
No occurrence obstructions in geometric
complexity theory

Peter Bürgisser
Technische Universität Berlin

Email: pbuerg@math.tu-berlin.de

Christian Ikenmeyer
Texas A&M University

Email: ciken@math.tamu.edu

Greta Panova
University of Pennsylvania

panova@math.upenn.edu

Abstract—The permanent versus determinant conjecture is a
major problem in complexity theory that is equivalent to the
separation of the complexity classes VPws and VNP. Mulmuley
and Sohoni [32] suggested to study a strengthened version of this
conjecture over the complex numbers that amounts to separating
the orbit closures of the determinant and padded permanent
polynomials. In that paper it was also proposed to separate
these orbit closures by exhibiting occurrence obstructions, which
are irreducible representations of GLn2(C), which occur in one
coordinate ring of the orbit closure, but not in the other. We
prove that this approach is impossible. However, we do not rule
out the approach to the permanent versus determinant problem
via multiplicity obstructions as proposed in [32].

I. INTRODUCTION

A central problem in algebraic complexity theory is to

prove that there is no efficient algorithm to evaluate the

permanent pern :=
∑

π∈Sn
x1π(1) · · ·xnπ(n). The natural

model of computation to study this question is the one of

straight-line programs (or arithmetic circuits), which perform

arithmetic operations +,−, ∗ in the polynomial ring, starting

with the variables Xij and complex constants. Efficient means

that the number of arithmetic operations is bounded by a

polynomial in n. The permanent arises in combinatorics and

physics as a generating function. Its relevance for complexity

theory derives from Valiant’s discovery [40], [39] that the

evaluation of the permanent is a complete problem in the

complexity class VNP (and also in the class #P in the model

of Turing machines); see [3], [28] for more information.

The determinant detn :=
∑

π∈Sn
sgn(π)x1π(1) · · ·xnπ(n)

is known to have an efficient algorithm. Its evaluation is

complete for the complexity class VPws; cf. [39], [38]. From

the definition it is clear that VPws ⊆ VNP and proving the

separation VPws �= VNP is the flagship problem in algebraic

complexity theory. It can be seen as an “easier” version of the

famous P �= NP problem; cf. [4].

The conjecture VPws �= VNP can be restated without

any reference to complexity classes by directly comparing

permanents and determinants. The determinantal complexity
dc(f) of a polynomial f ∈ C[X1, . . . , XN ] is defined as

the smallest integer n ∈ N such that f can be written as a

determinant of an n by n matrix whose entries are affine linear

forms in the variables Xi. It is known [39] that dc(f) ≤ s+1
if f if has a formula of size s. Valiant [39], [41] and Toda [38]

proved that VPws �= VNP is equivalent to the following

conjecture.

I.1 Conjecture (Valiant 1979). The determinantal complexity
dc(pern) grows superpolynomially in n.

It is known [17] that dc(pern) ≤ 2n − 1. Finding lower

bounds on dc(pern) is an active area of research [30], [13],

[25], [20], [2], [43], but the best known lower bounds are only

Ω(n2).

A. An attempt via algebraic geometry and representation
theory

Towards answering Conj. I.1, Mulmuley and Sohoni [32],

[33], [31] proposed an approach based on algebraic geometry

and representation theory, for which they coined the name

geometric complexity theory.

We consider Symn
Cn2

as the space of homogeneous

polynomials of degree n in n2 variables. Clearly, detn ∈
Symn

Cn2

. The group GLn2 acts on Symn
Cn2

by linear

substitution. The orbit GLn2 · detn is obtained by applying

all possible invertible linear transformations to detn. Consider

the closure
Ωn := GLn2 · detn ⊆ Symn

Cn2

(I.2)

of this orbit with respect to the Euclidean topology. By a

general principle, this is the same as the closure with respect

to the Zariski topology; see [34, §2.C]. It is easy to see that

Ω2 = Sym2
C4. For n = 3, the boundary of Ωn has been

determined recently [18], but for n = 4 it is already unknown.

For n ≥ m we consider the padded permanent defined

as Xn−m
11 perm ∈ Symn

Cm2

. (Sometimes the padding is

achieved by using a variable not appearing in perm, but this

is irrelevant, cf. [22, Appendix].)

I.3 Conjecture (Mulmuley and Sohoni 2001). For all c ∈ N≥1

we have Xmc−m
11 perm �∈ Ωmc for infinitely many m.

This conjecture was stated in [32]. We refer to [12,

Prop. 9.3.2] for an equivalent formulation in terms of com-

plexity classes that goes back to [5]. (In particular see [5,

Problem 4.3].)

Conj. I.3 implies Conj. I.1. Indeed, using that GLn2 is dense

in Cn2×n2

, one shows (e.g., see [6]) that dc(perm) ≤ n
implies Xn−m

11 perm ∈ Ωn. (The latter must be a point in

the boundary of Ωn if n > m.)

The following strategy towards Conj. I.3 was proposed in

[32]. The action of the group G := GLn2 on Ωn induces a

corresponding action on the coordinate ring C[Ωn]. It is well
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known [16] that the irreducible polynomial representations

of G can be labeled by partitions λ into at most n2 parts.

The coordinate ring C[Ωn] is a direct sum of its irreducible

submodules since G is reductive. We say that λ occurs in

C[Ωn] if it contains (the dual of) an irreducible G-module

of type λ. (We will identify spaces with their duals to avoid

negative weights.)

Let Zn,m denote the orbit closure of the padded permanent

Xn−m
11 perm ∈ Symn

Cn2

. If the latter is contained in Ωn,

then Zn,m ⊆ Ωn, and the restriction defines a surjective G-

equivariant homomorphism C[Ωn] → C[Zn,m] of the coordi-

nate rings. Schur’s lemma implies that if λ occurs in C[Zn,m],
then it must also occur in C[Ωn]. A partition λ violating this

condition is called an occurrence obstruction. Its existence

thus proves that Zn,m �⊆ Ωn. It is known that occurence

obstructions λ must satisfy |λ| = nd and �(λ) ≤ m2, cf. [32],

[33], [12]. Here |λ| := ∑
i λi denotes the size of λ and �(λ)

denotes the length of λ, which is defined as the number of

nonzero parts of λ. We write λ 	 |λ|, so in our case λ 	 nd.

In [32], [33] it was suggested to prove Conj. I.3 by exhibit-

ing occurrence obstructions. More specifically, the following

conjecture was made.

I.4 Conjecture (Mulmuley and Sohoni 2001). For all c ∈
N≥1, for infinitely many m, there exists a partition λ occurring
in C[Zmc,m] but not in C[Ωmc ].

This conjecture implies Conj. I.3 by the above reasoning.

Conj. I.4 on the existence of occurrence obstructions has

stimulated a lot of research and has been the main focus of

researchers in geometric complexity theory in the past years,

see Section I (c). Unfortunately, this conjecture is false! This

is the main result of this work. More specifically, we show the

following.

