
Truly Sub-cubic Algorithms for Language Edit Distance and RNA-Folding
via Fast Bounded-Difference Min-Plus Product

Karl Bringmann∗, Fabrizio Grandoni†, Barna Saha‡ and Virginia Vassilevska Williams§
∗Max Planck Institute for Informatics, Saarbrücken, Germany, Email: kbringma@mpi-inf.mpg.de

†IDSIA, University of Lugano, Switzerland, Email: fabrizio@idsia.ch
‡University of Massachusetts Amherst, College of Information and Computer Science, Email: barna@cs.umass.edu

§Stanford University, California, Email: virgi@cs.stanford.edu

Abstract—It is a major open problem whether the (min,+)-
product of two n by n matrices has a truly sub-cubic time
algorithm, as it is equivalent to the famous All-Pairs-Shortest-
Paths problem (APSP) in n-vertex graphs. There are a few
restrictions of the (min,+)-product to special types of matrices
that admit truly sub-cubic algorithms, each giving rise to a
special case of APSP that can be solved faster. In this paper
we consider a new, different and powerful restriction in which
one matrix can be arbitrary, as long as the other matrix has
“bounded differences” in either its columns or rows, i.e. any
two consecutive entries differ by only a small amount. We
obtain the first truly sub-cubic algorithm for this Bounded
Differences (min,+)-product (answering an open problem of
Chan and Lewenstein).

Our new algorithm, combined with a strengthening of
an approach of L. Valiant for solving context-free grammar
parsing with matrix multiplication, yields the first truly sub-
cubic algorithms for the following problems: Language Edit
Distance (a major problem in the parsing community), RNA-
folding (a major problem in bioinformatics) and Optimum
Stack Generation (answering an open problem of Tarjan).

Keywords-min-plus matrix multiplication; bounded differ-
ences; language edit distance; RNA folding; truly sub-cubic
algorithm; fast matrix multiplication

I. INTRODUCTION

The (min,+)-product (also called min-plus or distance
product) of two integer matrices A and B is the matrix

C = A � B such that Ci,j = mink{Ai,k + Bk,j}.1
Computing a (min,+)-product is a basic primitive used

in solving many other problems. For instance, Fischer and

Meyer [1] showed that the (min,+)-product of two n × n
matrices has essentially the same time complexity as that

of the All Pairs Shortest Paths problem (APSP) in n node

graphs, one of the most basic problems in graph algorithms.

APSP itself has a multitude of applications, from computing

graph parameters such as the diameter, radius and girth, to

This work was done in part while the authors were visiting the Simons
Institute for the Theory of Computing. FG was partially supported by the
ERC StG project NEWNET no. 279352 and the SNSF project APPROX-
NET no. 200021 159697/1. BS was partially supported by a NSF CCF
1464310 grant, a Yahoo ACE Award and a Google Faculty Research Award.
VVW was partially supported by NSF Grants CCF-1417238, CCF-1528078
and CCF-1514339, and BSF Grant BSF:2012338.

1By Mi,j we will denote the entry in row i and column j of matrix M .

computing replacement paths and distance sensitivity oracles

(e.g. [2], [3], [4]) and vertex centrality measures (e.g. [5],

[6]).

While the (min,+)-product of two n × n matrices has

a trivial O(n3) time algorithm, it is a major open problem

whether there is a truly sub-cubic algorithm for this problem,

i.e. an O(n3−ε) time algorithm for some constant ε > 0.

Following a multitude of polylogarithmic improvements over

n3 (e.g. [7], [8], [9]), a relatively recent breakthrough of

Williams [10] gave an O(n3/c
√
logn) time algorithm for

a constant c > 1. Despite this striking improvement, the

known running times for computing the (min,+)-product

are still not truly sub-cubic.

For restricted types of matrices, truly sub-cubic algorithms

are known. The probably most relevant examples are:

1) when all matrix entries are integers bounded in abso-

lute value by M , then the problem can be solved in

Õ(Mnω) time [11], where ω < 2.373 is the matrix

multiplication exponent [12], [13];

2) when each row of matrix A has at most D dis-

tinct values, then the (min,+)-product of A with

an arbitrary matrix B can be computed in time

Õ(Dn(3+ω)/2) [14].2

Among other applications, these restricted (min,+)-
products yield faster algorithms for special cases of APSP.

E.g., the distance product of type (1) is used to compute

APSP in both undirected [15], [16] and directed [17] graphs

with bounded edge weights, while the distance product of

type (2) is used to compute APSP in graphs in which each

vertex has a bounded number of distinct edge weights on its

incident edges [14].

A. Our Result

In this paper we significantly extend the family of matrices

for which a (min,+)-product can be computed in truly sub-

cubic time to include the following class.

Definition 1: A matrix X with integer entries is a W -
bounded differences (W -BD) matrix if for every row i and

2The same holds if A is arbitrary and B has at most D distinct values
per column.

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.48

374

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.48

375

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.48

375

every column j, the following holds

|Xi,j −Xi,j+1| ≤W and |Xi,j −Xi+1,j | ≤W

When W = O(1), we will refer to X as a bounded

differences (BD) matrix.

In this paper we present the first truly sub-cubic algorithm

for (min,+)-product of BD matrices, answering a question

of Chan and Lewenstein [18].

Theorem 1: There is an Õ(n2.8244) time randomized al-

gorithm and an Õ(n2.8603) time deterministic algorithm

that computes the (min,+)-product of any two n × n BD

matrices.

Indeed, our algorithm produces a truly sub-cubic running

time for W -BD matrices for nonconstant values of W as

well, as long as W = O(n3−ω−ε) for some constant ε > 0.

In fact, we are able to prove an even more general result:

suppose that matrix A only has bounded differences in its

rows or its columns (and not necessarily both). Then, A can

be (min,+)-multiplied by an arbitrary matrix B in truly

sub-cubic time:

Theorem 2: Let B be arbitrary and assume either of the

following:

i) for all i, j ∈ [n], |Ai,j −Ai+1,j | ≤W , or

ii) for all i, j ∈ [n], |Ai,j −Ai,j+1| ≤W .

If W ≤ O(n3−ω−ε) for any ε > 0, then A � B can be

computed in randomized O(n3−Ω(ε)) time. If W = O(1),
then A�B can be computed in randomized time O(n2.9217).

The main obstacle towards achieving a truly sub-cubic

algorithm for the (min,+)-product in general is the presence

of entries of large absolute value. In order to compare our

result with (1) and (2) from that point of view, assume for

a moment that ω = 2 (as conjectured by many). Then (1)

can perform a (min,+)-product in truly sub-cubic time if

both A and B have entries of absolute value at most M =
O(n1−ε) for some constant ε > 0, while (2), without any

other assumptions on A and B, achieves the same if at least
one of A and B has entries of absolute value at most M =
O(n1/2−ε). We can do the same when at least one of A and

B has entries of absolute value at most M = O(n1−ε).

B. Our Approach

Our approach has three phases.

