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Abstract—The most classic textbook hash function, e.g.
taught in CLRS [MIT Press ’09], is

h�x� � ��ax� b� mod p� mod m , ���
where x, a, b � �0, 1, . . . , p� 1	 and a, b are chosen uniformly
at random. It is known that ��� is 2-independent and almost
uniform provided p is a prime and p 
 m. This implies
that when using ��� to build a hash table with chaining that
contains n � m keys, the expected query time is O�1� and
the expected length of the longest chain is O��n�. This result
holds for any 2-independent hash function. No hash function
can improve on the expected query time, but the upper bound
on the expected length of the longest chain is not known to
be tight for ���. Partially addressing this problem, Alon et
al. [STOC ’97] proved the existence of a class of linear hash
functions such that the expected length of the longest chain is
Ω��n� and leave as an open problem to decide which non-
trivial properties ��� has. We make the first progress on this
fundamental problem, by showing that the expected length of
the longest chain is at most n1�3�o�1� which means that the
performance of ��� is similar to that of a 3-independent hash
function for which we can prove an upper bound of O

�
n1�3

�
.

As a lemma we show that within a fixed set of integers there
are few pairs such that the height of the ratio of the pairs are
small. Given two non-zero coprime integers n,m � Z with
the height of n

m
is max �n , m	, and the height is a way of

measuring how complex a fraction is. This is proved using a
mixture of techniques from additive combinatorics and number
theory, and we believe that the result might be of independent
interest.

For a natural variation of ���, we show that it is possible to
apply second order moment bounds even when a hash value
is fixed. As a consequence:

� For min-wise hashing it was known that any key from a
set of n keys has the smallest hash value with probability
O
�

1�
n

�
. We improve this to n�1�o�1�.

� For linear probing it was known that the worst case
expected query time is O ��n�. We improve this to no�1�.

Keywords-hashing, linear hashing, hashing with chaining,
additive combinatorics.

I. INTRODUCTION

Hash functions are widely used and well studied within

theoretical computer science. There are a vast number of

different hash functions in the literature ranging from simple

to complex, and some hash functions are constructed to

perform well when used for specific purposes. In contrast

a very fundamental class of hash functions is h : �p� � �m�
(where �m� � �0, 1, . . . ,m� 1�) defined by h�x	 � ��ax

b	 mod p	 mod m, where a, b � �p� are chosen uniformly at

random. Here p is a prime and p � m. Almost all students

of computer science will come across it at least once in

their curriculum, and it is e.g. the only randomized hash

function mentioned in CLRS [1]. This makes the study of

this particular hash function especially interesting.

The study of h�x	 boils down to the following two

properties:

(1) The collision probability is low, that is Pr�h�x	 �
h�y		 � O

�
1
m

�
for x  y. This follows from the 2-

independence of h.

(2) h�x	 is almost affine, in the following sense: h�x	 

h�y	�h�x
y	�h�0	 can only attain a constant number

of different values.

In 1979 Property (1) led Carter and Wegman [2] to introduce

the concept of k-independence, which has since been a

prominent part of the studies of hash functions. This was

done by replacing the degree one polynomial in the defi-

nition of h with a random degree k � 1 polynomial. From

Property (1) one can obtain a number of results when using

h as the hash function:

(i) When inserting n keys into a table of size n using

hashing with chaining the expected time used to insert

any key is O�1	.
(ii) When inserting n keys into a table of size n using

hashing with chaining the expected size of the longest

chain is O��n	. This corresponds to the expected worst

case performance over the insertion of all n keys.

(iii) Letting X � �x1, . . . , xn� be a set of n keys, h�x1	
is the minimum hash value of all h�xi	, xi � X with

probability O
�

1�
n

�
.

(iv) In a hash table implemented by linear probing using

a table of size n and containing �1 � ε	n keys, the

worst-case expected query time is O��n	.
Property (2) is used by Baran et al. [3] to solve the 3SUM

problem faster than Θ�n2	, but Property (1) seems to have

more far reaching consequences than Property (2).

Result (i) is tight as no matter which hash function is

used the expected time to insert any element must be Ω�1	.
However, it is not clear whether Results (ii), (iii) and (iv)
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are tight. There are no results showing that the bounds in

Results (ii)–(iv) are tight for h. Instead it is shown in [4], [5]

that there exist 2-independent hash functions for which the

upper bounds in Results (ii)–(iv) are tight. This shows that

we either have to use Property (2) or find a new property in

order to improve these bounds. Furthermore, Alon et al. [6]

have shown that there exist linear hash functions meeting the

bounds in Result (ii). These linear hash functions can easily

be altered to be affine hash functions that satisfy Property

(1) as well showing that even a combination of Property

(1) and (2) will not suffice in order to improve on Result

(ii). However in [6] it is also shown that there exists linear

hash function (over the field of 2 elements) for which the

maximum load is O�log n log logn�.
The discussion above leads to one of two conclusions.