I.5 Theorem. Let n, d,m be positive integers with n ≥ m25

and λ 	 nd. If λ occurs in C[Zn,m], then λ also occurs in
C[Ωn]. In particular, Conj. I.4 is false.

One can likely improve the bound on n by a more careful

analysis.

B. Proof outline

The rough outline of the proof of Thm. I.5 closely fol-

lows the structure of the proof of the main theorem in the

recent paper [22], which is concerned with the positivity of

rectangular Kronecker coefficients. Recall that the Kronecker
coefficient k(λ, μ, ν) of three partitions λ, μ, ν of the same

size d can be defined as the dimension of the space of Sd-

invariants of [λ]⊗ [μ]⊗ [ν], where [λ] denotes the irreducible

Sd-module of type λ; see [27, I§7, internal product]. We write

n × d for the rectangular partition (d, . . . , d) of size nd and

call kn(λ) := k(λ, n × d, n × d) the rectangular Kronecker
coefficient of λ 	 nd. In [32] it was realized that if kn(λ) = 0,

then λ does not occur in C[Ωn]. This was proposed as a

potential method of proving Conj. I.4, which has stimulated

research in algebraic combinatorics on these quantities. The

main result in [22] says that proving Conj. I.4 in this way is

not possible:

I.6 Theorem ([22]). Let n, d,m ∈ N with n > 3m4 and
λ 	 nd. If λ occurs in C[Zn,m], then kn(λ) > 0.

The body λ̄ of a partition λ is obtained from λ by removing

its first row. The proofs of Thm. I.5 and Thm. I.6 crucially use

the following observation by Kadish and Landsberg [23] (see

Prop. IV.1). If λ 	 nd appears in C[Zn,m], then |λ̄| ≤ md. This

is equivalent to λ1 ≥ (n−m)d, which implies that λ must have

a very long first row if n is substantially larger than m. This

fact can be used to prove a lower bound on all possible degrees

d, although in the two proofs this lower bound is obtained

using very different techniques. Then λ gets decomposed by

cutting it vertically into several long rectangles of short height,

treating the first row separately. For these rectangles it is

shown independently that they appear in C[Ωn] (for the proof

of Thm. I.5) or that their rectangular Kronecker coefficient

is positive (for the proof of Thm. I.6). Besides taking care

of several technicalities, the main result then follows from

glueing λ back together via the so-called semigroup property.

Although this rough outline is shared among both proofs, the

details and techniques differ vastly.

A crucial technique in the present paper is the encoding of a

generating system of highest weight vectors vT in plethysms

SymdSymnV by (classes of) tableaux with contents d × n,

as well as the analysis of their evaluation at tensors of rank

one in a combinatorial way. This is similar to [7], [19]. A

further technique is the “lifting” of highest weight vectors

of SymdSymnV , when increasing the inner degree n, as

introduced by Kadish and Landsberg [23]. This is closely

related to a stability property of the plethysm coefficients [42],

[14], [29]. A concrete understanding of the stability property

in terms of lifting highest weight vectors is important for the

proof of the main result. Remarkably, for the proof of Thm. I.5,

the only information we need about the orbit closures Ωn is

that they contain certain padded power sums (cf. Thm. II.8),

see also [11]. Several proofs had to be omitted in this extended

abstract due to lack of space. We refer to the full version on

the arXiv for missing details: arXiv:1604.0643v1.

C. Related work

Let k̃n(λ) denote the multiplicity by which the irreducible

GLn2 -module of type λ 	 nd occurs in C[Ωn]d. We call the

numbers k̃n(λ) the GCT-coefficients. Note that an occurrence

obstruction for Zn,m �⊆ Ωn is a partition λ for which k̃n(λ) =
0 and such that λ occurs in C[Zn,m].

In [32] it was realized that GCT-coefficients can be up-

per bounded by rectangular Kronecker coefficients: we have

k̃n(λ) ≤ kn(λ) for λ 	 nd. In fact, the multiplicity of λ in the

coordinate ring of the orbit GLn2 · detn equals the so-called

symmetric rectangular Kronecker coefficient [12], which is

upper bounded by kn(λ).
Since Kronecker coefficients are fundamental quantities that

have been the object of study in algebraic combinatorics for

a long time [35], much of the the research in geometric

complexity has focused on these quantities, with the emphasis
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on understanding when they vanish for rectangular formats. A

difficulty in the study of Kronecker coefficients is that there

is no known counting interpretation of them [37].
A first attempt towards finding occurence obstructions was

by asymptotic considerations (moment polytopes): this was

ruled out in [8], where it was proven that for all λ 	 nd there

exists a stretching factor � ≥ 1 such that kn(�λ) > 0. In [21] it

was shown that deciding positivity of Kronecker coefficients in

general is NP-hard, but this proof fails for rectangular formats.
Clearly, k̃n(λ) is bounded from above by the multiplicity

aλ(d[n]) of the partition λ in the plethysm SymdSymn
Cn2

.

Kumar [24] ruled out asymptotic considerations for the GCT-

coefficients: assuming the Alon-Tarsi Conj. [1], Kumar derived

that k̃n(nλ) > 0 for all λ 	 nd and even n. A similar

conclusion, unconditional, although with less information on

the stretching factor, was obtained in [10].

D. Future directions
While our main result, Thm. I.5, rules out the possibility

of proving the Conj. I.3 via occurrence obstructions, there

still remains the possibility that one may succeed so by

comparing multiplicities. If the orbit closure Zn,m of the

padded permanent Xn−m
11 perm is contained in Ωn, then the

restriction defines a surjective G-equivariant homomorphism

C[Ωn]→ C[Zn,m] of the coordinate rings, and hence the mul-

tiplicity of the type λ in C[Zn,m] is bounded from above by

the GCT-coefficient k̃n(λ). Thus, proving that k̃n(λ) is strictly

smaller than the latter multiplicity implies that Zn,m �⊆ Ωn.

We note that the paper [15] rules out one natural asymptotic

method for achieving this. Mulmuley pointed out to us a paper

by Larsen and Pink [26] that is of potential interest in this

connection.
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II. PRELIMINARIES

A. Preliminaries on highest weight vectors
Let UN ⊆ GLN (C) be the subgroup of upper triangular

matrices with 1s on the main diagonal. For α1, . . . , αN ∈ C×

let diag(α1, . . . , αN ) denote the diagonal matrix with αi on

the diagonal. In a GLN -representation V , a highest weight
vector (or HWV) of weight λ ∈ ZN is a vector f ∈ V such

that u · f = f for all u ∈ UN and diag(α1, . . . , αN ) · f =
αλ1
1 · · ·αλN

N f for all αi ∈ C×. Every irreducible V of type λ
contains, up to scaling, a unique HWV of weight λ, and no

other HWVs, cf. [16]. In this section we will describe a hands-

on construction for HWVs.
Assume V := CN and let Sd denote the symmetric group

on d symbols. The famous Schur-Weyl duality (cf. [16]) states

that the following GL(V )×Sd-representations are isomorphic:⊗dV �
⊕
λ�d
{λ} ⊗ [λ].