Phase 1: additive approximation C̃ of the product
C = A � B: For BD matrices it is quite easy to obtain

an additive overestimate C̃ of C: Let us subdivide A and B
into square blocks of size Δ×Δ, for some small polynomial

value Δ = nδ . Thus the overall product reduces to the

multiplication of O((n/Δ)3) pairs of blocks (A′, B′). By

the bounded differences property, it is sufficient to compute

A′i,k + B′k,j for some triple of indices (i, k, j) in order to

obtain an overestimate of all the entries in A′ �B′ within an

additive error of O(ΔW). This way in truly sub-cubic time

we can compute an additive O(ΔW) overestimate C̃ of C.

Remark: It would seem that Phase 1 requires that the

matrices are BD, and one would not be able to use the

same approach to attack the (min,+)-product of general

matrices. We note that this is NOT the case: Phase 1 can

be performed for arbitrary integer matrices A and B as

well, provided one has an algorithm that given a very good

approximation C̃ can compute the correct product C; this

is exactly what the remaining phases do. To show this, we

use a scaling approach à la Seidel [15]. Assume that the

entries of A and B are nonnegative integers bounded by3

M , and obtain A′ and B′ by setting A′i,j = �Ai,j/2� and

B′i,j = �Bi,j/2�. Recursively compute A′ � B′, where the

depth of the recursion is logM and the base case is when

the entries of A and B are bounded by a constant, in which

case A′ � B′ can be computed in O(nω) time. Then we

can set C̃i,j = 2Ci,j for all i, j. This gives an overestimate

that errs by at most an additive 2 in each entry. Thus, if

all remaining phases (which compute the correct product

C from the approximation C̃) could be made to work for

arbitrary matrices, then Phase 1 would also work.

Phase 2: Correcting C̃ up to a few bad triples: The

heart of our approach comes at this point. We perform a

(non-trivial) perturbation of A and B, and then set to ∞
the entries of absolute value larger than c · ΔW for an

appropriate constant c. The perturbation consists of adding

the same vector V r
A (resp., V r

B) to each column of A (resp.,

row of B). Here V r
A and V r

B are random vectors derived from

the estimate C̃. Let Ar and Br be the resulting matrices.

Using (1) we can compute Cr = Ar � Br in truly sub-

cubic time O(ΔWnω) for sufficiently small W and Δ. The

perturbation is such that it is possible to derive from (Cr)i,j
the corresponding value (A�B)i,j = Ai,k+Bk,j unless one

of the entries Ar
i,k or Br

k,j was rounded to ∞.

The crux of our analysis is to show that (for some d)

after Õ(n3d) rounds of perturbations and associated bounded

entry (min,+)-products, there are at most O(n3−d) triples

(i, k, j) for which (a) |Ai,k + Bk,j − C̃i,j | ≤ c′ · ΔW for

some c′ = O(1) (i.e. k is a potential witness for Ci,j) and

(b) none of the perturbations had both Ar
i,k and Br

k,j finite.

Interestingly, our proof of correctness of Phase 2 relies

on an extremal graph theoretical lemma that bounds from

below the number of 4-cycles in sufficiently dense bipartite

graphs.

In a sense Phase 1 and 2 only leave O(n3−d) work to be

done: if we knew the “bad” triples that are not covered by

the perturbation steps, we could simply iterate over them in

a brute-force way, fixing C̃ to the correct product C. Since

Phases 1 and 2 do not use the fact that A and B are BD, if

we could find the bad triples efficiently we would obtain a

truly sub-cubic algorithm for the (min,+)-matrix product!

Phase 3: Finding and fixing the bad triples: To fix

the bad triples, one could try to keep track of the triples

3We can assume that M is a power of 2.

375376376

covered in each perturbation iteration. For arbitrary matrices

A and B this would not give a truly sub-cubic algorithm

as the number of triples is already n3. For BD matrices,

however, we do not need to keep track of all triples, but

it suffices to consider the triples formed by the upper-most

left-most entries of the blocks from Phase 1, since these

entries are good additive approximations of all block entries.

The number of these block representative triples is only

O(n/Δ)3) where Δ is the block size (from Phase 1). Thus,

instead of spending at least n3 time, we obtain an algorithm

spending O(ρ · (n/Δ)3) time, where ρ is the number of

perturbation rounds (from Phase 2). After finding the bad

block representative triples, we can iterate over their blocks

in a brute-force manner to fix C̃ and compute C. Since each

triple in the blocks of a bad block representative triple must

also be bad, the total number of triples considered by the

brute-force procedure is O(n3−d) as this is the total number

of bad triples.

We reiterate that this is the only phase of the algorithm

that does not work for arbitrary matrices A and B.

C. Applications

The notion of BD matrices is quite natural and has several

applications. Indeed, our original motivation for studying

the (min,+)-product of such matrices came from a natu-

ral scored version of the classical Context-Free Grammar

(CFG) parsing problem. It turns out that a fast algorithm

for a bounded difference version of scored parsing implies

the first truly sub-cubic algorithms for some well-studied

problems such as Language Edit Distance, RNA-Folding and

Optimum Stack Generation.

Recall that in the parsing problem we are given a CFG

G and a string σ = σ1 . . . σn of n terminals. Our goal is to

determine whether σ belongs to the language L generated

by G. For ease of presentation and since this covers most

applications, we will assume unless differently stated that

the size of the grammar is |G| = O(1), and we will not

explicitly mention the dependency of running times on the

grammar size.4 We will also assume that G is given in

Chomsky Normal Form (CNF)5. In a breakthrough result

Valiant [19] proved a reduction from parsing to Boolean

matrix multiplication: the parsing problem can be solved in

O(nω) time.

One can naturally define a scored generalization of the

parsing problem (see, e.g., [20]). Here each production rule

p in G has an associated integer score (or cost) s(p).
The goal is to find a sequence of production rules of

minimum total score that generates a given string σ. It

is relatively easy to adapt Valiant’s parser to this scored

parsing problem, the main difference being that Boolean

matrix multiplications are replaced by (min,+)-products. It

4Our approach also works when |G| is a sufficiently small polynomial.
5Note that it is well-known that any context free grammar can be

transformed into an equivalent CNF grammar.

follows that scored parsing can be solved up to logarithmic

factors in the time needed to perform one (min,+)-product

(see also [21]). In particular, applying Williams’ algorithm

for the (min,+)-product [10], one can solve scored parsing

in O(n3/2Θ(
√
logn)) time, which is the current best running

time for this problem.

For a nonterminal X let s(X,σ) be the minimum total

score needed to generate string σ from X (where the

grammar G is assumed to be clear from the context). Let us

define a bounded difference notion for CFGs. Intuitively, we

require that adding or deleting a terminal at one endpoint of

a string does not change the corresponding score by much.

Definition 2: A CFG G is a W -bounded differences (W -

BD) grammar if, for any non-terminal X , terminal x, and

string σ of terminals, the following holds:

|s(X,σ)−s(X,σx)| ≤W and |s(X,σ)−s(X,xσ)| ≤W

When W = O(1), we will refer to G as a bounded

differences (BD) grammar.

Via a simple but very careful analysis of the scored

version of Valiant’s parser, we are able to show that the

scored parsing problem on BD grammars can be reduced to

the (min,+)-product of BD matrices (the proof is deferred

to the full version).

Theorem 3: Let O(nα) be the time needed to perform

one (min,+)-product of two n× n BD matrices. Then the

scored parsing problem on BD grammars in CNF can be

solved in Õ(nα) time.

