
Fully Dynamic Maximal Matching in Constant Update Time

Shay Solomon
Stanford University

Email: shayso@cs.stanford.edu

Abstract—Baswana, Gupta and Sen [FOCS’11] showed that
fully dynamic maximal matching can be maintained in gen-
eral graphs with logarithmic amortized update time. More
specifically, starting from an empty graph on 𝑛 fixed ver-
tices, they devised a randomized algorithm for maintaining
maximal matching over any sequence of 𝑡 edge insertions and
deletions with a total runtime of 𝑂(𝑡 log 𝑛) in expectation and
𝑂(𝑡 log 𝑛+𝑛 log2 𝑛) with high probability. Whether or not this
runtime bound can be improved towards 𝑂(𝑡) has remained an
important open problem. Despite significant research efforts,
this question has resisted numerous attempts at resolution even
for basic graph families such as forests.

In this paper, we resolve the question in the affirmative, by
presenting a randomized algorithm for maintaining maximal
matching in general graphs with constant amortized update
time. The optimal runtime bound 𝑂(𝑡) of our algorithm holds
both in expectation and with high probability.

As an immediate corollary, we can maintain 2-approximate
vertex cover with constant amortized update time. This result
is essentially the best one can hope for (under the unique games
conjecture) in the context of dynamic approximate vertex cover,
culminating a long line of research.

Our algorithm builds on Baswana et al.’s algorithm, but is
inherently different and arguably simpler. As an implication
of our simplified approach, the space usage of our algorithm
is linear in the (dynamic) graph size, while the space usage of
Baswana et al.’s algorithm is always at least Ω(𝑛 log 𝑛).

Finally, we present applications to approximate weighted
matchings and to distributed networks.

Keywords-dynamic algorithm; dynamic matching; maximal
matching; vertex cover;

I. INTRODUCTION

1.1 Dynamic maximal matching. For any graph 𝐺 =
(𝑉,𝐸), with 𝑛 = ∣𝑉 ∣,𝑚 = ∣𝐸∣, an (inclusion-wise) maximal
matching ℳ =ℳ(𝐺) can be computed in time 𝑂(𝑛+𝑚)
via a naı̈ve greedy algorithm.1 A fundamental challenge is to
efficiently maintain a maximal matching in a fully dynamic
setting. Starting from an empty graph 𝐺0 on 𝑛 fixed vertices,
at each time step 𝑖 a single edge (𝑢, 𝑣) is either inserted to
the graph 𝐺𝑖−1 or deleted from it, resulting in graph 𝐺𝑖,
and the dynamic algorithm should update the maintained
matching ℳ =ℳ(𝐺𝑖−1) to preserve maximality w.r.t. the
new graph 𝐺𝑖. The holy grail is that the total runtime of the
algorithm would be linear in the total number 𝑡 of update

1Any edge of ℳ (resp., 𝐸∖ℳ) is called matched (resp., unmatched). A
vertex incident on a matched edge is called matched, and the other endpoint
is its mate; a vertex that is not matched is called free.

steps. Put in other words, if the total runtime is 𝑇 , the
amortized update time 𝑇/𝑡 should be constant.

There is a naı̈ve deterministic algorithm for maintaining a
maximal matching with an update time of 𝑂(𝑛).2 In 1993,
Ivković and Lloyd [13] devised a deterministic algorithm
with update time 𝑂((𝑛+𝑚)

√
2

2), which, despite being quite
involved, is inferior to the naı̈ve algorithm in the regime
𝑚 = 𝜔(𝑛

√
2). The state-of-the-art deterministic update time,

by Neiman and this author [21], is 𝑂(
√
𝑚).

Baswana, Gupta and Sen [3] used randomization to obtain
an exponential improvement in the update time, under the
oblivious adversarial model.3 Specifically, they devised a
randomized algorithm for maintaining a maximal matching
over any sequence of 𝑡 edge insertions and deletions with a
total runtime of 𝑂(𝑡 log 𝑛) in expectation and 𝑂(𝑡 log 𝑛 +
𝑛 log2 𝑛) with high probability (w.h.p.). In other words, the
(amortized) update time of their algorithm is 𝑂(log 𝑛) in ex-
pectation and 𝑂(log 𝑛+ 𝑛 log2 𝑛

𝑡) w.h.p. (For 𝑡 = 𝑜(𝑛 log 𝑛),
the high probability bound becomes super-logarithmic; e.g.,
for 𝑡 = Θ(𝑛), it is 𝑂(log2 𝑛).)