Either Property (1) and (2) captures the essence of h and

we need to prove that Results (ii)–(iv) cannot be improved.

Otherwise Results (ii)–(iv) can be improved and we need to

find a new property of h that must be entirely different of

Property (1) and (2).

A. Our Results

In the following let p be a prime and m an integer not

larger than p. Let a, b � �p� be independent and uniformly

random integers. Let h : �p� � �p� be defined by h�x� �
�ax � b� mod p. We let h�x� � h�x� mod m and h̃�x� ��
h�x��m

p

�
. We can think of h and h̃ as extracting the least

and the most significant bits of h respectively. The main

result of this paper is the proof of the following property of

h and h̃:

Theorem 1. Let U � �u� be a universe of keys and X 	 U
a set of n keys such that p 
 un and m � n. Let x, y, z � X
be three keys chosen from X independently and uniformly
at random, then:

P
�
h�x� � h�y� � h�z�� � O

�
m�2 � n�2�o�1�

�
,

and the same result holds when h is replaced with h̃.

Comparing Theorem 1 with the performance of a uni-

formly random hash function we see that if h had been

uniformly random then we could have gotten the bound

O�m�2 � n�2� instead, which follows from the fact that

for any 3 distinct keys the probability that they have same

hash value is exactly m�2. In fact this holds for any 3-

independent hash function. Except for the multiplicative

term no�1� the main difference is that for a 3-independent

hash function it holds that for every triple of distinct keys

�x, y, z� the probability that they all have the same hash

value is small. Theorem 1 instead states that this property

holds for most such triples. Considering the three keys

�x, 2x, 3x� it becomes apparent that it is not possible to

prove that it holds for every triple as if we condition on

h�x� � h�2x� then with probability � 1
2 it also holds that

h�2x� � h�3x�.
Whenever we are interested in the behaviour of all keys

together the it might not be important whether the collision

probability of a triple is small for every triple or for most

triples of keys. As a direct corollary of Theorem 1 we prove

the upper bound in Result (2) can be improved from O�n�
to n1�3�o�1�:

Corollary 1. Let U � �u� be a universe of keys and X 	 U
a set of n keys such that p 
 un. Assume that m � n and
let M be the number of keys that hash to the most popular
hash value, i.e. M � maxv��m	

���x � X � h�x� � v
	��. Then

E�M� � n1�3�o�1�. The same result holds when h is
replaced with h̃ in the definition of M .

In order to improve on Results (iii) and (iv) we prove

the following result, that says that even if we fix one hash

value, we can still use a certain type of second order moment

bounds.

Theorem 2. Let U � �u� be a universe of keys and X 	 U
a set of n keys such that p 
 un. Let v � �m�, I 	 �m� be
a set of consecutive1 integers mod m and x0 � U�X . Let
A � 


x�X �h̃�x� � I� and μ � E�A�. Here the expression
�h̃�x� � I� is the Iverson bracket, which denotes a a number
that is 1 if h̃�x� � I and 0 otherwise. Then for every δ 
 0
it holds that:

P
�
�A� μ� � δ


μ � h̃�x0� � v

�

� 1

δ2
�
�
no�1� �O

�
n2

pμ

��
.

Using Theorem 2 we improve on Results (iii) and (iv).

Corollary 2. Let U � �u� be a universe of keys and X 	 U
a set of n keys such that p 
 un. Let x0 � X . Then:

P

�
h̃�x0� � min

x�X
�x0�


h̃�x�

��
� n�1�o�1� .

Corollary 3. Let U � �u� be a universe of keys and X 	 U
a set of n keys such that p 
 un. Assume that m � �1�ε�n
for some constant ε 
 0, and say that all of the keys from
X are inserted into a table of size m using h̃ with linear
probing. Then the expected query time for any element u � U
is no�1�.

