(�− 1))) > 0.
(IV.10)

The columns of ξ are all distinct and not of length 1,

2, 4, 6. Thus we can use Corollary IV.5 to obtain g(((k −
1) × 1)(w2), w × w,w × w) > 0. Since ξ has at most

� − 1 columns the semigroup property gives g(ξ(w2(� −
1)), w× (w(�− 1)), w× (w(�− 1))) > 0. Transposition gives

g(ξ(w2(�− 1)), (w(�− 1))× w, (w(�− 1))× w) > 0. Since

a ≥ w(�− 1) we have

g(ξ(aw), a× w, a× w) > 0. (IV.11)

For ρ we make the case distinction from Lemma IV.1. In

cases (1), (3), (4), and (5) a finite calculation shows that

g(ρ(49), 7× 7, 7× 7) > 0. In case (2) we invoke Cor. IV.6 to

see that g(ρ(wa), a× w, a× w) > 0. In both cases we have

g(ρ(wa), a× w, a× w) > 0). (IV.12)

Using the semigroup property on equations (IV.8), (IV.9),

(IV.10), (IV.11), and (IV.12) we obtain

g(ν(aM), a×M,a×M) > 0,

where M =
∑�

k=2 khk +
∑�

k=2 k + w(� − 1) + 2w. We

want to show that M ≤ b. Note that hk ≤ ck
ak

= ck
k�a/k� ≤

ck
k(a/k−1) = ck

a−k ≤ ck
a−� . This can be used to show∑�

k=2 khk ≤
∑�

k=2 kck/(a− �) = (|ν|+ ν1)/(a− �).

M =
∑�

k=2 khk +
∑�

k=2 k + w(�− 1) + 2w

≤ |ν|+ ν1
a− �

+ �(�+ 1)/2− 1 + w�+ w

≤ 2|ν|
a−� + �(�+ 1)/2 + w�+ w + 1

≤ ab

3(a− �)
+ (�+ 1)2 ≤ 3b

8

8/9

1− �/a
+
5�2

4

≤ 3b

8
+
5b/2

4
≤ b.

For the last lines we observe that 1−�/a ≥ 1− 1
3
√
�
≥ 8/9,

and also that w <
√
�+ 7 + 1 ≤ �+1

2 and (� + 1)2 ≤ 5/4�2

for � ≥ 9.
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Proof of Thm. I.7. If λ̄ ∈ X , a finite calculation reveals aλ̄ =
0. Combining this with Prop. II.6 gives aλ(d[n]) = 0. If λ̄ /∈
X , we invoke Thm. IV.7 with ν = λ̄, � = m2, a = d, and

b = n. Note that b ≥ 3m4 = 3�2, and a ≥ 3m3 = 3�3/2 and

|λ̄| ≤ md = a
√
� ≤ ab/6.

V. APPENDIX: PADDING WITH THE FIRST VARIABLE

Let En denote the space of n2×n2 matrices. In the literature

sometimes (Xn,n)
n−mperm is called the padded permanent

instead of (X1,1)
n−mperm. We present now a simple inter-

polation argument that shows that it does not matter much

which notion we use. Clearly if Xn−m
n,n perm ∈ Endetn, then

also Xn−m
1,1 perm ∈ Endetn by setting Xn,n ← X1,1. The

following claim proves the other direction.

Claim V.1. There exists a function N = N(n) that is
polynomially bounded in n such that if Xn−m

1,1 perm ∈ Endetn,
then then XN−m

N,N perm ∈ ENdetN .

Proof. Let detn have skew circuits of size q(n) with q(n)
polynomially bounded in n. Let Xn−m

1,1 perm ∈ Endetn. Then

there exists a size q(n) skew circuit computing Xn−m
1,1 perm.