Whether or not the update time of [3] can be improved
towards constant has remained an important open problem.
Some progress towards its resolution was made for uni-
formly sparse graphs, such as forests, planar graphs and
graphs excluding fixed minors [21], [11], [16]. However,
the state-of-the-art update time in such graphs is 𝑂(

√
log 𝑛)

[11], even in forests, which is still far from constant.

Our contribution. We resolve this basic question in
the affirmative, by presenting a randomized algorithm for
maintaining maximal matching in general graphs with con-
stant update time. The optimal runtime bound 𝑂(𝑡) of our
algorithm holds both in expectation and w.h.p.

Our algorithm builds on Baswana et al.’s algorithm [3],
but is inherently different. Also, it is arguably much simpler
(though quite tricky), both conceptually and technically. This
simplification is, in our opinion, an important contribution

2The naı̈ve update time bound holds also in the worst case. In this paper
we focus on amortized time bounds, so in some of the literature survey that
follows we do not distinguish between amortized and worst-case bounds.

3The oblivious adversarial model is a standard model, which has been
used for analyzing randomized data-structures such as universal hashing [7]
and dynamic connectivity [14]. The model allows the adversary to know
all the edges in the graph and their arrival order, as well as the algorithm
to be used. However, the adversary is not aware of the random bits used
by the algorithm, and so cannot choose updates adaptively in response to
the randomly guided choices of the algorithm.

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.43

324

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.43

325

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.43

325

by itself. As a practical implication of our simplified ap-
proach, we implement the algorithm using optimal space
𝑂(𝑛 + 𝑚), where 𝑚 stands for the dynamic number of
edges in the graph. This should be contrasted to the space
usage 𝑂(𝑛 log 𝑛 + 𝑚) of [3], which is suboptimal when
𝑚 = 𝑜(𝑛 log 𝑛). In particular, whenever 𝑚 = 𝑂(𝑛) (which
is always the case in uniformly sparse graphs, e.g., planar
graphs), this leads to a logarithmic space improvement.

1.2 Dynamic approximate matching and vertex
cover. On static graphs, the classic maximum cardinal-
ity matching (MCM) algorithms [12], [20], [27] run in
𝑂(𝑚

√
𝑛) time. For dynamic MCMs, Sankowski [25] de-

vised a randomized algorithm with update time 𝑂(𝑛1.495).4

On the other hand, finding a minimum cardinality vertex
cover (MCVC) is NP-hard. Moreover, under the unique
games conjecture (UGC), the MCVC cannot be efficiently
approximated within any factor better than 2 [15]. Thus,
while the ultimate goal in the context of dynamic MCMs
is to efficiently maintain an exact MCM (or maybe a
(1 + 𝜖)-MCM), the analogous goal for dynamic MCVCs
is to maintain a 2-MCVC, where 𝑡-MCM (resp., 𝑡-MCVC)
is a shortcut for 𝑡-approximate MCM (resp., 𝑡-approximate
MCVC), for any 𝑡 ≥ 1. Despite the inherent difference
between these problems, they remain closely related as their
LP-relaxations are duals of each other. Note also that (1) the
MCM and MCVC are of the same size up to a factor of 2;
(2) the set of matched vertices in a maximal matching is a
2-MCVC; (3) a maximal matching is a 2-MCM.

In view of the difficulty of dynamically maintaining exact
MCMs and MCVCs, there has been a growing interest in
dynamic approximate matching and vertex cover since the
pioneering work of Onak and Rubinfeld [22], who presented
a randomized algorithm for maintaining 𝑐-MCM and 𝑐-
MCVC, where 𝑐 is a large unspecified constant. The update
time of the algorithm of [22] is w.h.p. 𝑂(log2 𝑛).

The dynamic maximal matching algorithms discussed in
Section 1.1 provide 2-MCMs. Also, they imply dynamic
algorithms for maintaining 2-MCVCs with the same (up to
constants) update time. In particular, Baswana et al.’s algo-
rithm [3] can be used to maintain 2-MCM and 2-MCVC with
update time 𝑂(log 𝑛) in expectation and 𝑂(log 𝑛+ 𝑛 log2 𝑛

𝑡)
w.h.p., significantly improving the result of [22].

