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Abstract—We initiate the study of fast dynamic algorithms
for graph sparsification problems and obtain fully dynamic
algorithms, allowing both edge insertions and edge deletions,
that take polylogarithmic time after each update in the graph.
Our three main results are as follows. First, we give a fully
dynamic algorithm for maintaining a (1±ε)-spectral sparsifier
with amortized update time poly(log n, ε−1). Second, we give a
fully dynamic algorithm for maintaining a (1±ε)-cut sparsifier
with worst-case update time poly(log n, ε−1). Both sparsifiers
have size n · poly(log n, ε−1). Third, we apply our dynamic
sparsifier algorithm to obtain a fully dynamic algorithm for
maintaining a (1 − ε)-approximation to the value of the
maximum flow in an unweighted, undirected, bipartite graph
with amortized update time poly(log n, ε−1).
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I. INTRODUCTION

Problems motivated by graph cuts are well studied in

theory and practice. The prevalence of large graphs motivated

sublinear time algorithms for cut based problems such as

clustering [1]–[6]. In many cases such as social networks or

road networks, these algorithms need to run on dynamically

evolving graphs. In this paper, we study an approach for

obtaining sublinear time algorithms for these problems based

on dynamically maintaining graph sparsifiers.

Recent years have seen a surge of interest in dynamic

graph algorithms. On the one hand, very efficient algorithms,

with polylogarithmic running time per update in the graph,

could be found for some key problems in the field [7]–

[15]. On the other hand, there are polynomial conditional

lower bounds for many basic graph problems [16]–[18].

This leads to the question which problems can be solved

with polylogarithmic update time. Another relatively recent

trend in graph algorithmics is graph sparsification where we

reduce the size of graphs while approximately preserving key

properties such as the sizes of cuts [19]. These routines and

their extensions to the spectral setting [20], [21] play central

roles in a number of recent algorithmic advances [22]–[28],

often leading to graph algorithms that run in almost-linear

Full version of this paper available at https://arxiv.org/abs/1604.02094.

time. In this paper, we study problems at the intersection

of dynamic algorithms and graph sparsification, leveraging

ideas from both fields.
At the core of our approach are data structures that

dynamically maintain graph sparsifiers in polylog n time per

edge insertion or deletion. They are motivated by the spanner

based constructions of spectral sparsifiers of Koutis [29]. By

modifying dynamic algorithms for spanners [14], we obtain

data structures that spend amortized polylog n per update.

Our main result for spectral sparsifiers is:

Theorem 1. Given a graph with polynomially bounded edge
weights, we can dynamically maintain a (1 ± ε)-spectral
sparsifier of size n · poly(log n, ε−1) with amortized update
time poly(log n, ε−1) per edge insertion / deletion.

When used as a black box, this routine allows us to run cut

algorithms on sparse graphs instead of the original, denser

network. Its guarantees interact well with most routines that

compute minimum cuts or solve linear systems in the graph

Laplacian. Some of them include:

1) min-cuts, sparsest cuts, and separators [30],

2) eigenvector and heat kernel computations [31],

3) approximate Lipschitz learning on graphs [32] and

a variety of matrix polynomials in the graph Lapla-

cian [33].

In many applications the full power of spectral sparsifiers

is not needed, and it suffices to work with a cut sparsifier.

As spectral approximations imply cut approximations, re-

search in recent years has focused spectral sparsification

algorithms [34]–[39]. In the dynamic setting however we get

a strictly stronger result for cut sparsifiers than for spectral

sparsifiers: we can dynamically maintain cut sparsifiers

with polylogarithmic worst-case update time after each

insertion / deletion. We achieve this by generalizing Koutis’

sparsification paradigm [29] and replacing spanners with

approximate maximum spanning trees in the construction.

While there are no non-trivial results for maintaining spanners

with worst-case update time, spanning trees can be maintained

with polylogarithmic worst-case update time by a recent
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breakthrough result [9]. This allows us to obtain the following

result for cut sparsifiers:

Theorem 2. Given a graph with polynomially bounded edge
weights, we can dynamically maintain a (1±ε)-cut sparsifier
of size n · poly(log n, ε−1) with worst-case update time
poly(log n, ε−1) per edge insertion / deletion.

We then explore more sophisticated applications of dy-

namic graph sparsifiers. A key property of these sparsifiers

is that they have arboricity polylog n. This means the

sparsifier is locally sparse, and can be represented as a union

of spanning trees. This property is becoming increasingly

important in recent works [11], [40]: Peleg and Solomon [40]

gave data structures for maintaining approximate maximum

matchings on fully dynamic graphs with amortized cost

parameterized by the arboricity of the graphs. We demonstrate

the applicability of our data structures for designing better

data structures on the undirected variant of the problem.