Corollary 1: The scored parsing problem on BD gram-

mars in CNF can be solved in Õ(n2.8244) randomized time

and Õ(n2.8603) deterministic time.

BD grammars appear naturally in relevant applications.

Consider for example the well-studied Language Edit Dis-

tance problem (LED) [20], [22], [23], [24], [21], [25], [26].

Here we are given a CFG G and a string σ of terminals. We

are allowed to edit σ by inserting, deleting and substituting
terminals. Our goal is to find a sequence of such edit

operations of minimum length so that the resulting string σ′

belongs to the language L generated by G.6 As already

observed by Aho and Peterson in 1972 [20], LED can be

reduced to scored parsing. Indeed, it is sufficient to assign

score zero to the production rules of the input grammar,

and then augment the grammar with production rules of

score 0 and 1 that model edit operations. We show that, by

performing the above steps carefully, the resulting scored

grammar is BD, leading to a truly sub-cubic algorithm for

LED via Corollary 1 (to appear in the full version). We

remark that finding a truly sub-cubic algorithm for LED was

wide open even for very restricted cases. For example, con-

sider Dyck LED, where the underlying CFG represents well-

balanced strings of parentheses. Developing fast algorithms

6In some variants of the problem each edit operation has some integer
cost upper bounded by a constant. Our approach clearly works also in that
case.

376377377

for Dyck LED and understanding the parsing problem for

the parenthesis grammar has recently received considerable

attention [27], [24], [28], [29], [30], [31]. Even for such

restricted grammars no truly sub-cubic exact algorithm was

known prior to this work.

Another relevant application is related to RNA-folding,

a central problem in bioinformatics defined by Nussinov

and Jacobson in 1980 [32]. They proposed the following

optimization problem, and a simple O(n3) dynamic pro-

gramming solution to obtain the optimal folding. Let Σ be

a set of letters and let Σ′ = {c′ | c ∈ Σ} be the set of

“matching” letters, such that for every letter c ∈ Σ the pair

c, c′ matches. Given a sequence of n letters over Σ ∪ Σ′,
the RNA-folding problem asks for the maximum number of

non-crossing pairs {i, j} such that the ith and jth letter in

the sequence match. In particular, if letters in positions i and

j are paired and if letters in positions k and l are paired, and

i < k then either they are nested, i.e., i < k < l < j or they

are non-intersecting, i.e., i < j < k < l. (In nature, there are

4 types of nucleotides in an RNA molecule, with matching

pairs A,U and C,G, i.e., |Σ| = 2.) We can rephrase RNA-

folding as follows. We are given the CFG with productions

S → SS | ε and S → σSσ′ | S → σ′Sσ for any σ ∈ Σ with

matching σ′ ∈ Σ′. The goal is to find the minimum number

of insertions and deletions of symbols on a given string

σ that will generate a string σ′ consistent with the above

grammar. This is essentially a variant of LED where only

insertions and deletions (and no substitutions) are allowed.

Despite considerable efforts (e.g. [33], [34], [35], [32]),

no truly sub-cubic algorithm for RNA-folding was known

prior to our work. By essentially the same argument as for

LED, it is easy to obtain a BD scored grammar modeling

RNA-folding. Thus we immediately obtain a truly sub-cubic

algorithm to solve this problem via Corollary 1.

As a final application, consider the Optimum Stack Gen-

eration problem (OSG) described by Tarjan in [36]. Here, we

are given a finite alphabet Σ, a stack S, and a string σ ∈ Σ∗.
We would like to print σ by a minimum length sequence of

three stack operations: push(), emit (i.e., print the top charac-

ter in the stack), and pop. For example, the string BCCAB
can be printed via the following sequence of operations:

push(B), emit(B), push(C), emit(C), emit(C), pop(C),
push(A), emit(A), pop(A), emit(B), pop(B). While there

is a simple O(n3) time algorithm for OSG, Tarjan suspected

this could be improved. In the full version, we show that

OSG can be reduced to scored parsing on BD grammars.

This leads to the first truly sub-cubic algorithm for OSG.

Let us summarize the mentioned applications of our

approach.

Theorem 4: LED, RNA-folding, and OSG can be solved

in Õ(n2.8244) randomized time and Õ(n2.8603) deterministic

time.

Moreover, our techniques also lead to a truly subquadratic

algorithm for bounded monotone (min,+)-convolution.

A subquadratic algorithm was already and very recently

achieved in a breakthrough result by Chan and Lewen-

stein [18], however with very different techniques. For

two sequences a = (a1, . . . , an) and b = (b1, . . . , bn)
the (min,+)-convolution of a and b is the vector c =
(c1, . . . , cn) with ck = mini{ai + bk−i}. Assume n = m2.

A standard reduction from (min,+)-convolution to the

(min,+)-matrix product constructs the m × m matrices

Ar with Ar
i,k = arm+i+k (for 1 ≤ r ≤ m) and B

with Bk,j = bjm−k. Then from the products Ar � B
we can infer the (min,+)-convolution of a and b in

time O(n3/2). Note that if a has bounded differences,

then the matrices Ar have bounded differences along the

rows, while if b has bounded differences, then B has

bounded differences along the columns. Theorem 2 now

allows us to compute the m (min,+)-products in time

O(m ·m2.9217) = O(n1.961), obtaining a subquadratic algo-

rithm for BD (min,+)-convolution. As observed by Chan

and Lewenstein, computing the (min,+)-convolution over

bounded monotone sequences is equivalent to computing it

over bounded difference sequences.

We envision other applications of our BD (min,+)-
product algorithm to come in the future.

D. Related Work

Language Edit Distance: LED is among the most

fundamental and best studied problems related to strings

and grammars [20], [22], [23], [24], [21], [25], [26]. It

generalizes two basic problems in computer science: parsing

and string edit distance computation. In 1972, Aho and

Peterson presented a dynamic programming algorithm for

LED that runs in O(|G|2n3) time [20], which was improved

to O(|G|n3) by Myers in 1985 [22]. These algorithms are

based on the popular CYK parsing algorithm [37] with the

observation that LED can be reduced to a scored parsing

problem [20]. This implies the previous best running time

of O(n3/2Θ(
√
logn)). In a recent paper [21], Saha showed

that LED can be solved in O(nω

poly(ε)) time if we allow to

approximate the exact edit distance by a (1+ ε)-factor. Due

to known conditional lower bound results for parsing [23],

[25], LED cannot be approximated within any multiplicative

factor in time o(nω) (unless cliques can be found faster).

Interestingly, if we only allow insertions as edit operations,

then [21] also showed that a truly sub-cubic exact algorithm

is unlikely due to a reduction from APSP [3]. In contrast,

here we show that with insertions and deletions (and possibly

substitutions) as edit operations, LED is solvable in truly

sub-cubic time. LED provides a very generic framework for

modeling problems with many applications (e.g. [38], [39],

[40], [41], [42], [43], [44]). A fast exact algorithm for it is

likely to have tangible impact.