B. Technical contribution

The main technical contribution is an upper bound on the

number of pairs within a set where the ratio of the pairs

have small height. For a non-zero rational number x � Q
the height H�x� of x is the smallest number such that

there exists integers n,m � Z with �n� , �m� � H�x� and

x � n
m . Equivalently, if x � m

n for co-prime integers n,m

1Meaning that for suitable values of r, s � N we have I �
�r mod m, �r � 1� mod m, . . . , �r � s� 1� mod m� .
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then H�x� � max ��n� , �m��, see e.g. [7]. We note that

that H�x� � H
�
x�1

�
. The main technical contribution is

captured in the following theorem:

Theorem 3. Let A � Q� �0� be a set of n non-zero
rational numbers and let k be an integer. The number
of pairs �a, a�� 	 A2 such that H

�
a
a�

� 
 k is at most

nk � 2O
��

�logn���log log 3k�
�
.

The theorem is proved using a combination of tools from

additive combinatorics and number theory. The use of this

theorem comes from the fact that we can essentially quantify

“how correlated” h�x�, h�y�, h�z� are by looking at the

fraction y�x
z�x . If the fraction has small height, then the hash

values are very correlated and vice versa.2

C. Structure of the Paper

The structure of the paper is as follows. In Section II we

introduce the necessary notation. In Section III we prove

Theorem 3, and in Section IV we show how to use this result

to prove new properties for h and h̃. Finally, in Section V

we show that these properties imply a number of interesting

results.

II. PRELIMINARIES

Z denotes the integers, N the positive integers, Q the

rational numbers, and Q� the positive rational numbers.

Zn � ZnZ denotes the integers modn. Z�
n is the set of

elements of Zn having a multiplicative inverse; �Z�
n, �� is

an abelian group. �n� is shorthand for �0, 1, 2, . . . , n� 1�.
For a pair of integers n,m 	 Z such that �n,m� � �0, 0�
we let gcd�n,m� denote the greatest common divisor of n
and m. If gcd�n,m� � 1 then n and m are coprime. We

write a � b to mean that a divides b and a � b if a does not

divide b. We use the Iverson bracket notation meaning that

for a condition P we let �P � denote 1 if P is satisfied and

0 otherwise. log denotes the natural logarithm.

Throughout the paper p will be a prime and m a positive

integer smaller than p. We let h : �p� � �p� be a

random hash function defined by h�x� � �ax � b� mod p
where a, b 	 �p� are chosen independently and uniformly

at random. We will often consider h to be a mapping from

Zp to Zp in the obvious way. We define the hash functions

h, h̃ : �p� � �m� by:

h�x� � h�x� mod p, h̃�x� �
�
h�x� �m

p

�
.

For an integer x 	 Z we let �x�p 	 Zp denote its residue

class mod p. We let ι : Zp � �p� be the unique mapping

that satisfies �ι�x��p � x.

2This is not entirely true as we need to introduce a concept of height
mod p in order to justify this claim, but for the sake of the simplicity of
the introduction this concept is not defined before needed.

A non-zero rational number x 	 Q can be written as x �
m
n where m,n 	 Z are coprime. The height of x is defined

as H�x� � max ��m� , �n��.
For a positive integer n we let d2�n� be the number of

divisors of n. In general, for a positive integer r we let dr�n�
be the number of ways n can be written as a product of a

sequence of r positive integers, i.e.:

dr�n� � ���a1, a2, . . . , ar� 	 Nr � a1a2 . . . ar � n�� .
Let G be a finite abelian group. A bi-character e : G �

G � C� �0� is a function that satisfies

e�xx�, ξ� � e�x, ξ�e�x�, ξ�, e�x, ξξ�� � e�x, ξ��e�x, ξ��,
for all x, x�, ξ, ξ� 	 G and such that for any x 	 G other than

the identity there exists ξ 	 G such that e�x, ξ� � 1, and for

any ξ 	 G other than the identity there exists x 	 G such

that e�x, ξ� � 1. It is well-known [8] that such a bi-character

exists for any finite abelian group.

For a fixed group G and bi-character e we have the

following definitions from Fourier analysis following the ex-

position from [8]. The Fourier transform �f�ξ� of a function

f�x� on G is defined by:

�f�ξ� � 1

�G�
�
x�G

f�x�e�x, ξ� .

With this definition we have the Fourier inversion formula:

f�x� �
�
ξ�G

�f�ξ�e�x, ξ� .
For functions f�x� and g�x� on G we define the convolution

�f � g��x� to be:

�f � g��x� � 1

�G�
�

a,b�G,ab	x

f�a�g�b� .

We note that ��f � g��ξ� � �f�ξ��g�ξ�. Plancherel’s formula
is: �

x�G

�f�x��2 � �G�
�
ξ�G

��� �f�ξ����2 .