Through a two-stage application of graph sparsifiers, we

obtain the first non-separator based approach for dynamically

maintaining (1 − ε)-approximate maximum flow on fully

dynamic graphs:

Theorem 3. Given a dynamically changing unweighted,
undirected, bipartite graph G = (A,B,E) with demand
−1 on every vertex in A and demand 1 on every vertex
in B, we can maintain a (1 − ε)-approximation to the
value of the maximum flow, as well as query access to the
associated approximate minimum cut, with amortized update
time poly(log n, ε−1) per edge insertion / deletion.

To obtain this result we give stronger guarantees for vertex

sparsification in bipartite graphs, identical to the terminal

cut sparsifier question addressed by Andoni, Gupta, and

Krauthgamer [41]. Our new analysis profits from the ideas

we develop by going back and forth between combinatorial

reductions and spectral sparsification. This allows us to

analyze a vertex sampling process via a mirror edge sampling

process, which is in turn much better understood.

Overall, our algorithms bring together a wide range of tools

from data structures, spanners, and randomized algorithms.

We will provide more details on our routines, as well as how

they relate to existing combinatorial and probabilistic tools

in Section III.

Proofs to all claims made in this paper can be found in

the full version.

II. BACKGROUND

A. Dynamic Graph Algorithms

In this paper we consider undirected graphs G = (V,E)
with n vertices and m edges that are either unweighted or

have non-negative edge weights. We denote the weight of

an edge e = (u, v) in a graph G by wG(e) or wG(u, v) and
the ratio between the largest and the smallest edge weight

by W . The weight wG(F ) of a set of edges F ⊆ E is the

sum of the individual edge weights. We will assume that all

weights are polynomially bounded because there are standard

reductions from the general case using minimum spanning

trees (e.g. [42] Section 10.2., [43] Theorem 5.2). Also, these

contraction schemes in the data structure setting introduces

another layer of complexity akin to dynamic connectivity,

which we believe is best studied separately.

A dynamic algorithm is a data structure for dynamically

maintaining the result of a computation while the underlying

input graph is updated periodically. We consider two types of

updates: edge insertions and edge deletions. An incremental
algorithm can handle only edge insertions, a decremental
algorithm can handle only edge deletions, and a fully dynamic
algorithm can handle both edge insertions and deletions. After

every update in the graph, the dynamic algorithm is allowed

to process the update to compute the new result. For the

problem of maintaining a sparsifier, we want the algorithm

to output the changes to the sparsifier (i.e., the edges to add

to or remove from the sparsifier) after every update in the

graph.

B. Running Times and Success Probabilities

The running time spent by the algorithm after every update

is called update time. We distinguish between amortized and

worst-case update time. A dynamic algorithm has amortized

update time T (m,n,W ), if the total time spent after q
updates in the graph is at most qT (m,n,W ). A dynamic

algorithm has worst-case update time T (m,n,W ), if the

total time spent after each update in the graph is at most

T (m,n,W ). Here m refers to the maximum number of

edges ever contained in the graph. All our algorithms are

randomized.

The guarantees we report in this paper (quality and

size of sparsifier, and update time) will hold with high
probability (w.h.p.), i.e. with probability at least 1 − 1/nc

for some arbitrarily chosen constant c ≥ 1. These bounds

are against an oblivious adversary who chooses its sequence

of updates independently from the random choices made by

the algorithm. Formally, the oblivious adversary chooses its

sequence of updates before the algorithm starts. In particular,

this means that the adversary is not allowed to see the current

edges of the sparsifier. As our composition of routines involve

poly(n) calls, we will assume the composability of these

w.h.p. bounds.

Most of our update costs have the form

O(logO(1) nε−O(1)), where ε is the approximation

error. We will often state these as poly(log n, ε−1).

C. Cuts and Laplacians

A cut U ⊆ V of G is a subset of vertices whose removal

makes G disconnected. We denote by ∂G(U) the edges

crossing the cut U , i.e., the set of edges with one endpoint

in U and one endpoint in V \ U . The weight of the cut U
is wG(∂G(U)). An edge cut F ⊆ E of G is a a subset of
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edges whose removal makes G disconnected and the weight

of the edge cut F is wG(F ). For every pair of vertices u and

v, the local edge connectivity λG(u, v) is the weight of the

minimum edge cut separating u and v. If G is unweighted,

then λG(u, v) amounts to the number of edges that have to

be removed from G to make u and v disconnected.

Assuming some arbitrary order v1, . . . vn on the vertices,

the Laplacian matrix LG of an undirected graphG is the n×n
matrix that in row i and column j contains the negated weight

−wG(vi, vj) of the edge (vi, vj) and in the i-th diagonal entry
contains the weighted degree

∑n
j=1 wG(vi, vj) of vertex vi.

Note that Laplacian matrices are symmetric. The matrix Le

of an edge e of G is the n × n Laplacian matrix of the

subgraph of G containing only the edge e. It is 0 everywhere

except for a 2× 2 submatrix.