RNA-Folding: Computational approaches to finding the

secondary structure of RNA molecules are used extensively

in bioinformatics applications. Since the seminal work of

377378378

Nussinov and Jacobson [32], a multitude of sophisticated

RNA-folding algorithms with complex objectives and soft-

wares have been developed7, but the basic dynamic pro-

gramming algorithm of Nussinov and Jacobson remains at

the heart of all of these. Despite much effort, only mild

improvements in running time have been achieved so far

[33], [34], [35], and obtaining a truly sub-cubic algorithm

for RNA-folding has remained open till this work.

Abboud et al. [25] showed that obtaining an algorithm for

RNA-folding that runs in O(nω−ε) time for any ε > 0 would

result in a breakthrough for the Clique problem. Moreover,

their results imply that any truly sub-cubic algorithm for

RNA-folding must use fast matrix multiplication, unless

there are fast algorithms for Clique that do not use fast

matrix multiplication. Their results hold for an alphabet Σ
of size 13, which was recently improved to |Σ| = 2 [45].

Dyck LED: A problem closely related to RNA-folding

is Dyck language edit distance, which is LED for the

grammar of well-balanced parentheses. For example, [()]
belongs to the Dyck language, but [) or][do not. The

RNA grammar is often referred to as “two-sided Dyck”,

where][is also a valid match. Dyck edit distance with

insertion and deletion generalizes the widely-studied string

edit distance problem [46], [47], [48], [49], [50], [51]. When

approximation is allowed, a near-linear time O(poly log n)-
approximation algorithm was developed by Saha [24]. More-

over, a (1 + ε)-approximation in O(nω) time was shown

in [21] for any constant ε > 0. Abboud et al. [25] related

the Dyck LED problem to Clique with the same implica-

tions as for RNA-folding. Thus, up to a breakthrough in

Clique algorithms, truly sub-cubic Dyck LED requires fast

matrix multiplication. Prior to our work, no sub-cubic exact

algorithm was known for Dyck LED.

E. Preliminaries and Notation

In this paper, by “randomized time t(n)” we mean a

zero-error randomized algorithm running in time t(n) in

expectation, and also with high probability.

As is typical, we denote by ω < 2.3729 [12], [13]

the exponent of square matrix multiplication, i.e. ω is the

infimum over all reals such that n×n matrix multiplication

over the complex numbers can be computed in nω+o(1) time.

For ease of notation and as is typical in the literature, we

shall omit the o(1) term and write O(nω) instead. We denote

the running time to multiply an a × b matrix with a b × c
matrix by M(a, b, c) [52]. As in (1) above we have the

following:

Lemma 1 ([11]): Let A,B be a × b and b × c matrices

with entries in {−M,−M +1 . . . ,M} ∪ {∞}. Then A�B
can be computed in time Õ(M ·M(a, b, c)). In particular,

for a = b = c = n this running time is Õ(Mnω).

7see https://en.wikipedia.org/wiki/List of RNA structure prediction
software

Organization: In the remainder of this extended ab-

stract we give a full proof of our main technical result,

a truly sub-cubic algorithm for the (min,+)-product of

BD matrices. In the full version, we show how bounded

difference scored parsing can be solved asymptotically in the

same time as computing a single BD (min,+)-product, and

we present reductions from LED, RNA-folding, and OSG

to scored parsing on BD grammars. Also in the full version

we show how to further reduce the running time of our BD

(min,+)-product algorithm, and how to derandomize and

generalize it, thus proving Theorems 1 and 2.

II. FAST BOUNDED-DIFFERENCES (min,+) PRODUCT

In this section we present our fast (min,+) product

algorithm for BD matrices. For ease of presentation, we will

focus here only on the case that both input matrices A and B
are BD. Furthermore, we will present a simplified random-

ized algorithm which is still truly sub-cubic. Refinements

of the running time, derandomization, and generalizations

are discussed in the full version of this paper. Let A and B
be n × n matrices with W -bounded differences. We write

C = A�B for the desired output and denote by Ĉ the result

computed by our algorithm. Our algorithm consists of the

following three main phases (see also Algorithm 1).

A. Phase 1: Computing an approximation

Let Δ be a positive integer that we later fix as a small

polynomial8 in n. We partition [n] into blocks of length Δ
by setting I(i′) := {i ∈ [n] | i′ − Δ < i ≤ i′} for any i′

divisible by Δ. From now on by i, k, j we denote indices in

the matrices A,B, and C and by i′, k′, j′ we denote numbers

divisible by Δ, i.e., indices of blocks.

The first step of our algorithm is to compute an entry-wise

additive O(ΔW)-approximation C̃ of A�B. Since A and B
are W -BD, it suffices to approximately evaluate A�B only

for indices i′, k′, j′ divisible by Δ. Specifically, we compute

C̃i′,j′ = min{Ai′,k′ + Bk′,j′ | k′ divisible by Δ}, and set

C̃i,j := C̃i′,j′ for any i ∈ I(i′), j ∈ I(j′), see lines 1-3

of Algorithm 1. The next lemma shows that C̃ is a good

approximation of C.

Lemma 2: For any i′, k′, j′ divisible by Δ and any

(i, k, j) ∈ I(i′)× I(k′)× I(j′) we have

(1) |Ai,k −Ai′,k′ | ≤ 2ΔW, (2) |Bk,j −Bk′,j′ | ≤ 2ΔW,

(3) |Ci,j − Ci′,j′ | ≤ 2ΔW, (4) |Ci,j − C̃i,j | ≤ 4ΔW.

Proof: Consider the first statement. Observe that we

can move from Ai,k to Ai′,k in i′ − i ≤ Δ steps each time

changing the absolute value by at most W , hence |Ai,k −
Ai′,k| ≤ ΔW . Similarly, we can move from Ai′,k to Ai′,k′ .

The overall absolute change is therefore at most 2ΔW . The

proof of the second claim is analogous.

8We can assume that both n and Δ are powers of two, so in particular
we can assume that Δ divides n.

378379379

For the third statement, let k be such that Ci,j = Ai,k +
Bk,j . Then Ci′,j′ ≤ Ai′,k +Bk,j′ ≤ Ai,k +Bk,j +2ΔW =
Ci,j +2ΔW . In the second inequality we used the fact that

Ai′,k ≤ Ai,k + ΔW and Bk,j′ ≤ Bk,j + ΔW from the

same argument as above. Symmetrically, we obtain Ci′,j′ ≤
Ci,j + 2ΔW .

For the last statement, note that C̃i,j = C̃i′,j′ by construc-

tion. Let k′ be divisible by Δ and such that C̃i′,j′ = Ai′,k′+
Bk′,j′ . Then Ci,j ≤ Ai,k′+Bk′,j ≤ Ai′,k′+Bk′,j′+2ΔW =
C̃i′,j′+2ΔW , where again the second inequality exploits the

above observation. For the other direction, let k be such that

Ci,j = Ai,k + Bk,j , and consider k′ with k ∈ I(k′). Then

C̃i′,j′ ≤ Ai′,k′+Bk′,j′ ≤ Ai,k+Bk,j+4ΔW = Ci,j+4ΔW ,

where in the second inequality we exploited (1) and (2).

B. Phase 2: Randomized reduction to (min,+)-product with
small entries

The second step of our algorithm is the most involved

one. The goal of this step is to change A and B in a

randomized way to obtain matrices where each entry is ∞
or has small absolute value, thus reducing the problem to

Lemma 1. This step will cover most triples i, k, j, but not

all: the third step of the algorithm will cover the remaining

triples by exhaustive search. We remark that Phase 2 works

with arbitrary matrices A and B (assuming we know an

approximate answer C̃ as computed in Phase 1).
The following observation is the heart of our argument.