Here {λ} denotes an irreducible GL(V )-representation of

type λ (Schur-Weyl module) and [λ] denotes an irreducible

Sd-representation of type λ (Specht module). Since every

irreducible GL(V )-representation {λ} contains a unique line

of HWVs of weight λ and no HWV of any other weight,

it follows that the vector space HWVλ(
⊗

dV ) of HWVs of

weight λ in
⊗

dV is isomorphic to [λ] as an Sd-representation.

Thus the Sd-orbit of a nonzero element vλ ∈ HWVλ(
⊗

dV )
generates HWVλ(

⊗
dV ) as a vector space.

We construct such a vλ as follows. Let μ denote the

transpose of λ, so μi denotes the number of boxes in the i-th
column of λ. For j ∈ N we define the antisymmetric product

vj×1 := X1 ∧X2 ∧ · · · ∧Xj ∈ HWVj×1(
⊗jV ),

where X1, . . . , XN are the standard basis vectors of V = CN .

Then we define

vλ :=

λ1⊗
i=1

vμi×1 ∈ HWVλ(
⊗dV ). (II.1)

So {πvλ | π ∈ Sd} generates the vector space HWVλ(
⊗

dV ).

B. Plethysms

Again assume V = CN . We study here the plethysm

SymdSymnV and give an explicit construction of a set of

generators for its spaces of highest weight vectors (Prop. II.7).

For λ 	 dn we define the plethysm coefficient

aλ(d[n]) := dimHWVλ(Sym
dSymnV ), (II.2)

which is the multiplicity of {λ} in SymdSymnV . (If λ 	 dn
violated, then the multiplicity is zero.)

The position set [dn] := {1, . . . , dn} is partitioned into the

blocks B1, . . . , Bd, where Bu := {(u−1)n+v | 1 ≤ v ≤ n}.
The wreath product Sd 
Sn is the subgroup of Sdn generated

by the permutations leaving the blocks invariant, and the per-

mutations of the form (u−1)n+v �→ (π(u)−1)n+v with π ∈
Sd, which simultaneously permute the blocks. Structurally, the

wreath product is a semidirect product Sd 
Sn � (Sn)
d�Sd.

Symmetrizing over Sd 
Sn yields the projection

Σd,n :
⊗dnV � SymdSymnV, w �→ 1

(n!)dd!

∑
σ∈Sn�Sd

σw

(II.3)

which maps HWVλ(
⊗

dnV ) to HWVλ(Sym
dSymnV ), which

is thus generated by {Σd,n(πvλ) | π ∈ Sdn}.
The column-standard Young tableau T std

λ of shape λ is

the Young tableau that contains numbers 1, . . . , |λ| ordered

columnwise, from top to bottom and left to right. For example,

T std
(4,2) =

1 3 5 6
2 4

is column-standard. The symmetric group Sdn acts on the set

of numberings of shape λ by replacing each entry i with π(i).
For example, for π = (2453), we obtain

πT std
(4,2) =

1 2 3 6
4 5

. (II.4)

By the definition of vλ in (II.1), if i and j are in the same
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column in πT std
λ , then τπvλ = −πvλ for the transposition

τ = (i j). Moreover, if τ is the permutation that switches two

columns of the same length in πT std
λ , then τπvλ = πvλ.

In the same way in which the tableau πT std
λ provides a short

notation for πvλ, we use a short notation for the projection

(II.3) as follows: in πT std
λ we replace the numbers in the

block B1 = {1, 2, . . . , n} with a letter, the numbers in the

block B2 = {n + 1, . . . , 2n} with a different letter, and so

on, until we have replaced every entry with one of d distinct

letters. We think of the set of letters as not being ordered and

hence identify tableaux that arise by permuting the letters. For

example, for the tableau in (II.4) we get for n = 3, d = 2,

a a a b
b b

= b b b a
a a

.

We call theses objects tableaux T of shape λ with rectangular
content d × n. Formally, this is a tableau T together with a

partition of the set of its boxes, boxes(T ) = C1 ∪ . . . ∪ Cd,

such that |Cu| = n for all u (Cu stands for the set of boxes

labelled with the letter u). The numbering of the classes Cu

is irrelevant.

For a tableau T with rectangular content d× n, we choose

π ∈ Sdn such that T is obtained from πT std
λ by the above

procedure, and define

vT := Σd,n(πvλ) where T results from πT std
λ . (II.5)

This is well defined since πT std
λ and π′T std

λ define the same T
iff (Sn 
 Sd) · π = (Sn 
 Sd) · π′. Moreover, Σd,n(πvλ) =
Σd,n(π

′vλ) if π and π′ are in the same coset.

II.6 Lemma. 1) Let T be a tableau of shape λ with
rectangular content d × n. If the same letter appears
in a column of T more than once, then vT = 0.

2) Let T and T ′ be two tableaux of shape λ with rectangu-
lar content d× n that can be obtained from each other
by switching two columns that have the same length.
Then vT = vT ′ .

We will need part two of Lemma II.6 only for columns of

length one, which we will call singleton columns.

We will focus on tableaux of shape λ with rectangular

content d × n, where no letter appears more than once in

a column. We call two such tableaux equivalent if they differ

only by a reordering of their singleton columns and shall

call an equivalence class of such tableaux an (d, n, λ)-tableau
class. For example

a a a b
b b

= b b b a
a a

� b b a b
a a

= a a b a
b b

.

By Lemma II.6(2), vT is well-defined for a (d, n, λ)-tableau

class T . We obtain with Lemma II.6(1):

II.7 Proposition. A generating set of HWVλ(Sym
dSymnV )

is given by the vT , where T ranges over all (d, n, λ)-tableaux
classes.

In Section III we shall explain how to combinatorially

evaluate vT at tensors of rank one.

C. Padded power sum embedding
Recall from (I.2) that Ωn denotes the orbit closure of detn.

The following result goes back to Valiant [39].

II.8 Theorem. For positive integers n, s, d such that n ≥ sd
we have Xn−s

1 (�s1+ · · ·+ �sd) ∈ Ωn for arbitrary linear forms
�1, . . . , �d in X1, . . . , XN .

Proof. Writing the power sum Xs
1 + · · · + Xs

d as a formula

requires at most (s − 1)d + d − 1 = sd − 1 many additions

and multiplications. Valiant’s construction [39] implies that

Xs
1 + · · ·+Xs

d has the determinantal complexity at most sd ≤
n, i.e., it can be written as the determinant of an n×n-matrix

with affine linear entries in X1, . . . , XN . The determinantal

complexity is invariant under invertible linear transformations.

Hence the determinantal complexity of �s1+ · · ·+�sd is at most

n, for any linearly independent system �1, . . . , �d of linear

forms in X1, . . . , XN . By homogenizing with respect to a

new variable Y and then substituting Y by X1, we see that

Xn−s
1 (�s1+· · ·+�sd) ∈ Ωn. Since Ωn is closed, we can go over

to the limit and drop the assumption that the �i are linearly

independent.