III. HEIGHTS

The main theorem we prove in this section is:

Theorem 3. Let A � Q� �0� be a set of n non-zero
rational numbers and let k be an integer. The number
of pairs �a, a�� 	 A2 such that H

�
a
a�

� 
 k is at most

nk � 2O
��

�logn���log log 3k�
�
.

We prove Theorem 3 by counting the number of solutions

to ab � a�b� where a, a� 	 A and b, b� are small numbers.

An upper bound on this number is given in Lemma 1.

Lemma 1. Let A � N be a set of n positive integers and
B � �1, 2, . . . , k�. Let t be the number of solutions to ab �
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a�b� where a, a� � A, b, b� � B. Then for any positive integer
r:

t � n1�1�r

�
kr�
i�1

�dr�i��
2

�1�r

.

Before we prove Lemma 1 we will show how Theorem 3

follows from it.
Proof of Theorem 3: First we note that by multiplying

all the numbers of A with a sufficiently large integer we can

wlog assume that A � Z� �0�. Let A� 	 �
a
 
 a � A�. We

will use Lemma 1 with A� and B 	 �1, 2, . . . , k�. We note

that for every pair �a, a�� � A such that H
�
a
a�

�
� k there

exist b, b� � B such that 
a
 b 	 
a�
 b�. Furthermore each

such equation can correspond to at most 4 pairs �a, a�� � A
where H

�
a
a�

�
� k. So 4t where t is from Lemma 1 is an

upper bound on the number of pairs �a, a�� � A where the

height of the ratio is � k.
We will need the following theorem proved in [9].

Theorem 4 ([9]). Let ε � 0 be a constant and let x � 1, s �
1  ε, and let z � 2 be an integer. Then

�
n�x�dz�n��

s is
bounded by:

x
�log x zs log�3zs��

zs�1

�zs � log�3zs�eγ�1�zs � eO�zs��log�3zs��� .

where γ � 0.577 . . . is Euler’s constant and the constant in
the O-notation depends on ε.

Letting ε � 1, z � r, x � kr, s � 2 in Theorem 4 we get:�
n�kr

�dr�n��2 � �k � �O�log 3k��r�r .

By combining this with Lemma 1 we get:

4t � n1�1�rk �O�log 3k��r .

Letting r �
�

logn
log log 3k gives the desired.

Now we turn to proving Lemma 1. The idea is to count the

number of solutions using Fourier analysis. Subsequently,

we give an upper bound on the corresponding sum using

Hlder’s inequality. The result now comes from using the

Fourier inversion formula on the upper bound.
Proof of Lemma 1: Let r be a positive integer. Let q

be a prime greater than maxa�A �a� � kr, and let G � Z�
q .

We note that A and B can be considered to be subsets of

G and we will do so. Let χA, χB : G 	 �0, 1� be the

characteristic functions of A and B, respectively. For any

positive integer n less than q we identify n with its residue

mod q, i.e. we consider it to be an element of G. We note

that 
G
 � �χA �χB��n� is the number of pairs �a, b� � AB
such that ab � n since ab � q for each a � A, b � B, and

hence t is equal to

t � 
G
2
�
x�G

��χA � χB��x��2 � 
G
3
�
ξ�G

��� ��χA � χB��ξ�
���2

� 
G
3
�
ξ�G


�χA�ξ�
2 
�χB�ξ�
2 , (1)

where we use Plancherel’s formula. By Hölder’s inequality

we have:�
ξ�G


�χA�ξ�
2 
�χB�ξ�
2

�
��

ξ�G


�χA�ξ�
2r��r�1�

��r�1��r ��
ξ�G


�χB�ξ�
2r
�1�r

�S�r�1��r
1 S

1�r
2 , (2)

where S1, S2 are defined in the obvious way. We will bound

S1 and S2 in turn starting with S1.
Note that by the definition of �χA we have 
�χA�ξ�
 �

	A	
	G	 for all ξ � G. This implies together with Plancherel’s

formula that

S1 � 
A
2��r�1�


G
2��r�1�

�
ξ�G


�χA�ξ�
2 �
� 
A


G

	�r�1���r�1�

. (3)

We will now bound S2. We note that 
�χB�ξ�
2r ���� ��χB � . . . � χB��ξ�
���2 where there are r terms in the con-

volution. Hence we have

S2 �
�
ξ�G


�χB�ξ�
2r �
�
ξ�G


 �χB � . . . � χB�ξ�
2

� 1


G

�
x�G


�χB � . . . � χB��x�
2 . (4)