For any vector F = (F1, . . . , Fn), adding Fk to every entry

Ai,k (∀i) and subtracting Fk from every entry Bk,j (∀j) does

not change the product A � B. Similarly, for n-dimension

vectors X and Y , adding Xi to every entry Ai,k and adding

Yj to every entry Bk,j changes the entry (A�B)i,j by +Xi+
Yj , which we can cancel after computing the product.

Specifically, we may fix indices ir, jr and consider the

matrices Ar with Ar
i,k := Ai,k + Bk,jr − C̃i,jr and Br

with Br
k,j := Bk,j − Bk,jr + C̃ir,jr − C̃ir,j . Then from

Cr := Ar � Br we can infer C = A � B via the equation

Ci,j = Cr
i,j + C̃i,jr − C̃ir,jr + C̃ir,j .

We will set an entry of Ar or Br to∞ if its absolute value

is more than 48ΔW . This allows to compute Cr = Ar �Br

efficiently using Lemma 1. However, it does not correctly

compute C = A�B. Instead, we obtain values Ĉr
i,j := Cr

i,j+

C̃i,jr − C̃ir,jr + C̃ir,j that fulfill Ĉr
i,j ≥ Ci,j . Moreover, if

neither Ar
i,k nor Br

k,j was set to ∞ then Ĉr
i,j ≤ Ai,k+Bk,j ;

in this case the contribution of i, k, j to Ci,j is incorporated

in Ĉr
ij (and we say that i, k, j is “covered” by Ar, Br, see

Definition 3). We repeat this procedure with independently

and uniformly random ir, jr ∈ [n] for r = 1, . . . , ρ many

rounds, where 1 ≤ ρ ≤ n is a small polynomial in n to be

fixed later. Then Ĉ is set to the entry-wise minimum over

all Ĉr. This finishes the description of Phase 2, see lines

4–14 of Algorithm 1.
In the analysis of this step of the algorithm, we want to

show that w.h.p. most of the “relevant” triples i, k, j get

covered: in particular, all triples with Ai,k+Bk,j = Ci,j are

relevant, as these triples define the output. However, since

this definition would depend on the output Ci,j , we can

only (approximately) check a weak version of relevance,

see Definition 3. Similarly, we need a weak version of being

covered.

Definition 3: We call a triple (i, k, j)

• strongly relevant if Ai,k +Bk,j = Ci,j ,

• weakly relevant if |Ai,k +Bk,j − Ci,j | ≤ 16ΔW ,

• strongly r-uncovered if for all 1 ≤ r′ ≤ r we have

|Ar′
i,k| > 48ΔW or |Br′

k,j | > 48ΔW , and

• weakly r-uncovered if for all 1 ≤ r′ ≤ r we have

|Ar′
i,k| > 40ΔW or |Br′

k,j | > 40ΔW .

A triple is strongly (resp., weakly) uncovered if it is strongly

(resp., weakly) ρ-uncovered.

The next lemma gives a sufficient condition for not being

weakly r-uncovered.

Lemma 3: For any i, k, j and ir, jr, if all triples (i, k, jr),
(ir, k, jr), (ir, k, j) are weakly relevant then (i, k, j) is not

weakly r-uncovered.

Proof: From the assumption and C̃ being an additive

4ΔW -approximation of C, we obtain

|Ai,k +Bk,jr − C̃i,jr |
≤ |Ai,k +Bk,jr − Ci,jr |+ |C̃i,jr − Ci,jr |
≤ 16ΔW + 4ΔW = 20ΔW.

Similarly, we also have |Air,k + Bk,jr − C̃ir,jr | ≤ 20ΔW
and |Air,k +Bk,j − C̃ir,j | ≤ 20ΔW .

Recall that in the algorithm we set Ar
i,k := Ai,k+Bk,jr−

C̃i,jr and Br
k,j := Bk,j − Bk,jr + C̃ir,jr − C̃ir,j (and then

reset them to ∞ if their absolute value is more than 48ΔW).

From the above inequalities, we have |Ar
i,k| ≤ 20ΔW .

Moreover, we can write Br
k,j as (Air,k + Bk,j − C̃ir,j) −

(Air,k + Bk,jr − C̃ir,jr), where both terms in brackets

have absolute value bounded by 20ΔW , and thus |Br
k,j | ≤

40ΔW . It follows that the triple i, k, j gets weakly covered

in round r.

We will crucially exploit the following extremal graph-

theoretic result. This relatively simple result might be

known, but we were not able to find an explicit reference

and so we prove it for the sake of completeness.

Lemma 4: Let G = (U ∪ V,E) be a bipartite graph with

|U | = |V | = n nodes per partition and |E| = m edges. Let

C4 be the number of 4-cycles of G. If m ≥ 2n3/2, then

C4 ≥ m4/(32n4).

Proof: For any pair of nodes v, v′ ∈ V , let N(v, v′) be

the number of common neighbors {u ∈ U | {u, v}, {u, v′} ∈
E}, and let N =

∑
{v,v′}∈(V2)N(v, v′). By d(w) we denote

the degree of node w in G. By convexity of
(
x
2

)
= x(x−1)

2

379380380

and Jensen’s inequality, we have

N =
∑

{v,v′}∈(V2)
N(v, v′) =

∑
u∈U

(
d(u)

2

)

≥ n ·
(∑

u∈U d(u)/n

2

)
= n

(
m/n

2

)

=
m2

2n
− m

2
≥ m2

2n
− n2.

Since m ≥ 2n3/2 by assumption, we derive m2

2n ≥ 2n2 and

thus we obtain N ≥ n2 > 2
(
n
2

)
as well as N ≥ m2/(4n).

By the same convexity argument as above, we also have

C4 =
∑

{v,v′}∈(V2)

(
N(v, v′)

2

)
≥

(
n

2

)
·
(
N/

(
n
2

)
2

)

=

(
N −

(
n

2

))
N

n(n− 1)
≥ N2

2n2
,

where in the last inequality above we used the fact that

N ≥ 2
(
n
2

)
. Altogether, this yields

C4 ≥ N2

2n2
≥ m4/(16n2)

2n2
=

m4

32n4
.

We are now ready to lower bound the progress made by

the algorithm at each round.

Lemma 5: W.h.p for any ρ ≥ 1 the number of weakly

relevant, weakly uncovered triples is Õ(n2.5 + n3/ρ1/3).
Proof: Fix k ∈ [n]. We construct a bipartite graph Gk

on n + n vertices (we denote vertices in the left vertex set

by i or ir and vertices in the right vertex set by j or jr).

We add edge {i, j} to Gk if the triple (i, k, j) is weakly

relevant.

In each of the ρ rounds of our algorithm we select ir

and jr uniformly at random. Round r covers some triples

(i, k, j). For any such weakly r-covered triple (i, k, j), if

(i, j) is in Gk, we remove it from Gk. Thus, after round r,

Gk contains (i, j) if and only if (i, k, j) is weakly relevant

and weakly r-uncovered.