For studying the spectral properties of G we treat the graph

as a resistor network. For every edge e ∈ E we define the

resistance of e as rG(e) = 1/wG(e). The effective resistance
RG(e) of an edge e = (v, u) is defined as the potential

difference that has to be applied to u and v to drive one unit

of current through the network. A closed form expression

of the effective resistance is RG(e) = b�u,vL†Gbu,v, where
L†G is the Moore-Penrose pseudo-inverse of the Laplacian

matrix of G and bu,v is the n-dimensional vector that is 1
at position u, −1 at position v, and 0 otherwise.

D. Graph Approximations

The goal of graph sparsification is to find sparse subgraphs,

or similar small objects, that approximately preserve certain

metrics of the graph. We first define spectral sparsifiers

where we require that Laplacian quadratic form of the graph

is preserved approximately. Spectral sparsifiers play a pivotal

role in fast algorithms for solving Laplacian systems, a special

case of linear systems.

Definition 4. A (1± ε)-spectral sparsifier H of a graph G is
a subgraph of G with weights wH such that for every vector
x ∈ R

n

(1− ε)x�LHx ≤ x�LGx ≤ (1 + ε)x�LHx .

Using the Loewner ordering on matrices this condition

can also be written as (1 − ε)LH � LG � (1 + ε)LH . An

n× n matrix A is positive semi-definite, written as A � 0,
if x�Ax ≥ 0 for all x ∈ R

n. For two n×n matrices A and

B we write A � B as an abbreviation for A− B � 0.
Note that x�LGx =

∑
(u,v)∈E w(u, v)(x(u) − x(v))2

where the vector x is treated as a function on the vertices and

x(v) is the value of x for vertex v. A special case of such

a function on the vertices is given by the binary indicator

vector xU associated with a cut U , where xU (v) = 1 is

v ∈ U and 0 otherwise. If limited to such indicator vectors,

the sparsifier approximately preserves the value of every cut.

Definition 5. A (1± ε)-cut sparsifier H of a graph G is a
subgraph of G with weights wH such that for every subset
U ⊆ V

(1− ε)wH(∂H(U)) ≤ wG(∂G(U)) ≤ (1 + ε)wH(∂H(U)) .

E. Spanning Trees and Spanners

A spanning forest F of G is a forest (i.e., acyclic graph)

on a subset of the edges of G such that every pair of

vertices that is connected in G is also connected in F . A

minimum/maximum spanning forest is a spanning forest of

minimum/maximum total weight.

For every pair of vertices u and v we denote by dG(u, v)
the distance between u and v (i.e., the length of the shortest

path connecting u and v) in G with respect to the resistances.

The graph sparsification concept also exists with respect to

distances in the graph. Such sparse subgraphs that preserves

distances approximately are called spanners.

Definition 6. A spanner of stretch α, or short α-spanner,
(where α ≥ 1) of an undirected (possibly weighted) graph G
is a subgraph H of G such that, for every pair of vertices
u and v, dH(u, v) ≤ αdG(u, v).

III. OVERVIEW AND RELATED WORK

A. Dynamic Spectral Sparsifier

We first develop a fully dynamic algorithm for maintaining

a spectral sparsifier of a graph with polylogarithmic amortized

update time.

Related Work: Spectral sparsifiers play important roles

in fast numerical algorithms [21]. Spielman and Teng were

the first to study these objects [20]. Their algorithm constructs

a (1± ε)-spectral sparsifier of size O(n ·poly(log n, ε−1)) in
nearly linear time. This result has seen several improvements

in recent years [37], [42], [44], [45]. The state of the

art in the sequential model is an algorithm by Lee and

Sun [38] that computes a (1± ε)-spectral sparsifier of size
O(nε−2) in nearly linear time. Most closely related to the

data structural question are streaming routines, both in one

pass incremental [34], and turnstile [36], [46], [47].

A survey of spectral sparsifier constructions is given

in [21]. Many of these methods rely on solving linear

systems built on the graph, for which there approaches with

a combinatorial flavor using low-stretch spanning trees [48],

[49] and purely numerical solvers relying on sparsifiers [25]

or recursive constructions [27]. We build on the spectral

sparsifier obtained by a simple, combinatorial construction

of Koutis [29], which initially was geared towards parallel

and distributed implementations.

Sparsification Framework: In our framework we deter-

mine ‘sampleable’ edges by using spanners to compute a set

of edges of bounded effective resistance. From these edges

we then sample by coin flipping to obtain a (moderately

sparser) spectral sparsifier in which the number of edges has

been reduced by a constant fraction. This step can then be
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iterated a small number of times in order to compute the

final sparsifier.