D. Evaluation at low rank points
In our work it is essential to interpret homogeneous polyno-

mials as symmetric tensors. Let W denote a finite dimensional

C-vector space and d ≥ 1. The symbol f ∈ SymdW ∗ denotes

a symmetric tensor f ∈ ⊗dW ∗ � (⊗dW )∗. It defines the

polynomial function f : W → C, which is homogeneous of

degree d (and we denote it by the same symbol). By the

polarization formula, any homogeneous polynomial function

f : W → C of degree d can be obtained from a symmetric

tensor.

II.9 Proposition. Let V be a finite dimensional C-vector space
and d, n ≥ 1. If f ∈ SymdSymnV \{0} then f does not vanish
on �n1 + · · ·+ �nd , for Zariski almost all (�1, . . . , �d) ∈ V d.

III. EVALUATION OF HIGHEST WEIGHT VECTORS IN

PLETHYSMS

A. Tensor contraction
Recall the definition (II.1) of the highest weight vector vλ ∈

⊗dnV for λ 	 dn and V = CN . Let μ denote the the transpose

of λ. Contracting vλ with a rank one tensor t = t1⊗· · ·⊗tdn ∈⊗
dnV yields the following product of determinants:

〈vλ, t〉 =
�1∏
i=1

d̃et(tμ1+...+μi−1+1, . . . , tμ1+...+μi
),

where d̃et(ti+1, . . . , ti+j) is the determinant of top j × j
minor of the N × j matrix whose columns are ti+1, . . . , ti+j .

The group Sdn acts on
⊗

dnV by permuting the positions,

π−1t = tπ(1) ⊗ · · · ⊗ tπ(dn), for π ∈ Sdn. Noting that

π(1), π(2), . . . , π(μ1) are the numbers in the first column of

πT std
λ etc. this implies

〈πvλ, t〉 = 〈vλ, π−1t〉 (III.1)

=
∏

column c of πT std
λ

d̃et(t1st entry in c, . . . , tlast entry in c).
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Pictorially, for each k we place the vector tk into the box

of πT std
λ with entry k and then take the product over the

determinants given by the columns. We can use this pictorial

interpretation to understand 〈vT , t〉 for a (d, n, λ)-tableau

class T as follows.

Recall from Section II (b) the decomposition [dn] = B1 ∪
. . . ∪ Bd into blocks of size n. We say that an assignment

ϑ : boxes(T ) → [dn] respects the (d, n, λ)-tableau class T if

it is bijective and the boxes in T with the same letter get

assigned numbers that belong to the same block Bu, i.e., we

require �ϑ(i, i′)/n� = �ϑ(j, j′)/n� whenever T has the same

letter at the positions (i, i′) and (j, j′).
Suppose the tableau T with rectangular content d×n results

from πT std
λ by substituting the entries in the block Bu by the

letter u. Then we get from the definition of vT in (II.5) and

(II.3) that

〈vT , t〉 = 〈Σd,n(πvλ), t〉 = 1

n!dd!

∑
σ∈Sn�Sd

〈πvλ, σ−1t〉.

Using (III.1), this can be expressed in the following way:

〈vT , t〉 = 1

n!dd!
· (III.2)∑

ϑ:boxes(T )→[dn]
respecting T

∏
column c of T

d̃et(t1st entry in c, . . . , tlast entry in c).

To illustrate this, note that the map ϑ assigns to each box

in T (the index i of) a vector ti such that {t1, t2, . . . , tn} are

assigned to a letter �1, {tn+1, tn+2, . . . , t2n} are assigned to

a different letter �2, etc.

B. Combinatorial Contraction

Let X1, . . . , XN denote the standard basis of V = CN and

s : [dn] → [N ] be a map. If t = Xs(1) ⊗ · · · ⊗ Xs(dn), then

the contraction (III.2) can be expressed in simpler terms.

We define the sign of a list of integers j = (j1, . . . , jk)
to be zero if {j1, . . . , jk} �= {1, 2, . . . , k} and other-

wise let sgn(j1, . . . , jk) denote the sign of the permutation

(j1, . . . , jk).
Again let T be a tableau of shape λ and let μ denote the

partition transposed to λ. An assignment ϑ : boxes(T )→ [dn]
of the boxes of T with integers defines for each column c of T
the list (s(ϑ(1, c)), . . . , s(ϑ(μc, c)) of integers, whose sign we

briefly denote by sgn(s ◦ϑ)|c . We define the value valϑ(s) of

the assignment ϑ at the list s by

valϑ(s) :=
∏

column c of T

sgn(s ◦ ϑ)|c .

In particular, if valϑ(s) �= 0, then ϑ must assign the value 1
to all boxes in singleton columns of T .

Noting that in (III.2) we take determinants of permutation

matrices, we arrive at the following important rule. We shall

use it in Section IV to understand the Kadish-Landsberg

lifting, and in the proof of Thm. V.4 to show that certain vT
are nonzero.

III.3 Proposition. Let T be a (d, n, λ)-tableau and s : [dn]→
[N ] be an assignment. Then

〈vT , Xs(1) ⊗ . . .⊗Xs(dn)〉 = 1

n!dd!

∑
ϑ:boxes(T )→[dn]

respecting T

valϑ(s).

III.4 Corollary. Let n be even and consider the unique
(d, n, d × n)-tableau class T in which in each row the
letters are the same, but different rows have different letters.
The evaluation of vT ∈ SymdSymnV at the power sum
w = Xn

1 + . . .+Xn
d yields vT (w) = d!.

Proof. According to Section II (d), the evaluation is done via

polarization: vT (w) = 〈vT , w⊗d〉. If we interpret Xn
i = X⊗n

i ,

we have

w⊗d =
∑

i1,...,id

X⊗n
i1
⊗ . . .⊗X⊗n

id
,

where the sum is over all 1 ≤ i1, . . . , id ≤ d.

Assume first (i1, . . . , id) = (1, . . . , d). We apply Prop. III.3

to compute 〈vT , X⊗n
1 ⊗ . . .⊗X⊗n

d 〉. Using a rowwise enumer-

ation of the boxes of T , the bijections ϑ : boxes(T ) → [dn]
respecting T are in one to one correspondence with the

elements of the wreath product Sd 
 Sn. They are given

by permutations σ ∈ Sd of the rows and permutations of

the numbers within the rows. Such a bijection ϑ contributes

valϑ(s) = sgn(σ)n, where s = (1n, . . . , dn). Hence we obtain

〈vT , X⊗n
1 ⊗ . . .⊗X⊗n

d 〉 = 1

d!

∑
σ∈Sd

sgn(σ)n.

This equals 1 if n is even, and 0 if n is odd and d > 1.