Let z = c(n2/ρ) lnn for any constant c > 3. Consider an

edge (i, j) in Gk that is contained in at least z 4-cycles in

Gk before any of the rounds of Phase 2 are performed. Now

consider each round r in turn and let i → � → p → j → i
be a 4-cycle containing (i, j) whose edges are still in Gk. If

ir = p and jr = � are selected, then since by the definition

of Gk (i, k, �), (p, k, �) and (p, k, j) are weakly uncovered,

by Lemma 3, (i, k, j) will be r-covered and thus (i, j) will

be removed from Gk.

Thus, if in any round r the indices ir, jr are selected to be

among the at least z choices of vertices that complete (i, j)
to a 4-cycle in Gk, then (i, j) is in Gk at the end of all ρ
rounds. For a particular edge (i, j) with at least z 4-cycles in

a particular Gk, the probability that ir, jr are never picked

to form a 4-cycle with (i, j) is

≤
(
1− z

n2

)ρ

=
(
1− z

n2

)c(n2/z) lnn

≤ 1

nc
.

By a union bound, over all i, j, k we obtain an error

probability of at most 1/nc−3, which is 1/poly(n) as we

picked c > 3. Hence, at the end of all ρ rounds, with high

probability every edge in every Gk is contained in less than

z 4-cycles.

Let mk denote the number of edges of Gk. Now we

will bound
∑

k mk, as this is exactly the number of

weakly relevant, weakly uncovered triples. First, note that∑
{k | mk<2n3/2}mk < 2n2.5, and so it suffices to compute

the sum for those k for which mk ≥ 2n3/2. Fix one such Gk.

Since every edge in Gk is contained in less than z 4-cycles

w.h.p., the number of 4-cycles Ck of Gk is less than mkz.

On the other hand, by Lemma 4, Ck ≥ (mk/n)
4/32. Thus,

we have (mk/n)
4 < 32mkz, which is equivalent to m3

k <

32n4z. By choice of z we obtain mk <
(
32c(n6/ρ) lnn

)1/3
,

which yields mk ≤ Õ(n2/ρ1/3).
The total number of weakly uncovered, weakly relevant

triples at the end of the ρ iterations is thus w.h.p. Õ(n2.5 +
n3/ρ1/3).

C. Phase 3: Exhaustive search over all relevant uncovered
triples of indices

In the third and last phase we make sure to fix all strongly

relevant, strongly uncovered triples by exhaustive search,

as these are the triples defining the output matrix whose

contribution is not yet incorporated in Ĉ. We are allowed

to scan all weakly relevant, weakly uncovered triples, as we

know that their number is small by Lemma 5. This is the

only phase that requires that A and B are BD.

We use the following definitions of being approximately
relevant or uncovered, since they are identical for all triples

(i, k, j) in a block i′, k′, j′ and thus can be checked effi-

ciently.

Definition 4: We call a triple (i, k, j) ∈ I(i′) × I(k′) ×
I(j′)
• approximately relevant if |Ai′,k′ + Bk′,j′ − C̃i′,j′ | ≤

8ΔW , and

• approximately uncovered if for all 1 ≤ r ≤ ρ we have

|Ar
i′,k′ | > 44ΔW or |Br

k′,j′ | > 44ΔW .

The notions of being strongly, weakly, and approximately

relevant/uncovered are related as follows.

Lemma 6: Any strongly relevant triple is also approxi-

mately relevant. Any approximately relevant triple is also

weakly relevant. Then same statements hold with “relevant”

replaced by “r-uncovered”.

Proof: Let (i, k, j) ∈ I(i′) × I(k′) × I(j′). Using

Lemma 2, we can bound the absolute difference between

Ai,k +Bk,j −Ci,j and Ai′,k′ +Bk′,j′ − C̃i′,j′ by the three

contributions |Ai,k − Ai′,k′ | ≤ 2ΔW , |Bk,j − Bk′,j′ | ≤
2ΔW , and |Ci,j − C̃i′,j′ | = |Ci,j − C̃i,j | ≤ 4ΔW . Thus,

380381381

if Ai,k + Bk,j = Ci,j (i.e., (i, k, j) is strongly relevant),

then |Ai′,k′ + Bk′,j′ − C̃i′,j′ | ≤ 8ΔW (i.e., (i, k, j) is

approximately relevant). On the other hand, if (i, k, j) is

approximately relevant, then |Ai,k +Bk,j −Ci,j | ≤ 16ΔW
(i.e., (i, k, j) is weakly relevant).

For the notion of being r′-uncovered, for any r we bound

the absolute differences |Ar
i,k − Ar

i′,k′ | and |Br
k,j − Br

k′,j′ |.
Recall that we set Ar

i,j := Ai,j +Bk,jr − C̃i,jr . Again using

Lemma 2, we bound both |Ai,j−Ai′,j′ | and |Bk,jr−Bk′,jr |
by 2ΔW . Since we have C̃i,jr = C̃i′,jr by definition, in total

we obtain |Ar
i,k −Ar

i′,k′ | ≤ 4ΔW . Similarly, recall that we

set Br
k,j := Bk,j−Bk,jr +C̃ir,jr−C̃ir,j . The first two terms

both contribute at most 2ΔW , while the latter two terms are

equal for Br
k,j and Br

k′,j′ . Thus, |Br
k,j − Br

k′,j′ | ≤ 4ΔW .

The statements on “r-uncovered” follow immediately from

these inequalities.

In our algorithm, we enumerate every triple (i′, k′, j′)
whose indices are divisible by Δ, and check whether that

triple is approximately relevant. Then we check whether

it is approximately uncovered. If so, we perform an ex-

haustive search over the block i′, k′, j′: We iterate over

all (i, k, j) ∈ I(i′) × I(k′) × I(j′) and update Ĉi,j :=
min{Ĉi,j , Ai,k +Bk,j}, see lines 15-19 of Algorithm 1.

Note that i′, k′, j′ is approximately relevant (resp., approx-

imately uncovered) if and only if all (i, k, j) ∈ I(i′)×I(k′)×
I(j′) are approximately relevant (resp., approximately un-

covered). Hence, we indeed enumerate all approximately

relevant, approximately uncovered triples, and by Lemma 6

this is a superset of all strongly relevant, strongly uncovered

triples. Thus, every strongly relevant triple (i, k, j) con-

tributes to Ĉi,j in Phase 2 or Phase 3. This proves correctness

of the output matrix Ĉ.

D. Running Time

The running time of Phase 1 is O((n/Δ)3 + n2) using

brute-force. The running time of Phase 2 is Õ(ρΔWnω),
since there are ρ invocations of Lemma 1 on matrices whose

finite entries have absolute value O(ΔW). It remains to con-

sider Phase 3. Enumerating all blocks i′, k′, j′ and checking

whether they are approximately relevant and approximately

uncovered takes time O((n/Δ)3ρ). The approximately rel-

evant and approximately uncovered triples form a subset

of the weakly relevant and weakly uncovered triples by

Lemma 6. The number of the latter triples is upper bounded

by Õ(n2.5 + n3/ρ1/3) w.h.p. by Lemma 5. Thus, w.h.p.

Phase 3 takes total time Õ((n/Δ)3ρ+ n3/ρ1/3 + n2.5). In

total, the running time of Algorithm 1 is w.h.p.