Since q � kr for any positive integer n less than q we have

that 
G
r�1 �χB�. . .�χB��n� is equal to the number of ways

n can be written as a product of r integers where none is

larger than k. This is equal to 0 for any n � kr and for

any n � kr it is bounded by dr�n�. Combining this with

(4) gives:

S2 � 1


G
2r�1

�
x�G

���
G
r�1 � �χB � . . . � χB��x�
���2

� 1


G
2r�1

kr�
x
1

�dr�x��2 . (5)

Combing (1), (2), (3), and (5) gives

t � 
G
3 �
� 
A


G

	�r�1��r

�
1


G
2r�1

kr�
n
1

�dr�n��2
�1�r

� 
A
1�1�r

�
kr�
n
1

�dr�n��2
�1�r

,

as desired.
In the reductions in Section IV we will be interested in the

sum of the reciprocals of the heights studied in Theorem 3.

Corollary 4 gives an upper bound on this quantity.

Corollary 4. Let A � Q� be a set of n positive rational
numbers. Then:�

a,a��A

1

H


a
a�

� � n2O�
�
�logn���log log 3n�� .
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Proof: For k a positive integer let Vk be the subset of

A2 containing pairs where the height of the ratio is a most

k, i.e.:

Vk �
�
�a, a�� � A � H

� a

a�

�
� k

�
.

For convenience let V0 � �. Then we know that:

�
a,a��A

1

H
�
a
a�

� �
��

k�1

1

k
� �Vk	Vk�1�

�
��

k�1

�Vk� �
�
1

k

 1

k � 1

	
. (6)

Firstly we note that:

��
k�n�1

�Vk� �
�
1

k

 1

k � 1

	

�
��

k�n�1

n2 �
�
1

k

 1

k � 1

	
� n2

n� 1
� n . (7)

For any k � n we see by Theorem 3 that �Vk� �
nk2O�


�logn�	�log log 3n��. Hence:

n�
k�1

�Vk� �
�
1

k

 1

k � 1

	
�

n�
k�1

�Vk�
k2

� n2O�

�logn�	�log log 3n�� . (8)

Combining (6), (7), and (8) yields the desired conclusion.

IV. REDUCTION

The goal of this section is to prove Theorem 1.

For x � Zp, r � N we let I�x, r� denote the set�
x, x� �1�p , . . . , x� �r 
 1�p

�
. A subset A � Zp is called

an interval if it is on the form I�x, r�. A subset B � Zp is

called a generalized interval if B � xA for some interval

A and x � Z

p . For x � Zp we let �x� be defined as

�x� � min �ι�x�, ι�
x��
For x � Z


p we let Hp�x� be the restricted height defined

by:

Hp�x� � min


max ��a� , �b�� � a, b � Z


p , x � ab�1
�

We note that Hp�x� � Hp

�
x�1

�
. In Lemma 2 it is proved

that Hp�x� � 
p. The following lemma also shows that if

x, y is much smaller than p, then if the height of x
y is large

then the restricted height is large as well.

Lemma 2. Let x, y � Z be integers not divisible by p, then:

Hp

�
�x�p �y��1

p

�
� min

�
p

�x� � �y� , H
�
x

y

	
, (9)

Hp�x� � 
p . (10)

Proof: First we prove (9). Fix integers a, b � Z that sat-

isfy �a� , �b� � Hp

�
�x�p �y��1

p

�
and �x�p �y��1

p � �a�p �b��1
p .

Then p � xb 
 ay. Either �xb
 ay� � p or �xb
 ay� � p.

If �xb
 ay� � p then since p � xb 
 ay we have xb � ay

and x
y � a

b . This implies that Hp

�
�x�p �y��1

p

�
� H

�
x
y

�
,

and so (9) holds. Otherwise �xb
 ay� � p. By the triangle

inequality p � �xb
 ay� � Hp

�
�x�p �y��1

p

�
� ��x�� �y�� and

therefore (9) also holds in this case.

Now we turn to proving (10). Let z � �
p
�

and

S �
�
�0�p x, �1�p x, . . . , �z�p x

�
, then S contains z � 1

distinct elements. Write S as S � �s0, s1, . . . , sz� where the

elements of S are ordered such that ι�s0� � . . . � ι�sz�. Let

sz�1 � s0, then we have
�z

i�0 ι�si�1� 
 ι�si� � p. Hence

there must exist an index i such that si�1
si � p
z�1 �


p.

By the definition of S we have that si�1 
 si � tx for

some t � Zp with �t� � z � 
p. So we can write

x � t�si�1 
 si��1 with �t� , �si�1 
 si� � 
p and hence

Hp�x� � 
p which proves (10).