We turn now to the contributions of an arbitrary sequence

(i1, . . . , id). If it is a permutation of 1, . . . , d, then, by the same

argument as before, we see that we get the same contribution

as for (1, . . . , d). On the other hand, if the sequence is not

a permutation of 1, . . . , d, we get zero. Altogether, we obtain

vT (X
n
1 + . . .+Xn

d ) = d! if n is even.

IV. LIFTING HIGHEST WEIGHT VECTORS IN PLETHYSMS

Recall that Zn,m denotes the orbit closure of the padded

permanent Xn−m
11 perm ∈ Symn

Cn2

for n > m. Moreover,

λ̄ denotes the partition λ with its first row removed. The

following insight is due to Kadish and Landsberg [23].

IV.1 Proposition ([23]). If λ 	 nd occurs in C[Zn,m], then
�(λ) ≤ m2 and |λ̄| ≤ md.

In the following we analyze two ways of “lifting” highest

weight vectors in SymdSymmV by raising either the inner
degree m or the outer degree d. If d and m are sufficiently

large in comparison with μ, then these liftings provide isomor-

phisms of the spaces of highest weight vectors. In particular,

the multiplicity aμ(d[m]) does not increase, which is known

as the stability property of the plethysm coefficients [42], [14],

[29]. A detailed understanding of the lifting is crucial for the

proof of the main result.
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A. Lifting the inner degree

Let X1, . . . , XN denote the standard basis of V = CN and

K be the span of X2, . . . , XN . Then CN = CX1 ⊕ K. For

n ≥ m we have the direct decomposition

SymnV = Xn−m
1 SymmV ⊕

n−m−1⊕
i=0

Xi
1Sym

n−iK (IV.2)

corresponding to q = Xn−m
1 p+r with degX1

r < n−m, and

the corresponding projection π : SymnV → SymmV, q �→ p.

The space of degree d homogeneous polynomials

(SymmV )∗ → C can be canonically identified with the

space Symd(SymmV )∗. Thus, composing with the projection

π : SymnV → SymmV from above gives the following

injective linear map

Symd(SymmV )∗ → Symd(SymnV )∗, f �→ f �n := f ◦ π,
(IV.3)

which we call the Kadish-Landsberg lifting. Using the above

notation, we have f �n(q) = f(p). We note that the lifting is

canonical in the sense that (f �n)�n
′
= f �n′ for m ≤ n ≤ n′.

To avoid negative weights and to simplify notation, we are

going to identify (SymmV )∗ with SymmV in a natural way

as follows.

The standard hermitian inner product 〈v, w〉 :=
∑

j zjw̄j

on V := CN is invariant under unitary transformations. Note

that the standard basis X1, . . . , XN of V is orthonormal. The

inner product naturally extends to a hermitian inner product

on ⊗mV , which is characterized by

〈v1 ⊗ . . . vm, w1 ⊗ . . . wm〉 = 〈v1, w1〉 · · · 〈vm, wm〉.
This inner product is also invariant under the action of the

unitary group of V . For a list I = (i1, . . . , im) ∈ [N ]m we

define
XI := XI1 ⊗XI2 ⊗ · · · ⊗XIm ∈

⊗mV.

These XI form an orthonormal basis of
⊗

mV . For i ∈ [N ]
let ζ(I)i denote the number of appearances of i in I . We call

ζ(I) ∈ NN the type of a I . The monomial corresponding to

the coefficient vector α ∈ NN with |α| = m is given by

Xα =
1(
m
α

) ∑
I:ζ(I)=α

XI . (IV.4)

Since the XI are pairwise orthonormal, we obtain

‖Xα‖2 =
1(
m
α

)2 ∑
I:ζ(I=α

‖XI‖2 =
1(
m
α

) .
Moreover, it is easy to check that different monomials are

orthogonal. The restriction of the inner product 〈 , 〉 to

SymmV is sometimes called Weyl’s inner product, cf. [9,

§16.1].

We are going to identify SymmV with its dual space

with respect to Weyl’s inner product. More specifically, the

identification isomorphism is given by

SymmV → (SymmV )∗, Xα �→
(
m

α

)
(X∗)α, (IV.5)

where X∗
1 , . . . , X

∗
N denotes the dual basis of X1, . . . , XN and

(X∗)α := (X∗
1 )

α1 · · · (X∗
N )αN . The justification for this is

provided by the fact that
〈(

m
α

)
(X∗)α, Xβ

〉
= δα,β .

After composing the lifting (IV.3) with the identification

maps (IV.5) for SymmV and SymnV , we obtain another lifting

map
SymdSymmV → SymdSymnV, (IV.6)

which we also denote by f �→ f �n.

We interpret now the effect of this map in terms of tableaux.

Recall the definition of the highest weight vectors vT from

(II.5). We denote (k) := 1× k.

IV.7 Lemma. 1) For μ 	 md, n ≥ m, λ := μ + (d(n −
m)), the lifting (IV.6) induces injective linear maps

HWVμ(Sym
dSymmV )→ HWVλ(Sym

dSymnV ),

and we have f �n(Xn−m
1 · p) = f(p) for p ∈ SymmV .

2) Let T be a (d,m, μ)-tableau class and the tableau class
T ′ be obtained from T by adding n−m copies of each
of the d letters in the first row (in any order). Then
vT ′(X

n−m
1 p) = vT (p) for all p ∈ SymmV .

Proof. (1) Note that the identification isomorphism (IV.5)

maps highest weight vectors of weight μ to highest weight

vectors of weight −μ. Therefore, it suffices to prove that if

f ∈ Symd(SymmV )∗ is a highest weight vector of weight −μ,

then its image f �n ∈ Symd(SymnV )∗ under (IV.6) is a

highest weight vector of weight −μ − (d(n − m)). This is

a straightforward verification that we leave to the reader.

(2) For the second assertion, we note that the lifting from

inner degree m to n can be obtained as a composition of

liftings that increase the inner degree by one only. Hence we

may assume without loss of generality that n = m+ 1.

We need to prove that for all p ∈ SymmV ,

〈vT ′ , (X1p)
⊗d〉 = 〈vT , p⊗d〉. (IV.8)

Let CN (m) denote the set of all β ∈ NN with |β| = m. A

symmetric tensor p ∈ SymmV can naturally be expanded in

the monomial basis: p =
∑

β∈CN (m) cβX
β , cf. (IV.4). The

image of p under the isomorphism (IV.5) is given by

p∗ =
∑

β∈CN (m)

cβ

(
m

β

)
(X∗)β =

∑
β∈CN (m)

cβ
∑

I:ζ(I)=β

X∗
I .