Õ((n/Δ)3 + n2 + ρΔWnω + (n/Δ)3ρ+ n3/ρ1/3 + n2.5).

A quick check shows that for appropriately chosen ρ and

Δ (say ρ := Δ := n0.1) and for sufficiently small W
this running time is truly sub-cubic. We optimize by setting

ρ := (n3−ω/W)9/16 and Δ := (n3−ω/W)1/4, obtaining

time Õ(W 3/16n(39+3ω)/16), which is truly sub-cubic for

W ≤ O(n3−ω−ε). For W = O(1) using ω ≤ 2.3729 [12],

[13] this running time evaluates to O(n2.8825). Note that

even with bad random choices the running time of our

algorithm is bounded by O(n3). In particular, this implies

that our w.h.p. time bounds also hold in expectation.

Algorithm 1 (min,+)-product A�B for n×n matrices A,B
with W -bounded differences. Here Δ and ρ are carefully

chosen polynomial values. Also I(q) = {q−Δ+1, . . . , q}.
	 Phase 1: compute entry-wise additive 4ΔW -approx-
imation C̃ of A � B

1: for any i′, j′ divisible by Δ do
2: C̃i′,j′ := min{Ai′,k′ +Bk′,j′ | k′ divisible by Δ}
3: for any i ∈ I(i′), j ∈ I(j′) do
4: C̃i,j := C̃i′,j′

	 Phase 2: randomized reduction to (min,+)-product
with small entries

5: initialize all entries of Ĉ with ∞
6: for 1 ≤ r ≤ ρ do
7: pick ir and jr uniformly at random from [n]
8: for all i, k do
9: set Ar

i,k := Ai,k +Bk,jr − C̃i,jr

10: if Ar
i,k �∈ [−48ΔW, 48ΔW] then set Ar

i,k :=∞
11: for all k, j do
12: set Br

k,j := Bk,j −Bk,jr + C̃ir,jr − C̃ir,j

13: if Br
k,j �∈ [−48ΔW, 48ΔW] then set Br

k,j :=∞
14: compute Cr := Ar � Br using Lemma 1

15: for all i, j do
16: Ĉi,j := min{Ĉi,j , C

r
i,j + C̃i,jr − C̃ir,jr + C̃ir,j}

	 Phase 3: exhaustive search over all relevant uncovered
triples of indices

17: for all i′, k′, j′ divisible by Δ do
18: if |Ai′,k′ +Bk′,j′ − C̃i′,j′ | ≤ 8ΔW then
19: if for all r we have |Ar

i′,k′ | > 44ΔW or

|Br
k′,j′ | > 44ΔW then

20: for all i ∈ I(i′), k ∈ I(k′), j ∈ I(j′) do
21: Ĉi,j := min{Ĉi,j , Ai,k +Bk,j}
22: return Ĉ

Acknowledgments: The authors are indebted to Uri

Zwick for his insightful ideas during the early stages of this

work, and would like to thank the anonymous reviewers for

their useful comments.

REFERENCES

[1] M. J. Fischer and A. R. Meyer, “Boolean matrix multiplica-
tion and transitive closure,” in 12th Annual Symposium on
Switching and Automata Theory, East Lansing, Michigan,
USA, 1971, pp. 129–131.

[2] A. Bernstein and D. R. Karger, “A nearly optimal oracle
for avoiding failed vertices and edges,” in 41st Annual ACM
Symposium on Theory of Computing, STOC 2009, Bethesda,
MD, USA, 2009, pp. 101–110.

381382382

[3] V. Vassilevska Williams and R. Williams, “Subcubic equiv-
alences between path, matrix and triangle problems,” in
51th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2010, Las Vegas, Nevada, USA, 2010, pp.
645–654.

[4] F. Grandoni and V. Vassilevska Williams, “Improved distance
sensitivity oracles via fast single-source replacement paths,”
in 53rd Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2012, New Brunswick, NJ, USA, 2012, pp.
748–757.

[5] U. Brandes, “A faster algorithm for betweenness centrality,”
Journal of Mathematical Sociology, vol. 25, no. 2, pp. 163–
177, 2001.

[6] A. Abboud, F. Grandoni, and V. Vassilevska Williams, “Sub-
cubic equivalences between graph centrality problems, APSP
and diameter,” in 26th Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2015, San Diego, CA, USA, 2015,
pp. 1681–1697.

[7] M. L. Fredman, “New bounds on the complexity of the
shortest path problem,” SIAM Journal on Computing, vol. 5,
no. 1, 1976.

[8] T. Takaoka, “Subcubic cost algorithms for the all pairs
shortest path problem,” Algorithmica, vol. 20, no. 3, pp. 309–
318, 1998.

[9] T. M. Chan, “More algorithms for all-pairs shortest paths in
weighted graphs,” SIAM J. Comput., vol. 39, no. 5, pp. 2075–
2089, 2010.

[10] R. Williams, “Faster all-pairs shortest paths via circuit com-
plexity,” in 46th Annual ACM Symposium on Theory of
Computing, STOC 2014, New York, NY, USA, 2014, pp. 664–
673.

[11] N. Alon, Z. Galil, and O. Margalit, “On the exponent of the
all pairs shortest path problem,” J. Comput. Syst. Sci., vol. 54,
no. 2, pp. 255–262, Apr. 1997.

[12] V. Vassilevska Williams, “Multiplying matrices faster than
Coppersmith-Winograd,” in 44th Annual ACM Symposium on
Theory of Computing, STOC 2012, New York, NY, USA, 2012,
pp. 887–898.

[13] F. L. Gall, “Powers of tensors and fast matrix multiplication,”
in 39th International Symposium on Symbolic and Algebraic
Computation, ISSAC 2014, Kobe, Japan, 2014, pp. 296–303.

[14] R. Yuster, “Efficient algorithms on sets of permutations,
dominance, and real-weighted APSP,” in 20th Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2009, New
York, NY, USA, 2009, pp. 950–957.

[15] R. Seidel, “On the all-pairs-shortest-path problem in un-
weighted undirected graphs,” J. Comput. Syst. Sci., vol. 51,
no. 3, pp. 400–403, 1995.

[16] A. Shoshan and U. Zwick, “All pairs shortest paths in
undirected graphs with integer weights,” in 40th Annual
IEEE Symposium on Foundations of Computer Science, FOCS
1999, New York, NY, USA, 1999, pp. 605–615.

[17] U. Zwick, “All pairs shortest paths using bridging sets and
rectangular matrix multiplication,” J. ACM, vol. 49, no. 3, pp.
289–317, 2002.

[18] T. M. Chan and M. Lewenstein, “Clustered integer 3SUM via
additive combinatorics,” in 47th Annual ACM on Symposium
on Theory of Computing, STOC 2015, Portland, OR, USA,
2015, pp. 31–40.

[19] L. G. Valiant, “General context-free recognition in less than
cubic time,” J. Comput. Syst. Sci., vol. 10, no. 2, pp. 308–315,
1975.

[20] A. V. Aho and T. G. Peterson, “A minimum distance error-
correcting parser for context-free languages,” SIAM J. Com-
put., vol. 1, no. 4, 1972.