Concretely, we define a t-bundle spanner B = T1∪· · ·∪Tt

(for a suitable, polylogarithmic, value of t) as a sequence

of spanners T1, . . . , Tt where the edges of each spanner

are removed from the graph before computing the next

spanner, i.e., T1 is a spanner of G, T2 is a spanner of

G \ T1, etc; here each spanner has stretch O(log n). We

then sample each non-bundle edge in G \ B with some

constant probability p and scale the edge weights of the

sampled edges proportionally. The t-bundle spanner serves

as a certificate for small resistance of the non-bundle edges

in G \ B as it guarantees the presence of t disjoint paths
of length at most the stretch of the spanner. Using this

property one can apply matrix concentration bounds [50]

to show the t-bundle together with the sampled edges is a

moderately sparse spectral sparsifier. We repeat this process

of ‘peeling off’ a t-bundle from the graph and sampling from

the remaining edges until the graph is sparse enough (which

happens after a logarithmic number of iterations). Our final

sparsifier consists of all t-bundles together with the sampled

edges of the last stage. Figure 1 gives an overview for this

spectral sparsifier construction.

Towards a Dynamic Algorithm: To implement the

spectral sparsification algorithm in the dynamic setting

we need to dynamically maintain a t-bundle spanner. Our

approach to this problem is to run t different instances of a
dynamic spanner algorithm, in order to separately maintain a

spanner Ti for each graph Gi = G \⋃i−1
j=1 Tj , for 1 ≤ i ≤ t.

Baswana, Khurana, and Sarkar [14] gave a fully dynamic

algorithm for maintaining a spanner of stretch O(log n)
and size O(n log2 n) with polylogarithmic update time.1 A

natural first idea would be to use this algorithm in a black-

box fashion in order to separately maintain each spanner of a

t-bundle. However, we do not know how to do this because

of the following obstacle. A single update in G might lead

to several changes of edges in the spanner T1, an average

of Ω(logn) according to the amortized upper bound. This

means that the next instance of the fully dynamic spanner

algorithm which is used for maintaining T2, not only has to

deal with the deletion in G but also the artificially created

updates in G2 = G \ T1. This of course propagates to more

updates in all graphs Gi. Observe also that any given update

in Gt caused by an update in G, can be requested repeatedly,
as a result of subsequent updates in G. Without further

guarantees, it seems that with this approach we can only

hope for an upper bound of O(logt−1 n) (on average) on the

number of changes to be processed for updating Gt after a

1More precisely, they gave two fully dynamic algorithms for maintaing a
(2k − 1)-spanner for any integer k ≥ 2: The first algorithm guarantees a
spanner of expected size O(kn1+1/k logn) and has expected amortized
update time O(k2 log2 n) and the second algorithm guarantees a spanner
of expected size O(k8n1+1/k log2 n) and has expected amortized update
time O(7k/2).

single update in G. That is too high because the sparsification

algorithm requires us to take t = Ω(log n). Our solution to

this problem lies in a substantial modification of the dynamic

spanner algorithm in [14] outlined below.

Dynamic Spanners with Monotonicity: The spanner

algorithm of Baswana et al. [14] is at its core a decremental

algorithm (i.e., allowing only edge deletions in G), which

is subsequently leveraged into a fully dynamic algorithm

by a black-box reduction. We follow the same approach by

first designing a decremental algorithm for maintaining a

t-bundle spanner. This is achieved by modifying the decre-

mental spanner algorithm so that, in addition to its original

guarantees, it has the following monotonicity property:

Every time an edge is added to the spanner T , it stays in T
until it is deleted from G.

The algorithm is outlined in Figure 2

Recall that we initially want to maintain a t-bundle spanner
T1, . . . , Tt under edge deletions only. In general, whenever an

edge is added to T1, it will cause its deletion from the graph

G \ T1 for which the spanner T2 is maintained. Similarly,

removing an edge from T1 causes its insertion into G \ T1,

unless the edge is deleted from G. This is precisely what the

monotonicity property guarantees: that an edge will not be

removed from T1 unless deleted from G. The consequence is

that no edge insertion can occur for G2 = G\T1. Inductively,

no edge is ever inserted into Gi, for each i. Therefore the

algorithm for maintaining the spanner Ti only has to deal

with edge deletions from the graph Gi, thus it becomes

possible to run a different instance of the same decremental

spanner algorithm for each Gi. A single deletion from G
can still generate many updates in the bundle. But for each i,
the instance of the dynamic spanner algorithm working on

Gi can only delete each edge once. Furthermore, we only

run a small number t of instances. So the total number of

updates remains bounded, allowing us to claim the upper

bound on the amortized update time.

In addition to the modification of the dynamic spanner

algorithm, we have also deviated from Koutis’ original

scheme [29] in that we explicitly ‘peel off’ each iteration’s

bundle from the graph. In this way we avoid that the t-bundles
from different iterations share any edges, which seems hard

to handle in the decremental setting we ultimately want to

restrict ourselves to.