We will need the following technical lemma. Lemma 3

uses the fact that that the numbers �i�m x�1 for i �
0, 1, . . . , ι�x� 
 1 are essentially evenly spaced in Zm for

any x � Zm. This implies that given an interval I only a

fraction of about
�I�
m of these numbers can be contained in

I .

Lemma 3. Let m be a positive integer and et x, y � Z

m be

elements satisfying

m � �x� � �y� and gcd��x� , �y�� � 1

and let I � Zm be an interval. The number of elements
r � ��x�� such that �r�m yx�1 � I is at most �I��x�

m � 2.

Proof: If ι�x� � �x� we can replace x and y by 
x and


y, so wlog assume that ι�x� � �x�.
Let A � 
�i�m x�1 � i � �0, 1, . . . , ι�x� 
 1�� and B ����
im
�x�

��
m
� i � ��x��

�
. First we prove that A � B. Since

A and B are finite sets of the same cardinality it suffices

to prove that A � B. Let i � �0, 1, . . . , ι�x� 
 1� and

j � ��x�� be the unique integer satisfying �x� � mj � ι�i�.
Then

�
mj�ι�i�

�x�

�
m

� ι�i�x�1 and
mj�ι�i�

�x� �
�
mj
�x�

�
and

hence ι�i�x�1 � B, so we conclude that A � B.

Say that there are k � 2 elements r � ��x�� such that

ryx�1 � I . (If k � 1 there is nothing to prove.) If �y� � ι�y�
we let I � � I 
 �0, 1, . . . , �y� 
 1� and otherwise we let

I � � I��0, 1, . . . , �y� 
 1�. We note that �I �� � �I���y�. For

each r � ��x�� that satisfies �r�m yx�1 � I there is an element

a � A such that a � I �. Since I � is an interval there exists r �
Zm, s � Z such that I � � �r, r � �1�m , . . . , r � �s
 1�m�.
Since I � contains k elements from B the interval �r, r � s�
contains k elements on the form ip

�x� , i � Z, and hence s �
�k 
 1� p

�x� . Using that s � �I �� � �I� � �y� we get that:

k � ��I ��� �x�
m

� 1 � �I� �x�
m

� �x� �y�
m

� 1 � �I� �x�
m

� 2 .
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Lemma 4 below show how we can connect the concept of

heights to linear hash functions. Given elements x, y � Z�
p it

gives an upper bound on the probability that �ax, ay� � I2,

when a � Zp is chosen uniformly at random. If the random

variables ax and ay had been independent (they are clearly

not!) then the probability would have been exactly ��I� �p�2.

Lemma 4 shows that when the restricted height of xy�1 is

large the probability is close to ��I� �p�2.

Lemma 4. Let x, y � Z�
p and I � Zp be a generalized

interval. Then:

P ��ax, ay� � I2� � �P �ax � I��2 �O

�
P �ax � I�
Hp�xy�1� �

1

p

�
,

where a � Zp is chosen uniformly at random.

The idea of the proof is the following (assuming that

I is an interval for simplicity). By multiplying x, y with

an appropriate factor we can wlog assume �y� � ι�x� �
Hp�xy�1� 	 


p. Instead of directly calculating the prob-

ability that �ax, ay� � I2 we consider the set S ��
a, �1p x�1, . . . , �ι�x� � 1p x�1

�
and upper bound the ex-

pected number of elements s � S satisfy �sx, sy� � I2. By

linearity of expectation this will allow us to upper bound

the desired probability. This turns out to be easier for the

following reason. The set Sx is an interval and hence, for

most values of a, it is either contained in I or disjoint from

I . When it is disjoint from I there are no elements s � S
such that �sx, sy� � I2. When Sx is contained in I we just

need to calculate �Sy � I�, which we do by using Lemma 3.

The details are given below.

Proof: Firstly, we see that I � zJ for some interval J
and z � Z�

p . Since �ax, ay� � I � I iff �axz, ayz� � J � J
we can replace x, y, I with xz, yz, J respectively and wlog

assume that I is an interval in the following.

For any � � Z�
p the probability that �ax, ay� � I � I

does not change if we exchange x and y with x� and y�
respectively. Let Hp�xy�1� � t, then there exists � such

that �x�� , �y�� � t. Since we may also swap x and y we can

wlog assume that �y� � ι�x� � t 	 

p.