[21] B. Saha, “Language edit distance and maximum likelihood
parsing of stochastic grammars: Faster algorithms and con-
nection to fundamental graph problems,” in 56th Annual
IEEE Symposium on Foundations of Computer Science, FOCS
2015, Berkeley, CA, USA, 2015, pp. 118–135.

[22] G. Myers, “Approximately matching context-free languages,”
Information Processing Letters, vol. 54, no. 2, pp. 85–92,
1995.

[23] L. Lee, “Fast context-free grammar parsing requires fast
boolean matrix multiplication,” J. ACM, vol. 49, no. 1, pp.
1–15, 2002.

[24] B. Saha, “The Dyck language edit distance problem in near-
linear time,” in 55th Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2014, Philadelphia, PA, USA,
2014, pp. 611–620.

[25] A. Abboud, A. Backurs, and V. Vassilevska Williams, “If the
current clique algorithms are optimal, so is Valiant’s parser,”
in 56th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2015, Berkeley, CA, USA, 2015, pp. 98–117.

[26] S. Rajasekaran and M. Nicolae, “An error correcting parser
for context free grammars that takes less than cubic time,”
Manuscript, 2014.

[27] A. Backurs and K. Onak, “Fast algorithms for pars-
ing sequences of parentheses with few errors,” in 35th
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, PODS 2016, San Francisco, CA, USA,
2016, pp. 477–488.

[28] A. Krebs, N. Limaye, and S. Srinivasan, “Streaming al-
gorithms for recognizing nearly well-parenthesized expres-
sions,” in 36th International Symposium on Mathematical
Foundations of Computer Science, MFCS 2011, Warsaw,
Poland, 2011, pp. 412–423.

[29] A. Chakrabarti, G. Cormode, R. Kondapally, and A. Mc-
Gregor, “Information cost tradeoffs for augmented index and
streaming language recognition,” in 51th Annual IEEE Sym-
posium on Foundations of Computer Science, FOCS 2010,
Las Vegas, Nevada, USA, 2010, pp. 387–396.

[30] F. Magniez, C. Mathieu, and A. Nayak, “Recognizing well-
parenthesized expressions in the streaming model,” in 42nd
ACM Symposium on Theory of Computing, STOC 2010,
Cambridge, Massachusetts, USA, 2010, pp. 261–270.

382383383

[31] M. Parnas, D. Ron, and R. Rubinfeld, “Testing membership in
parenthesis languages,” Random Struct. Algorithms, vol. 22,
no. 1, pp. 98–138, 2003.

[32] R. Nussinov and A. B. Jacobson, “Fast algorithm for predict-
ing the secondary structure of single-stranded rna,” Proceed-
ings of the National Academy of Sciences of the United States
of America, vol. 77, no. 11, pp. 6309–6313, 1980.

[33] B. Venkatachalam, D. Gusfield, and Y. Frid, “Faster algo-
rithms for RNA-folding using the four-russians method,”
Algorithms for Molecular Biology, vol. 9, no. 1, pp. 1–12,
2014.

[34] T. Akutsu, “Approximation and exact algorithms for RNA
secondary structure prediction and recognition of stochastic
context-free languages,” Journal of Combinatorial Optimiza-
tion, vol. 3, no. 2-3, pp. 321–336, 1999.

[35] S. Zakov, D. Tsur, and M. Ziv-Ukelson, “Reducing the worst
case running times of a family of RNA and CFG problems,
using Valiant’s approach,” Algorithms for Molecular Biology,
vol. 6, no. 1, pp. 1–22, 2011.

[36] R. E. Tarjan, “Problems in data structures and algorithms,”
in Graph Theory, Combinatorics and Algorithms. Springer,
2005, pp. 17–39.

[37] A. V. Aho and J. E. Hopcroft, The Design and Analysis of
Computer Algorithms, 1st ed. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1974.

[38] F. Korn, B. Saha, D. Srivastava, and S. Ying, “On repairing
structural problems in semi-structured data,” Proceedings of
the VLDB Endowment, vol. 6, no. 9, pp. 601–612, 2013.

[39] M. Johnson, “PCFGs, topic models, adaptor grammars and
learning topical collocations and the structure of proper
names,” in 48th Annual Meeting of the Association for Com-
putational Linguistics, ACL 2010, Uppsala, Sweden, 2010,
pp. 1148–1157.

[40] Y.-Y. Wang, M. Mahajan, and X. Huang, “A unified context-
free grammar and n-gram model for spoken language process-
ing,” in IEEE International Conference on Acoustics, Speech
and Signal Processing, ICASSP 2000, Istanbul, Turkey, 2000,
pp. 1639–1642.

[41] D. Moore and I. Essa, “Recognizing multitasked activities
from video using stochastic context-free grammar,” in 18th
National Conference on Artificial Intelligence, NCAI 2002,
Edmonton, Alberta, Canada, 2002, pp. 770–776.

[42] A. Rosani, N. Conci, and F. G. De Natale, “Human behavior
recognition using a context-free grammar,” Journal of Elec-
tronic Imaging, vol. 23, no. 3, 2014.

[43] G. K. Pullum and G. Gazdar, “Natural languages and context-
free languages,” Linguistics and Philosophy, vol. 4, no. 4, pp.
471–504, 1982.

[44] R. Gutell, J. Cannone, Z. Shang, Y. Du, and M. Serra,
“A story: unpaired adenosine bases in ribosomal RNAs.” in
Journal of Molecular Biology, vol. 304, no. 3, 2010, pp. 335–
354.

[45] Y. Chang, “Hardness of RNA folding problem with four sym-
bols,” in 27th Annual Symposium on Combinatorial Pattern
Matching, CPM 2016, Tel Aviv, Israel, 2016, pp. 13:1–13:12.

[46] W. J. Masek and M. S. Paterson, “A faster algorithm comput-
ing string edit distances,” Journal of Computer and System
Sciences, vol. 20, no. 1, pp. 18–31, 1980.

[47] G. M. Landau, E. W. Myers, and J. P. Schmidt, “Incremental
string comparison,” SIAM J. Comput., vol. 27, no. 2, pp. 557–
582, 1998.

[48] Z. Bar-Yossef, T. S. Jayram, R. Krauthgamer, and R. Kumar,
“Approximating edit distance efficiently,” in 45th Annual
IEEE Symposium on Foundations of Computer Science, FOCS
2004, Rome, Italy, 2004, pp. 550–559.

[49] T. Batu, F. Ergün, and S. C. Sahinalp, “Oblivious string em-
beddings and edit distance approximations,” in 17th Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2006,
Miami, Florida, USA, 2006, pp. 792–801.

[50] A. Andoni and K. Onak, “Approximating edit distance in
near-linear time,” in 41st Annual ACM Symposium on Theory
of Computing, STOC 2009, Bethesda, MD, USA, 2009, pp.
199–204.

[51] A. Andoni, R. Krauthgamer, and K. Onak, “Polylogarithmic
approximation for edit distance and the asymmetric query
complexity,” in 51th Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2010, Las Vegas, Nevada, USA,
2010, pp. 377–386.

[52] F. L. Gall, “Faster algorithms for rectangular matrix multi-
plication,” in 53rd Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2012, New Brunswick, NJ, USA,
2012, pp. 514–523.

383384384