The modified spanner algorithm now allows us to maintain

t-bundles in polylogarithmic update time, which is the main

building block of the sparsifier algorithm. The remaining

parts of the algorithm, like sampling of the non-bundle

edges by coin-flipping, can now be carried out in the

straightforward way in polylogarithmic amortized update

time. At any time, our modified spanner algorithm can work

in a purely decremental setting. As mentioned above, the fully

dynamic sparsifier algorithm is then obtained by a reduction

from the decremental sparsifier algorithm.
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LIGHT-SPECTRAL-SPARSIFY (G, ε)

1) t← 
12(c+ 1)αε−2 lnn� for some absolute constant c.
2) let B =

⋃t
j=1 Tj be a t-bundle α-spanner of G

3) H := B
4) for each edge e ∈ G \B

a) with probability 1/4: add e to H with wH(e)← 4wG(e)

5) return (H,B)

SPECTRAL-SPARSIFY (G, c, ε)

1) k ← 
log ρ�
2) G0 ← G
3) B0 ← (V, ∅)
4) for i = 1 to k

a) (Hi, Bi)← LIGHT-SPECTRAL-SPARSIFY(Gi−1, c, ε/(2k))
b) Gi ← Hi \Bi

c) if Gi has less than (c+ 1) lnn edges then break (* break loop *)

5) H ← ⋃
1≤j≤i Bj ∪Gi

6) return (H, {Bj}ij=1, Gi)

Figure 1. Our spectral sparsifier is obtained by running the procedures LIGHT-SPECTRAL-SPARSIFY and SPECTRAL-SPARSIFY. In our dynamic algorithm
we follow the same scheme and implement both procedures dynamically. To implement LIGHT-SPECTRAL-SPARSIFY, we in particular dynamically maintain
the t-bundle α-spanner B which results in a dynamically changing graph G \B. To implement SPECTRAL-SPARSIFY, we dynamically maintain each Hi

and Bi as the result of a dynamic implementation of LIGHT-SPECTRAL-SPARSIFY which results in dynamically changing graphs Gi.

DECREMENTAL-SPANNER

1) k ← 
log n�
2) Create sequence of sets V = S0 ⊇ S1 ⊇ . . . ⊇ Sk = ∅: add each vertex of Si to Si+1 independently with probability

n−1/k.

3) Pick random permutation σ of vertices in V
4) For every 1 ≤ i ≤ k, maintain clustering Ci: Every vertex within distance i to vertices in Si is assigned to cluster

Ci[s] of closest vertex s ∈ Si; ties are broken according to permutation σ
5) For every 1 ≤ i ≤ k, maintain forest Fi containing, for every s ∈ Si, shortest path tree from s to all vertices in Ci[s]

such that every vertex v chooses parent that comes first in permutation σ among all candidates (i.e., among the vertices

that are in the same cluster Ci[s] as v and that are at distance d(v, s)− 1 from s)
6) Maintain spanner H containing following two types of edges

a) For every 1 ≤ i ≤ k, H contains all edges of forest Fi

b) For every 1 ≤ i ≤ k, every vertex v contained in some cluster Ci[s], and every neighboring cluster Ci[s
′] of v,

H contains one edge to Ci[s
′], i.e., one edge (v, v′) such that v′ ∈ Ci[s

′]
7) Every time an edge is added to H it is kept in H until deleted from G

Figure 2. Decremental algorithm for maintaining spanner with monotonicity property. We show in the full version of this paper that this algorithm has a
total update time of O(m polylogn) over all deletions and maintains a spanner of stretch O(logn) and size O(n polylog n).

B. Dynamic Cut Sparsifier

We also give dynamic algorithms for maintaining a (1±ε)-
cut sparsifier. We obtain a fully dynamic algorithm with

polylogarithmic worst-case update time by leveraging a recent

worst-case update time algorithm for dynamically maintaining

a spanning tree of a graph [9]. As mentioned above, spectral

sparsifiers are more general than cut sparsifiers. The big

advantage of studying cut sparsification as a separate problem

is that we can achieve polylogarithmic worst-case update time,

where the update time guarantee holds for each individual

update and is not amortized over a sequence of updates.

Related Work: In the static setting, Benczúr and

Karger [19] developed an algorithm for computing a (1± ε)-
cut sparsifier of size O(n · poly(log n, ε−1)) in nearly linear
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time. Their approach is to first compute a value called

strength for each edge and then sampling each edge with

probability proportional to its strength. Their proof uses

a cut-counting argument that shows that the majority of

cuts are large, and therefore less likely to deviate from

their expectation. A union bound over these (highly skewed)

probabilities then gives the overall w.h.p. success bound. This

approach was refined by Fung et al. [51] who show that a

cut sparsifier can also be obtained by sampling each edge

with probability inversely proportional to its (approximate)

local edge connectivity, giving slightly better guarantees on

the sparsifier. The work of Kapron, King, and Mountjoy [9]

contains a fully dynamic approximate “cut oracle” with worst-

case update time O(log2 n). Given a set U ⊆ V as the input

of a query, it returns a 2-approximation to the number of

edges in U ×V \U in time O(|U | log2 n). The cut sparsifier

question has also been studied in the (dynamic) streaming

model [52]–[54].