We let T be the set of elements s � Zp such that �sx, sy� �
I2, i.e. T � x�1I � y�1I . Let a � Zp be chosen uniformly

at random and let P0 be the probability that �ax, ay� � I2,

P0 � P ��ax, ay� � I2� .

Let S �
�
a, �1p x�1, . . . , �ι�x� � 1p x�1

�
. By linearity of

expectation we have:

tP0 � ι�x�P0 � E

��
s�S

��sx, sy� � I2
�	

,

Clearly the number of elements s � S such that �sx, sy� � I2

is bounded by �Sx� I� and �Sy � �I�. Inserting this gives:

tP0 � E �min ��Sx� I� , �Sy � I��� .

By Lemma 3 we have that �Sy � I� is bounded by
�I�t
p � 2,

so we get

tP0 �
� �I� t

p
� 2

�
� P �Sx� I � �� .

Since Sx is an interval consisting of t elements, we have that

the probability that Sx � I � � less than
�I��t
p . Inserting

this gives

P0 �
� �I�

p
� 2

t

�
�
� �I�

p
� t

p

�

	
� �I�

p

�2

� 3
�I�
pt

� 2

p
, (11)

which finishes the proof as P �ax � I� � �I�
p .

Instead of proving Theorem 1 we will prove a slightly

more general theorem from which Theorem 1 follows.

Theorem 5. Let U � �u be a universe of keys and X � U a
set of n keys such that p � un. Let x � X , v � �m be a hash
value and let I � �m be an interval when considered as
a subset of Zm. Let y, z � X� �x� be chosen independently
and uniformly at random, then:

P


�h̃�y�, h̃�z�� � I2 � h̃�x� � v

�
�
� �I�
m

�2

� n�1�o�1� � �I�
m

�O�p�1� . (12)

If I consists of a single element the statement also holds if
we replace h̃ with h.

Proof: Fix y, z � X� �x�. Later in the proof we will

unfix y, z and consider them to be random variables. Let

J � h̃�1�I�, then J is an interval. (If I is a singleton, then

h
�1�I� is a generalized interval, showing that the statement

also holds if we replace h̃ with h in this case.) Let u �
h̃�1�v�. We will show that (12) holds when we condition on

h�x� � u instead of h̃�x� � v. Since u is arbitrarily chosen

this will be sufficient. If h�x� � u and �h̃�y�, h̃�z�� � I2

then �h�y� � h�x�, h�z� � h�x�� � �J � u�2, i.e. �a�y �
x�, a�z�x�� � �J�u�2. Since h is 2-independent h�x� and

h�y��h�x� � a�y�x� are independent, showing that h�x�
and a are independent. So we conclude that:

P


�h̃�y�, h̃�z�� � I2 � h�x� � u

�
�P ��a�y � x�, a�z � x�� � �J � u�2 � h�x� � u


�P ��a�y � x�, a�z � x�� � �J � u�2 . (13)

By Lemma 4 we get:

P
��a�y � x�, a�z � x�� � �J � u�2

�
� �J � u�

p

�2

�O

�
� 1

Hp



y�x
z�x

� � �J � u�
p

� 1

p

�
� . (14)
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Since �J � u� p � �I�
m �

�
1� 1

p

�
we can combine (13) and

(14) to conclude that:

P
�
�h̃�y�, h̃�z�� � I2 � h̃�x� 	 v

�

�
� �I�
m

�2

�O

�
� 1

Hp

�
y�x
z�x

� � �I�
m

� 1

p

�
� . (15)

Now we unfix y, z and consider y, z � X
 �x� to be chosen

uniformly at random. By averaging over (15) we get:

P
�
�h̃�y�, h̃�z�� � I2 � h̃�x� 	 v

�
�

� �I�
m

�2

�O

�
		� 1

�n� 1�2



y�,z�
�

X��x�

�I�
Hp

�
y��x
z��x

�
m

� 1

p

�
��� . (16)

By Lemma 2 we see that:

1

Hp

�
y��x
z��x

� � 1

min
�
Ω�n�, H

�
y��x
z��x

�
� O

�
1

n

�
� 1

H
�

y��x
z��x

� . (17)

We now see that Corollary 4 applied to (17) in combination

with (16) gives the desired upper bound.

V. APPLICATIONS

In this section we apply the results from Section IV to

show performance guarantees when using h and h̃ for hash

tables with chaining, for min-wise hashing and for linear

probing.

We first prove that Corollary 1 is a corollary of Theorem 1.

The idea in the proof is that if there exists a large bucket,

then there must be a high probability that three random keys

have the same hash values.