(IV.9)

We take the dth tensor power and expand:

(p∗)⊗d =
∑

α:[d]→CN (m)

Cα

∑
I1,...Id:ζ(Ik)=α(k)

X∗
I1 ⊗ · · · ⊗X∗

Id ,

where Cα :=
∏d

k=1 cα(k). Therefore, using Prop. III.3, we see

that 〈vT , (p∗)⊗d〉 equals∑
α:[d]→CN (m)

∑
ζ(Ik)=α(k)

Cα〈vT , XI1 ⊗ · · · ⊗XId〉

=
∑

α:[d]→CN (m)

Cα
1

d!(m!)d

∑
ζ(Ik)=α(k)

∑
ϑ

valϑ(I
1, . . . , Id),

(IV.10)
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where the last sum is over all assignments ϑ : boxes(T ) →
[dm] respecting T .

In the following we write β + e1 := β + (1, 0, . . . , 0).
Multiplying p with X1 yields X1p =

∑
β∈CN (m) cβX

β+e1 ,

hence, after applying (IV.5),

(X1p)
∗ =

∑
β∈CN (m)

cβ

(
m

β + e1

)
(X∗)β+e1

=
∑

β∈CN (m)

cβ
∑

J:ζ(J)=β+e1

X∗
J .

Taking the dth tensor power and expanding yields(
(X1p)

∗)⊗d
=

∑
α:[d]→CN (m)

∑
J1,...,Jd

ζ(Jk)=α(k)+e1

CαX
∗
J1 ⊗ · · · ⊗X∗

Jd .

Using Prop. III.3, we see that vT ′ , (X1p)
⊗d〉 equals∑

α:[d]→CN (m)

Cα

∑
ζ(Jk)=α(k)+e1

〈vT ′ , XJ1 ⊗ · · · ⊗XJd〉

=
∑

α:[d]→CN (m)

Cα

d!((m+ 1)!)d

∑
ζ(Jk)=α(k)+e1

∑
ϑ′

valϑ′(J),

where we abbreviated J := (J1, . . . , Jd) and the last sum

is over all assignments ϑ′ : boxes(T ′) → [d(m + 1)] respect-

ing T ′.
The following claim, together with (IV.10) and the above,

implies that 〈vT ′ , (X1p)
⊗d〉 = 〈vT , p⊗d〉, which is the asserted

equality.

Claim. We have for all α : [d]→ CN (m),∑
ζ(Jk)=α(k)+e1

∑
ϑ′

valϑ′(J
1, . . . , Jd)

= (m+ 1)d
∑

ζ(Ik)=α(k)

∑
ϑ

valϑ(I
1, . . . , Id).

It remains to show the claim. Suppose we have an asssign-

ment ϑ′ : boxes(T ′) → [d(m+ 1)] respecting T ′, and a tuple

(J1, . . . , Jd) of lists in [N ]m such that valϑ′(J
1, . . . , Jd) �= 0.

The d singleton boxes of T ′ that have been added to T are

mapped to different blocks by ϑ′. Moreover, those boxes

are mapped to positions that are assigned the value 1 by

(J1, . . . , Jd). Now we remove these positions to obtain a new

tuple (I1, . . . , Id) of lists. This process is best explained by

an example. For instance, suppose that d = 2,m = 3, and

J1 = (2, 1, 1, 2), J2 = (1, 1, 2, 2). Let �1 and �2 denote the

singleton boxes added to T . Assume that ϑ′(�1) = 2 and

ϑ′(�2) = 5. This means that �1 is mapped to the second

position of the block B1 = {1, 2, 3, 4} and �2 is mapped

to the first position of the block B2 = {5, 6, 7, 8}. In both

positions, J1 and J2 provide the value 1. After removing the

two positions we get the lists I1 = (2, 1, 2), J2 = (1, 2, 2).
By adjusting for the positions shifts, we obtain from ϑ′

an assignment ϑ : boxes(T ′) → [dm] that clearly respects T .

A moment’s thought shows that the values are preserved:

valϑ′(J
1, . . . , Jd) = valϑ(I

1, . . . , Id). In addition, if ζ(Jk) =

α(k) + e1, then ζ(Ik) = α(k).
Summarizing, we have set up a map from the set

of pairs (ϑ′, (J1, . . . , Jd)), such that ϑ′ respects T ′,
valϑ′(J

1, . . . , Jd) �= 0, and ζ(Jk) = α(k) + e1 for all k,

to the set of pairs (ϑ, (I1, . . . , Id)), such that ϑ respects T ,

valϑ(I
1, . . . , Id) �= 0, and ζ(Ik) = α(k) for all k.

It is easily checked that that all the fibers of this map have

the cardinality (m + 1)d. The reason is that in each of the d
blocks, we have m + 1 possibilities to insert a new position,

which is then assigned the value 1 under the Jk to be defined.

This completes the proof of the claim.

IV.11 Proposition. Suppose μ 	 md such that μ2 ≤ m and
let n ≥ m.

1) We have aμ(d[m]) = aμ+(d(n−m))(d[n]) and thus the
lifting in Lemma IV.7(1) is an isomorphism.

2) Suppose that λ 	 nd satisfies λ2 ≤ m and λ2 + |λ̄| ≤
md. Then every highest weight vector F of weight λ
in SymdSymnV is obtained by lifting a highest weight
vector f in SymdSymmV of weight μ 	 md such that
μ̄ = λ̄.

Proof. (1) This is shown in [42, Cor. 1.8] or [14].

(2) Note that λ2 + |λ̄| ≤ md is the number of boxes of λ
that appear in columns of that are not singleton columns. We

can therefore shorten the given λ to a partition μ 	 md by

removing singleton columns. Then μ̄ = λ̄ and λ = μ+(d(n−
m)) and we conclude with part one.

B. Lifting the outer degree

We keep the notation V = CN with the standard basis

X1, . . . , XN from the previous section. If we view an element

p = cXm
1 + · · · in SymmV as a polynomial in X1, . . . , XN ,

then 〈X⊗m
1 , p〉 = c extracts the leading coefficient of p. For

this reason, we shall write lc := X⊗m
1 ∈ SymmV . We note

that lc is a highest weight vector with the weight (m). We

claim that for v1, . . . , vm ∈ V

〈lc, v1 ⊗ . . .⊗ vm〉 = 1

m!

∑
π∈Sm

〈X1, vπ(1)〉 · · · 〈X1, vπ(m)〉.
(IV.12)

Indeed, with the symmetrizer Πm := 1
m!

∑
π∈Sm

π defining

the projection Πm : ⊗m V → SymmV , we have

〈lc, v1 ⊗ . . .⊗ vm〉 = 〈lc,Πm(v1 ⊗ . . .⊗ vm)〉 =
1

m!

∑
π∈Sm

〈X⊗m
1 , vπ(1) ⊗ . . .⊗ vπ(m)〉,

since the kernel of Πm is orthogonal to SymmV .

For a vector space W , the symmetric product (cf. [36])

SymaW×SymbW → Syma+bW, (p, q) �→ p·q := Πa+b(p⊗q)
is defined by symmetrizing p ⊗ q. (This is just the usual

multiplication in the polynomial ring.)

For k ≤ d we consider the injective linear map

SymkSymmV → SymdSymmV, g �→ lcd−k · g, (IV.13)

where the multiplication refers to the symmetric product (with

391392392



W = SymmV ).