Our Framework: The algorithm is based on the obser-

vation that the spectral sparsification scheme outlined above

in Section III-A. becomes a cut sparsification algorithm if

we simply replace spanners by maximum weight spanning

trees (MSTs). This is inspired by sampling according to edge

connectivities; the role of the MSTs is to certify lower bounds

on the edge connectivities. We observe that the framework

does not require us to use exact MSTs. For our t-bundles we
can use a relaxed, approximate concept that we call α-MST

that. Roughly speaking, an α-MST guarantees a ‘stretch’ of

α in the infinity norm and, as long as it is sparse, does not

necessarily have to be a tree.

Similarly to before, we define a t-bundle α-MST B as the

union of a sequence of α-MSTs T1, . . . Tt where the edges

of each tree are removed from the graph before computing

the next α-MST. The role of α-MST is to certify uniform

lower bounds on the connectivity of edges; these bounds

are sufficiently large to allow uniform sampling with a fixed

probability.

This process of peeling and sampling is repeated suffi-

ciently often and our cut sparsifier then is the union of all

the t-bundle α-MSTs and the non-bundle edges remaining

after taking out the last bundle. Thus, the cut sparsifier

consists of a polylogarithmic number of α-MSTs and a few

(polylogarithmic) additional edges. This means that for α-
MSTs based on spanning trees, our cut sparsifiers are not

only sparse, but also have polylogarithmic arboricity, which
is the minimum number of forests into which a graph can be

partitioned. Figure 3 gives an overview for this cut sparsifier

construction.

Simple Fully Dynamic Algorithm: Our approach im-

mediately yields a fully dynamic algorithm by using a

fully dynamic algorithm for maintaining a spanning forest.

Here we basically have two choices. Either we use the

randomized algorithm of Kapron, King, and Mountjoy [9]

with polylogarithmic worst-case update time. Or we use

the deterministic algorithm of Holm, de Lichtenberg, and

Thorup [8] with polylogarithmic amortized update time. The

latter algorithm is slightly faster, at the cost of providing

only amortized update-time guarantees. A t-bundle 2-MST

can be maintained fully dynamically by running, for each

of the logW weight classes of the graph, t instances of the
dynamic spanning tree algorithm in a ‘chain’.

An important observation about the spanning forest algo-

rithm is that with every update in the graph, at most one

edge is changed in the spanning forest: If for example an

edge is deleted from the spanning forest, it is replaced by

another edge, but no other changes are added to the tree.

Therefore a single update in G can only cause one update

for each graph Gi = G \⋃i−1
j=1 Tj and Ti. This means that

each instance of the spanning forest algorithm creates at

most one ‘artificial’ update that the next instance has to deal

with. In this way, each dynamic spanning forest instance

used for the t-bundle has polylogarithmic update time. As

t = polylog n, the update time for maintaining a t-bundle is

also polylogarithmic. The remaining steps of the algorithm

can be carried out dynamically in the straightforward way

and overall give us polylogarithmic worst-case or amortized

update time.

A technical detail of our algorithm is that the high-

probability correctness achieved by the Chernoff bounds

only holds for a polynomial number of updates in the graph.

We thus have to restart the algorithm periodically. This is

trivial when we are shooting for an amortized update time.

For a worst-case guarantee we can neither completely restart

the algorithm nor change all edges of the sparsifier in one

time step. We therefore keep two instances of our algorithm

that maintain two sparsifiers of two alternately growing and

shrinking subgraphs that at any time partition the graph. This

allows us to take a blend of these two subgraph sparsifiers

as our end result and take turns in periodically restarting the

two instances of the algorithm.

C. (1− ε)-Approximate Undirected Bipartite Flow

We then study ways of utilizing our sparsifier construc-

tions to give routines with truly sublinear update times.