The polynomial perm is multilinear and we collect terms

that involve X1,1 using the notation perm = X1,1P + Q,

where X1,1 does not appear in P or Q. Setting X1,1 ← 1
in Xn−m

1,1 perm we obtain R1 := P +Q and setting X1,1 ← 2
we obtain R2 := 2n−m+1P + 2n−mQ. We see that P =
− 1

2n−m (2
n−mR1 − R2) and Q = 1

2n−m (2
n−m+1R1 − R2),

which gives size 2q(n) + 3 skew circuits for P and Q. Thus

we get a size N := 2(2q(n) + 3) + 2 = 4q(n) + 8 skew

circuit for perm = X1,1P +Q. Homogenizing with XN,N as

the padding variable we see XN−m
N,N perm ∈ ENdetN .

VI. FURTHER POSITIVITY RESULTS: LIMIT COEFFICIENTS,

STRETCHING FACTOR, AND SEMIGROUP SATURATION

In the rest of the appendix we prove the positivity of rect-

angular Kronecker coefficients for a large class of partitions

where the side lengths of the rectangle are at least quadratic

in the length of the partition. Moreover, we prove that the

saturation of the rectangular Kronecker semigroup is trivial,

we show that the rectangular Kronecker positivity stretching

factor is 2 for a long first row, and we completely classify the

positivity of rectangular limit Kronecker coefficients that were

introduced by Manivel in 2011.

A. Classification of vanishing limit rectangular Kronecker
coefficients

Recall the definition X = {(1), (2 × 1), (4 × 1), (6 ×
1), (2, 1), (3, 1)} from Thm. I.7. Using Thm. I.7 we get a

complete classification of all cases in which aρ = 0.

Corollary VI.1. aρ = 0 iff ρ ∈ X .

Proof. Given ρ /∈ X , aρ > 0 can be seen by choosing large

d and n and applying Thm. I.7. For ρ ∈ X , aρ = 0 is a small

finite calculation.

B. Double and triple column hooks

Here we study Kronecker coefficients for partitions λ = ik

and the Kronecker coefficients g(λ(ab), a × b, a × b) when

i = 2 and i = 3. In the case of i = 1 these were exactly

the hooks which were already classified. By that classification

and the semigroup property it is readily seen that since λ =
i(1k), for k �= 1, 2, 4, 6, d2− 7, a2− 5, a2− 3, a2− 2 we have

g(λ(ab), a× b, a× b) > 0 for b large enough. We now prove

that this positivity holds in fact for all k ∈ [0, a2 − 1] when

i > 1.

Proposition VI.2. Let i > 1. For any m ≥ 7 and k ∈ [0,m2−
1] we have that g(i(m− k, 1k),m× (im),m× (mi)) > 0.

Proof. First, note that proposition follows from the hook pos-

itivity as long as k �= 1, 2, 4, 6,m2−7,m2−5,m2−3,m2−2.

In the case when k = 1, 2, 4, 6 finite calculations for i = 2, 3
and m = 7 give positive values. For i ≥ 4 we have that

i = 2i1 + 3i2 for some i1, i2 ≥ 0, and then we apply the

semigroup property for i1 many double hooks plus i2 many

triple hooks. By that argument, we can always assume that

i ≤ 3.

So we can assume that k ∈ {m2−7,m2−5,m2−3,m2−2},
i.e. r := m2 − k − 1 ∈ [0, 6] is finite.

Let μi[a, b] := ((k + 1)i, 1ir) = ((ab − r)i, 1ir) be its

transpose partition. Note that μi[m,m] = (i(m − k, 1k))t,
so by transposing one of the rectangles the statement to prove

is equivalent to showing that

g(μi[m,m], (im)×m,m× (im)) > 0.

This will follow from the following claim applied when a =
b = m:

Claim: We have that for all a, b ≥ 6, r ≤ 7 and i ∈ [2, 3]
g(μi[a, b], (ia)× b, a× (bi)) > 0.