IV.14 Lemma. 1) For ν 	 mk, d ≥ k, μ := ν + ((d −
k)m), the map (IV.13) induces an injective linear map

HWVν(Sym
kSymmV )→ HWVμ(Sym

dSymmV ).

2) Let T be a (k,m, ν)-tableau class and the tableau class
T ′′ be obtained from T by adding m copies of d − k
new letters to the first row (in any order). Then vT ′′ is
obtained as the image of vT under above map.

IV.15 Proposition. Suppose ν 	 mk such that ν2 ≤ k and let
d ≥ k.

1) Put μ := ν + ((d − k)m). Then any (d,m, μ)-tableau
class T ′′ is obtained from a (k,m, ν)-tableau class T
as in Lemma IV.14(2).

2) The lifting in Lemma IV.14(1) is an isomorphism and
thus aν(k[m]) = aν+((d−k)m)(d[m]).

3) Suppose that μ 	 md satisfies μ2 + |μ̄| ≤ k. Then
every highest weight vector f in HWVμ(Sym

dSymmV )
is of the form f = lcd−k · g for some g ∈
HWVν(Sym

kSymmV ) with ν 	 mk and ν̄ = μ̄.

Proof. (1) Let T ′′ be a (d,m, μ) tableau class. Since a letter

can occur at most once in a column of T ′′, there are at least

d − μ2 = d − ν2 ≥ d − k many letters in T ′′ that appear

in singleton columns only. Let T denote the tableau class

obtained by removing all m occurrences of of these d − k
letters from the singleton columns. Then T has the shape ν
and T ′′ is obtained from T as in Lemma IV.14(2).

(2) This follows by combining part one with

Lemma IV.14(2) and Prop. II.7.

(3) Since μ2 + |μ̄| ≤ k is the number of boxes of μ that

are not singleton columns, we can shorten μ to a partition

ν 	 km by removing singleton columns. Then ν̄ = λ̄ and

μ = ν + ((d− k)m). We conclude with part one.

We remark that the stability of plethysm in Prop. IV.15(1)

was first shown in [29] with a geometric method.

V. PROOF OF THM. I.5

A. Small degrees or extremely long first rows

To warm up, we first show that (n) occurs in C[Ωn]1.

Indeed, the highest weight vector lc ∈ Sym1SymCn2

of weight

(n) from Section IV (b) satisfies lc(Xn
11) = 1 (where X11 is

the first variable), and clearly Xn
11 ∈ Ωn.

The following result deals with the case of of partitions

λ 	 nd where d is small.

V.1 Proposition. Let λ 	 nd such that there exists a positive
integer m satisfying |λ̄| ≤ md and md2 ≤ n. Then every F ∈
HWVλ(Sym

dSymnV ) does not vanish on Ωn. In particular,
if λ occurs in SymdSymnV , then λ occurs in C[Ωn]d.

Proof. The case d = 1 is trivial as (n) occurs in C[Ωn]1, as

noted before. Suppose d ≥ 2. We consider the lifting map

SymdSymmdV → SymdSymnV , cf. (IV.6). Since λ2 ≤ |λ̄| ≤
md and λ2 + |λ̄| ≤ 2|λ̄| ≤ 2md ≤ md · d, the assumptions of

Prop. IV.11(2) are satisfied and we conclude that F = f �n

for some f ∈ HWVμ(Sym
dSymmdV ). Moreover, f(p) =

F (Xn−md
1 p) for all p ∈ SymmdV . By Proposition II.9, f

does not vanish on p := �md
1 + · · · + �md

d for some linear

forms �1, . . . , �d. Hence F does not vanish on Xn−md
1 p. By

Thm. II.8 we have Xn−md
1 p ∈ Ωn, since n ≥ md · d.

Therefore, F does not vanish on Ωn.

The next result deals with the extreme situation, where the

body λ̄ is very small compared with the size of λ. (In this

situation, the splitting strategy in the proof of Prop. V.5 below

would fail.)

V.2 Proposition. Let λ 	 nd and assume there exist positive
integers s,m such that �(λ) ≤ m2, λ2 ≤ s, m2s2 ≤ n, and
m2s ≤ d. Then every F ∈ HWVλ(Sym

dSymnV ) of weight λ
does not vanish on Ωn.

Proof. We first consider the inner degree lifting

SymdSymsV → SymdSymnV . Since λ2 ≤ s and

λ2 + |λ̄| ≤ λ2 + (�(λ)− 1)λ2 = �(λ)λ2 ≤ m2s ≤ d ≤ ds,

the assumptions of Prop. IV.11(2) are satisfied and we con-

clude that F = f �n for some f ∈ HWVμ(Sym
dSymsV ) with

μ 	 ds and μ̄ = λ̄.

By assumption, k := m2s ≤ d. We continue with the outer

degree lifting map SymkSymsV → SymdSymsV , see (IV.13).

We have, using the above,

μ2 + |μ̄| = λ2 + |λ̄| ≤ m2s = k,

hence the assumptions of Prop. IV.15(2) are satisfied and

we have f = lcd−k · g for some highest weight vector

g ∈ SymkSymsV of weight ν 	 ks such that ν̄ = μ̄.

By Proposition II.9 we have g(�s1+ · · ·+�sk) �= 0 for generic

�1, . . . , �k ∈ V . Moreover, lc(�s1 + · · · + �sk) �= 0 for generic

�i. Using f = lcd−k · g, we see that f(�s1 + · · ·+ �sk) �= 0 for

generic �i. Since F = f �n, we have

F (Xn−s
1 (�s1 + �s2 + · · ·+ �sk)) = f(�s1 + �s2 + · · ·+ �sk) �= 0.

On the other hand, by Thm. II.8, the padded polynomial

Xn−s
1 (�s1 + �s2 + · · · + �sk) is contained in Ωn, as n ≥ sk

by assumption.

B. Building blocks and splitting technique

We construct as “building blocks” certain partitions that

occur in C[Ωn]. Due to Thm. II.8 and Lemma ?? this boils

down to prove that certain plethyms coefficients are nonzero.

We achieve this by providing explicit tableaux constructions

and showing that the corresponding highest weight vectors do

not vanish on a certain tensor.

In a first step we consider the case of even row length. Let

λ�M denote the partition λ + (M − |λ|), which is λ with a

prolonged first row so that λ�M has M boxes.

V.3 Proposition. Let N be even and n ≥ Nd. Then (d×N)�nd

occurs in C[Ωn]d.

Proof. We use the construction from [7]. Consider the unique
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(d,N, d×N)-tableau class T in which each letter appears in

only a single row and each row contains N coinciding letters.