The problem that we work with will be maintaining an

approximate maximum flow problem on a bipartite graph

GA,B = (A,B,E) with demand −1 and 1 on each vertex

in A and B, respectively. All edges are unit weight and we

dynamically insert and delete edges. The maximum flow

minimum cut theorem states that the objective here equals to

the minimum s− t cut or maximum s− t flow in G, which

will be GA,B where we add vertices s and t, and connect

each vertex in A to s and each vertex in B to t. The only

dynamic changes in this graph will be in edges between A
and B. As our algorithms builds upon cut sparsifiers, and

flow sparsifiers [24] are more involved, we will focus on

only finding cuts.
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LIGHT-CUT-SPARSIFY (G, c, ε)

1) t← Cξcα logW log2 n/ε2

2) Let B be a t-bundle α-MST of G

3) H := B
4) For each edge e ∈ G \B

a) With probability 1/4 add e to H with 4wH(e)← wG(e)

5) Return (H,B)

CUT-SPARSIFY (G, c, ε)

1) k ← 
log ρ�
2) G0 ← G
3) B0 ← (V, ∅)
4) for i = 1 to k

a) (Hi, Bi)← LIGHT-CUT-SPARSIFY(G, c+ 1, ε/(2k))
b) Gi+1 ← Hi \Bi

c) if Gi+1 has less than (c+ 2) lnn edges then break (* break loop *)

5) H ← ⋃
1≤j≤i Bj ∪Gi+1

6) return (H, {Bj}ij=1, Gi+1)

Figure 3. Our cut sparsifier is obtained by running the procedures LIGHT-CUT-SPARSIFY and CUT-SPARSIFY. In our dynamic algorithm we follow
the same scheme and implement both procedures dynamically. To implement LIGHT-CUT-SPARSIFY, we in particular dynamically maintain the t-bundle
α-MST B which results in a dynamically changing graph G \B. To implement SPECTRAL-SPARSIFY, we dynamically maintain each Hi and Bi as the
result of a dynamic implementation of LIGHT-CUT-SPARSIFY which results in dynamically changing graphs Gi.

This problem is motivated by the dynamic approximate

maximum matching problem, which differs in that the edges

are directed, and oriented from A to B. This problem has

received much attention recently [10]–[12], [40], [55], [56],

and led to the key definition of low arboricity graphs [11],

[40]. On the other hand, bipartite graphs are known to be

difficult to sparsify: the directed reachability matrix from A
to B can encode Θ(n2) bits of information. As a result, we

study the undirected variant of this problem instead, with

the hope that this framework can motivate other definitions

of sparsification suitable for wider classes of graphs.

Another related line of work are fully dynamic algorithm

for maintaining the global minimum cut [57], [58] with

update time O(
√
n polylog n). As there are significant

differences between approximating global minimum cuts

and st-minimum cuts in the static setting [59], we believe

that there are some challenges to adapting these techniques

for this problem. The data structure by Thorup [57] can either

maintain global edge connectivity up to polylog n exactly or,

with high probability, arbitrary global edge connectivity with

an approximation of 1 + o(1). The algorithms also maintain

concrete (approximate) minimum cuts, where in the latter

algorithm the update time increases to O(
√
m polylog n)

(and cut edges can be listed in time O(log n) per edge).

Thorup’s result was preceded by a randomized algorithm with

worse approximation ratio for the global edge connectivity by

Thorup and Karger [58] with update time O(
√
n polylog n).

The problem we have formulated above is shown in the

full paper to be different from matching. On the other hand,

our incorporation of sparsifiers for maintaining solutions to

this problem relies on several properties that hold in a variety

of other settings:

1) The static version can be efficiently approximated.

2) The objective can be approximated via graph sparsi-

fiers.

3) A small answer (for which the algorithm’s current ap-

proximation may quickly become sub-optimal) means

the graph also has a small vertex cover.

4) The objective does not change much per each edge

update.

As with algorithms for maintaining high quality match-

ings [40], [55], our approach aims to get a small amortized

cost by keeping the same minimum s− t cut for many con-

secutive dynamic steps. Specifically, if we have a minimum

s− t cut of size (2 + ε
2 )OPT , then we know this cut will

remain (2 + ε) approximately optimal for ε
2OPT dynamic

steps. This allows us to only compute a new minimum s− t
cut every ε

2OPT dynamic steps.

As checking for no edges would be an easy boundary case,

we will assume throughout all the analysis that OPT > 0. To
obtain an amortized O(poly(log n, ε−1)) update cost, it suf-

fices for this computation to take O(OPT ·poly(log n, ε−1))
time. In other words, we need to solve approximate maximum

flow on a graph of size O(OPT ·poly(log n, ε−1)). Here we
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incorporate sparsifiers using the other crucial property used

in matching data structures [10], [40], [55]: if OPT is small,

G also has a small vertex cover.

Lemma 7. The minimum vertex cover in G has size at most
OPT + 2 where OPT is the size of the minimum s− t cut
in G.

We utilize the low arboricity of our sparsifiers to find

a small vertex cover with the additional property that all

non-cover vertices have small degree. We will denote this

(much) smaller set of vertices as V C. In a manner similar

to eliminating vertices in numerical algorithms [27], the

graph can be reduced to only edges on V C at the cost of

a (2 + ε)-approximation. Maintaining a sparsifier of this

routine again leads to an overall routine that maintains a

(2 + ε)-approximation in polylog n time per update.

Sparsifying vertices instead of edges inherently implies

that an approximation of all cut values cannot be maintained.