Corollary 1. Let U 	 u� be a universe of keys and X � U
a set of n keys such that p � un. Assume that m � n and
let M be the number of keys that hash to the most popular
hash value, i.e. M 	 maxv��m�

���x � X � h�x� 	 v
���. Then

E�M� � n1	3
o�1�. The same result holds when h is
replaced with h̃ in the definition of M .

Proof: Fix h. Choosing x, y, z � X randomly the

probability that all of the keys are in the same largest bucket

is
�
M
n

�3
. But the average probability of this over all choices

of h is O�m�2 � n�2
o�1��. Hence:

E

��
M

n

�3
�
	 O�m�2 � n�2
o�1�� 	 n�2
o�1� . (18)

Applying Jensen’s inequality to the convex function x � x3

now gives E�M� 	 n1	3
o�1� as desired.

The following restatement of Theorem 2 shows that even

if we fix one hash value we can still use second order

moment bounds. If h̃ had been 3-independent the upper

bound in (20) could have been replaced with O
�
δ�2

�
. In

most cases the no�1� term in (20) will dominate the n2

pμ term,

and we will be able to prove bounds that are only worse

by a factor of no�1� than the corresponding bounds for 3-

independent hash functions.

Theorem 6. Let U 	 u� be a universe of keys and X � U
a set of n keys such that p � un. Let v � m�, I � m� be
an interval and x0 � U
X . Let A 	 �

x�X h̃�x� � I�. Then
μ 	 E�A� satisfies

μ 	 E�A � h̃�x0� 	 v� 	 Θ

�
n � �I�

m

�
, (19)

and for every δ � 0 it holds that:

P
�
�A� μ� � δ

�
μ � h̃�x0� 	 v

�
� 1

δ2
�
�
no�1� �O

�
n2

pμ

��
. (20)

Proof: (19) follows from the 2-independence of h̃. By

Theorem 5:

E
�
A2 � h̃�x0� 	 v

�
	n2 �

� �J �
p

�2

� n1
o�1� � �J �
p

�O
�
n2p�1

�
. (21)

Letting σ2 	 V �A � h̃�x0� 	 v�, we get:

σ2 	 E
�
A2 � h̃�x0� 	 v

�
� μ2

	 μ �
�
no�1� �O

�
n2

pμ

��
.

By an application of Chebyshev’s Inequaliy we now get

Equation (20).

Consider linear probing. In [4] it is proved that when

using a 3-independent hash function the worst case expected

query time for any element is O �log n�. This is done by

fixing the hash value of the element we query for, and then

using second order moment bounds. By using Theorem 6

instead of the usual second order moment bound for 3-

independent hash functions we get an upper bound that is

no�1� �O�log n� 	 no�1� instead. This proves Corollary 3.

Similarly, we can prove that h̃ performs almost as well

as 3-independent hash functions when using it for min-

wise hashing. This is done in Corollary 2 below. We should

compare the upper bound of n�1
o�1� to the upper bound of

O
�

logn
n

�
that holds for 3-independent hash functions [5].

Corollary 2. Let U 	 u� be a universe of keys and X � U
a set of n keys such that p � un. Let x0 � X . Then:

P

�
h̃�x0� � min

x�X��x0�

�
h̃�x�

�
� n�1
o�1� .
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Proof: Let X � � X� �x0�. For v � �m� let Iv � �v�1�
and let Av be the random variable defined by:

Av �
�

x�X�

�h̃	x
 � v� �
�

x�X�

�h̃	x
 � Iv� .

Now we note that h̃	x0
 � minx�X�

�
h̃	x


�
iff there exists

v � �m� such that h̃	x0
 � v and Av � 0. So we get:

P

�
h̃	x0
 � min

x�X�

�
h̃	x


��

�
�

v��m�

P
�
Av � 0  h̃	x0
 � v

�
� P

�
h̃	x0
 � v

�
.

Since P
�
h̃	x0
 � v

�
� O

�
m�1

	
Theorem 6 with δ �


E	Av
 gives:

P

�
h̃	x0
 � min

x�X�

�
h̃	x


��

�O

�
1

m

�
�
�

v��m�

min

�
1,

n�1�o�1�m

v � 1
�O

�
m2

p�v � 1�2
��

�n�1�o�1� �O

�
1�
p

�
� n�1�o�1� .
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[4] M. Pǎtraşcu and M. Thorup, “On the k-independence required
by linear probing and minwise independence,” ACM Trans.
Algorithms, vol. 12, no. 1, p. 8, 2016.
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