Corollary (III.4) states that vT (X
N
1 + · · · + XN

d ) is nonzero

since N is even. By lifting f := vT ∈ SymdSymNV (see

Lemma IV.7), we get the HWV f �n ∈ SymdSymnV of weight

(d×N)�nd, which does not vanish on the padded power sum

Xn−N
1 (XN

1 + · · · + XN
d ). The latter is contained in Ωn by

Thm. II.8, since n ≥ dN . Therefore, f �n does not vanish on

Ωn.

In order to handle partitions with odd parts, we use as

further building blocks partitions obtained from rectangles by

adding a single row and a single column.

The proof of the following technical result is based on

explicit constructions of highest weight vectors and omitted

for lack of space.

V.4 Theorem. Let 2 ≤ b, c ≤ m2 and let n ≥ 24m6. Then
there exists an even i ≤ 2m4, such that

λ = b× 1 + c× i+ 1× j

occurs in C[Ωn]3m4 for j = 3m4n− b− ic.

The splitting strategy in the following proof is a refinement

of the one in [22].

V.5 Proposition. Given a partition λ with |λ| = nd such
that there exists m ≥ 2 with �(λ) ≤ m2, m10 ≤ |λ̄| ≤ md,
n ≥ 24m6, and d > 4m6. Then λ occurs in C[Ωn]d.

Proof. Let L := �(λ) and ck denote the number of columns

of length k in λ for 1 ≤ k ≤ L. Let K be the index k ≥ 2,

for which ck is maximal, i.e. cK = max(ck; k = 2, . . . , L).
By assumption, we have 2 ≤ K ≤ m2 and

m10 ≤ |λ̄| =
L∑

k=2

(k−1)ck ≤ cK

L∑
k=2

(k−1) ≤ cK
L2

2
≤ cK

m4

2
,

hence cK ≥ 2m6.

The columns of odd length of λ need a special treatment:

let S denote the set of integers k ∈ {2, . . . , L} for which ck is

odd. For k ∈ S we define the partition ωk := k× 1+K × ik,

where the even integer ik ≤ 2m4 is taken from Thm. V.4,

so that ω�3nm4

k occurs in C[Ωn]3m4 . (Here we have used the

assumption n ≥ 24m6.)

Assume first that K �∈ S, that is, cK is even. Then we can

split λ vertically in rectangles as follows:

λ = 1× c1 +
L∑

k=2
k �∈S∪{K}

k × ck +
L∑

k=2
k∈S

k × ck +K × cK

= 1×c1+
L∑

k=2
k �∈S∪{K}

k×ck+
L∑

k=2
k∈S

k×(ck−1)+
∑
k∈S

ωk+K×
(
cK−

∑
k∈S

ik

)
.

If, for k ≤ L, we set dk := ck if k �∈ S∪{K} and dk := ck−1
if k ∈ S, and define dK := cK −

∑
k∈S ik, then the above

can be briefly written as

λ = 1× c1 +
L∑

k=2

k × dk +
∑
k∈S

ωk. (V.6)

By construction, all dk are even. It is crucial to note that

dK = cK −
∑
k∈S

ik ≥ cK − (m2 − 1) · 2m4 ≥ cK − 2m6 ≥ 0,

where we have used ik ≤ 2m4 for the first inequality.

In the case where K ∈ S, we achieve the same de-

composition as in (V.6) with the modified definition dK :=
cK − 1−∑

k∈S ik. Here, as well dK ≥ 0 and all dk are even.

We need to round down rational numbers to the next even

number, so for a ∈ Q we define �a� := 2�a/2�. Note that

�a� ≥ a− 2 for all a ∈ Q. Hence �n/k� ≥ n/k − 2 ≥ 2 for

all 2 ≤ k ≤ m2, since n ≥ 4m2.

Using division with remainder, let us write dk = qk�
n
k�+rk

with 0 ≤ rk < �n
k�. Then we split k × dk = qk(k × �n

k�) +
k × rk. Since dk is even and �n/k� is even, rk is even as

well. From (V.6) we obtain that the partition

μ :=

L∑
k=2

qk(k × �n/k�)�nk +

L∑
k=2

(k × rk)
�nk +

∑
k∈S

ω�3nm4

k

(V.7)

coincides with λ in all but possibly the first row.

Since �n/k� ≤ n/k, rk ≤ n/k, and both �n/k� and rk are

even, Prop. V.3 implies that (k × �n/k�)�nk and (k × rk)
�nk

occur as highest weights in C[Ωn]k. Moreover, Thm. V.4 tells

us that ω�3nm4

k occurs as a highest weight in C[Ωn]3m4 . The

semigroup property implies that μ occurs in C[Ωn].

Claim. |μ| ≤ dn.

Let us finish the proof assuming the claim. If |μ| ≤ dn, we

can obtain λ from μ by adding boxes to the first row of μ.

Note that |λ| − |μ| is a multiple of n. Since (n) ∈ C[Ωn], the

semigroup property implies that λ occurs in C[Ωn]d.

It remains to verify the claim. From (V.7) we get

|μ| ≤
L∑

k=2

(qknk + nk + 3nm4).

Noting �a� ≥ a−2 we get qk ≤ dk

�n/k� ≤ kdk

n−2k . This implies

|μ| ≤ n
L∑

k=2

( k2dk
n− 2k

+ k + 3m4
)
.

Using dk ≤ ck and L ≤ m2, we get

|μ| ≤ n

L∑
k=2

m2

n− 2m2
kck + n

m2∑
k=2

k + 3nm4(m2 − 1).

Noting that
∑L

k=2 kck = |λ̄|+ λ2 ≤ 2|λ̄|, we continue with

|μ| ≤ nm2

n− 2m2
· 2|λ̄|+ n

(m2(m2 + 1)

2
+ 3m4(m2 − 1)

)
≤ nm2

12m6 −m2
· |λ̄|+ n

(
3m6 − 5

2
m4 +

1

2
m2),

where we have used n > 24m6 for the second inequality.
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Plugging in the assumptions |λ̄| ≤ dm and d > 4m6, we

obtain

|μ| ≤ dnm3

11m6
+ 3nm6 ≤ dn

11
+ 3nm6 ≤ dn

11
+

3dn

4
< dn,

which shows the claim and completes the proof.

We can now complete the proof of our main result.

Proof of Thm. I.5. We may assume that m ≥ 2, as the case

m = 1 is trivial. Suppose that λ 	 nd occurs in C[Zn,m] and

n ≥ m25. Prop. IV.1 implies that |λ̄| ≤ md and �(λ) ≤ m2.

In the case of “small degree”, where n ≥ md2, Prop. V.1

implies that λ occurs in C[Ωn].
So we may assume that d >

√
n/m. In this case we have

d ≥ √
m25/m = m12. We conclude by two further case

distinctions.

If |λ̄| < m10, we can apply Prop. V.2 with s := m10 since

λ2 ≤ |λ̄| ≤ s, m2s2 = m22 ≤ n, and m2s = m12 ≤ d. Thus

λ occurs in C[Ωn]d.

Finally, if |λ̄| ≥ m10, then the above Prop. V.5 tells us that

λ occurs in C[Ωn]d.
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