We prove this claim by induction on (a, b), with initial

condition computationally verified for (a, b) = (7, 7) for

the given finite set of values for i and r. Suppose that the

claim holds for some values a = a0, b = b0 ≥ 7, i.e. we

have g(μi[a0, b0], (ia0) × b0, a0 × (b0i)) > 0. Consider the

triple (a, b) = (a0, b0 + 1). Since g((ia0), (a
i
0), (a

i
0)) > 0

after transposing the first two partitions and rearranging them

we also have that g(ai0, 1
ia0 , ia0)) > 0. Add this triple

to μi[a0, b0], (ia0) × b0, a0 × (b0i), applying the semigroup

property, we have that

0 < g(μi[a0, b0] + ai0, (ia0)× b0 + 1ia0 , a0 × (b0i) + ia0)

= g(((a0b0 − r)i + ai0, 1
ir), (ia0)× (b0 + 1), a0 × (b0i+ i))

= g(((a0(b0 + 1)− r)i, 1ir)︸ ︷︷ ︸
=μi[a0,b0+1]

, (ia0)× (b0 + 1), a0 × (b0 + 1)i).

This show that the claim holds for (a0, b0 + 1) as well. By

the symmetry between a and b, we also have the statement for

(a0+1, b0), so by induction the claim holds for all (a, b), s.t.

a, b ≥ 7.

Applying the claim with a = b = m completes the proof.
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C. Stretching factor 2

In [6] it is shown that there exists a stretching factor i ∈ N

such that g(iλ, d × (in), d × (in)) > 0. It is easy to see that

the stretching factor i is sometimes larger than 2: For example

take n = 6, d = 1 and ρ = 5×1, then λ := ρ(nd) = 6×1 and

g(6× 2, 6× 2, 6× 2) = 0, but g(6× 3, 6× 3, 6× 3) = 1 > 0,

so here the stretching factor is 3. For a long first row the next

corollary shows that the stretching factor is always 1 or 2.

Corollary VI.3. Fix m ≥ 7. Let ρ be a partition with �(ρ) <
m2 in which every row is of even length. Then aρ(m) > 0.

Proof. Cut ρ columnwise and group pairs of columns of the

same length k so that you get partitions (k×2). By Prop. VI.2

we have a(k×2)(m) > 0. Using the semigroup property we get

the result.

D. Trivial saturation of the rectangular Kronecker semigroup

In [8] the semigroup of partitions with positive plethysm

coefficent is studied. In analogy we study here the semigroup

of partitions with positive rectangular Kronecker coefficient.

For fixed d the partitions λ where d divides |λ| and where

g(λ, d× (|λ|/d), d× (|λ|/d)) > 0 form a semigroup Sd under

addition. Interpreting these partitions as integer vectors, the

real cone Cd spanned by them coincides with the simplex

{x ∈ R
d2 | x1 ≥ x2 ≥ · · · ≥ xd2}, which is shown in [7].

The group Gd generated by Sd is defined as the set of all

differences {λ − μ | λ, μ ∈ Sd}. The saturation of Sd is

defined as the intersection Gd ∩ Cd. The following corollary

shows that the saturation of Sd is as large as possible.

Corollary VI.4. Let d ≥ 7. The group Gd contains all
partitions λ for which d divides |λ|.
Proof. By Prop. VI.2 for all 0 ≤ k < m2 we have (k ×
3)(3m2) ∈ Sd and (k × 2)(2m2) ∈ Sd. Subtracting these we

obtain (m2 − k, k × 1) ∈ Gd. For 1 ≤ k < m2 we subtract

(m2 − k + 1, (k − 1) × 1) from (m2 − k, k × 1) to obtain

vk+1 := (−1, 0, . . . , 0, 1, 0, . . . , 0) ∈ Gd, where the 1 is at

position k+1. Given a partition λ we define ν :=
∑m2

k=2 λkvk
and obtain a vector that coincides with λ in every entry but

the first: ν1 = −|λ̄|. We calculate λ = μ+j ·(d, 0, . . . , 0) with

j = |λ|/d. Since d divides |λ| it follows that j is an integer.

Since (d, 0, . . . , 0) ∈ Sd we have λ = μ + j · (d, 0, . . . , 0) ∈
Gd.
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