Instead, the sparsifier, which will be referred to as a terminal-
cut-sparsifier, maintains an approximation of all minimum

cuts between any two terminal vertices, where the vertex

cover is the terminal vertex set for our purposes. More

specifically, given a minimum cut between two terminal

vertices on the sparsified graph, by adding each independent

vertex from the original graph to the cut set it is more

connected to, an approximate minimum cut on the original

graph is achieved. This concept of terminal-cut-sparsifier
will be equivalent to that in [41].

The large approximation ratio motivated us to reexamine

the sparsification routines, namely the one of reducing

the graph to one whose size is proportional to |V C|.
This is directly related to the terminal cut sparsifiers

studied in [41], [60]. However, for an update time of

poly(log n, ε−1), it is crucial for the vertex sparsifier to

have size O(|VC| poly(log n, ε−1)). As a result, instead of

doing a direct union bound over all 2|VC| cuts to get a size

of poly(|VC|) as in [41], we need to invoke cut counting as

with cut sparsifier constructions. This necessitates the use

of objects similar to t-bundles to identify edges with small

connectivity. This leads to a sampling process motivated by

the (2+ε)-approximate routine, but works on vertices instead

of edges.

By relating the processes, we are able to absorb the factor 2
error into the sparsifier size. Here a major technical challenge

compared to analyses of cut sparsifiers [51] is that the

natural scheme of bucketing by edge weights is difficult

to analyze because a sampled vertex could have non-zero

degree in multiple buckets. We work around this issue via a

pre-processing scheme on G that creates an approximation

so that all vertices outside of VC have degree polylog n.
This scheme is motivated in part by the weighted expanders

constructions from [27]. Bucketing after this processing step

ensures that each vertex belongs to a unique bucket. In terms

of a static sparsifier on terminals, the result that is most

comparable to results from previous works is:

Corollary 8. Given any graph G = (V,E), and a vertex
cover VC of G, where X = V \ VC, with error ε, we
can build an ε-approximate terminal-cut-sparsifier H with
O(|VC| poly(log n, ε−1)) vertices in O(m·poly(log n, ε−1))
work.

Turning this into a dynamic routine leads to the result

described in Theorem 3: a (1 + ε)-approximate solution

that can be maintained in time polylog(n) per update. It is
important to note that Theorem 2 plays an integral role in

extending Corollary 8 to a dynamic routine, particularly the

low arboricity property that allows us to maintain a small

vertex cover such that all non-cover vertices have low degree.

IV. DISCUSSION

Graph Sparsification: We use a sparsification framework

in which we ‘peel off’ bundles of sparse subgraphs to

determine ‘sampleable’ edges, from which we then sample

by coin flipping. This leads to combinatorial and surprisingly

straightforward algorithms for maintaining graph sparsifiers.

Additionally, this gives us low-arboricity sparsifiers; a prop-

erty that we exploit for our main application.

Although spectral sparsification is more general than cut

sparsification. Our treatment of cut sparsification has two

motivations. First, we can obtain stronger running time

guarantees. Second, our sparsifier for the (1+ε)-approximate

maximum flow algorithm on bipartite graphs hinges upon

improved routines for vertex sparsification, a concept which

leads to different objects in the spectral setting.

Dynamic Graph Algorithms: In our sparsification frame-

work we sequentially remove bundles of sparse subgraphs

to determine ‘sampleable’ edges. This leads to ‘chains’ of

dynamic algorithms where the output performed by one

algorithm might result in updates to the input of the next

algorithm. This motivates a more fine-grained view on of

dynamic algorithms with the goal of obtaining strong bounds

on the number of changes to the output.

Future Work: The problem whether spectral sparsifiers

can be maintained with polylogarithmic worst-case update

time remains open. Our construction goes via spanners and

therefore a natural question is whether spanners can be

maintained with worst-case update time. Maybe there are

also other more direct ways of maintaining the sparsifier. A

more general question is whether we can find more dynamic

algorithms for numerical problems.

Our dynamic algorithms cannot avoid storing the original

graph, which is undesirable in terms of space consumption.

Can we get space-efficient dynamic algorithms without

sacrificing fast update time?

The sparsification framework for peeling off subgraphs and

uniformly sampling from the remaining edges is very general.

Are there other sparse subgraphs we could start with in the

peeling process? Which properties do the sparsifiers obtained

341342342



in this way have? In particular, it would be interesting

to see whether our techniques can be generalized to flow

sparsifiers [24], [41].

The combination of sparsifiers with density-sensitive

approaches for dynamic graph data structures [11], [40]

provides an approach for obtaining poly(log, ε−1) update

times. We believe this approach can be generalized to other

graph cut problems. In particular, the flow networks solved

for balanced cuts and graph partitioning are also bipartite

and undirected, and therefore natural directions for future

work.
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