There are many other works on dynamic approximate
MCMs and MCVCs; we briefly mention the state-of-the-
art: [6] presented a dynamic algorithm for (2 + 𝜖)-MCVCs
with update time 𝑂(log 𝑛 ⋅ 𝜖−2); [10] gave an algorithm for
(1+𝜖)-MCMs with update time 𝑂(

√
𝑚⋅𝜖−2); [4], [5] devised

dynamic algorithms for (3/2 + 𝜖)-MCMs in general graphs

4[1] proved conditional lower bounds for dynamic MCMs, showing that
the update time must be Ω(𝑚𝜖) under conjectures concerning the com-
plexity of triangle detection, combinatorial boolean matrix multiplication
and 3SUM, where 𝜖 is a constant depending on the specific conjecture. For
example, under the 3SUM conjecture, it was shown in [1] that 𝜖 ≥ 1/3;
moreover, a stronger bound of 𝜖 ≥ 1/2− 𝑜(1) was given in [17].

with update time 𝑂(𝑚1/4 ⋅ 𝜖−2.5). For uniformly sparse
graphs, [24] presented algorithms for maintaining (1 + 𝜖)-
MCMs and (2 + 𝜖)-MCVCs with update times that depend
on the density (or arboricity) of the graph and 𝜖.

Our contribution. Our dynamic maximal matching algo-
rithm can be used to maintain 2-MCM and 2-MCVC in gen-
eral graphs with update time that is bounded in expectation
and w.h.p. by constant. Under the UGC, a (2 − 𝜖)-MCVC
cannot be efficiently maintained, for any 𝜖 > 0. Hence, our
dynamic 2-MCVC algorithm is essentially the best one can
hope for, culminating a long line of research.

1.3 Additional applications. Static and dynamic al-
gorithms for exact and approximate maximum weighted
matchings have been extensively studied, both in centralized
and distributed networks (see, e.g., [18], [19], [2], [10], [8],
[9]). In particular, Anand et al. [2] gave a randomized algo-
rithm for maintaining an 8-approximate maximum weight
matching (8-MWM) in general 𝑛-vertex weighted graphs
with expected update time 𝑂(log 𝑛 logΔ), where Δ is the
ratio between the maximum and minimum edge weights
in the graph. The algorithm of [2] employs the dynamic
maximal matching algorithm of [3] as a black-box. By
plugging our improved algorithm, we shave a factor of log 𝑛
from the update time, obtaining an algorithm for maintaining
an 8-MWM in general weighted graphs with expected update
time 𝑂(logΔ).

Another application of our dynamic maximal matching
algorithm is to distributed networks. In a static distributed
setting all processors wake up simultaneously, and computa-
tion proceeds in fault-free synchronous rounds during which
every processor exchanges messages of size 𝑂(log 𝑛).5 In a
dynamic distributed setting, however, upon the insertion or
deletion of an edge 𝑒 = (𝑢, 𝑣), only the affected vertices
(𝑢 and 𝑣) are woken up. In this setting, the goal is to
optimize (1) the number of communication rounds, and (2)
the number of messages, needed for repairing the solution
per update operation, over a worst-case sequence of update
operations. Following an edge update, 𝑂(1) communication
rounds trivially suffice for updating a maximal matching
(and thus 2-MCM and 2-MCVC). However, the number
of messages sent per update may be as high as 𝑂(𝑛).
Our dynamic maximal matching algorithm can be easily
distributed, so that the average number of messages sent
per update is a small constant.

For a detailed discussion on the applications of our main
result, see the appendix of the full version of this paper [26].

1.4 Our and Previous Techniques. At the core of Baswana
et al. (hereafter, BGS) algorithm [3] is a complex bucketing
scheme, where each vertex is assigned a unique level among
{−1, 0, . . . , log 𝑛} according to some stringent criteria. (See

5We consider the standard 𝒞𝒪𝒩𝒢ℰ𝒮𝒯 model (cf. [23]), which captures
the essence of spatial locality and congestion.

325326326

Section 2 in the full version [26] for more details.) The BGS
algorithm constantly and persistently changes the level of
vertices. Changing the level of a single vertex may trigger a
sequence of changes to multiple lower level vertices, referred
to in [3] as a fading wave. The cost of a fading wave may
be linear in the level of the vertex initiated it, thus the
update time is 𝑂(log 𝑛). This is not the only logarithmic-
time bottleneck incurred by the fading wave mechanism.
Indeed, a central ingredient of this mechanism determines
the “right” level to which a vertex should move. To this
end, an explicit counter 𝜙𝑣[𝑗] in maintained for each vertex
𝑣 and any level 𝑗 ∈ {−1, 0, . . . , log 𝑛}. Following a single
update on vertices 𝑢 and 𝑣, the BGS algorithm has to update
a logarithmic number of counters for 𝑢 and 𝑣. Also, finding
the right level to which a vertex should move using these
counters cannot be done in sublogarithmic time (via a binary
search or other search methods) due to the special nature of
these counters. On top of these logarithmic-time bottlenecks,
the fading wave mechanism of BGS is highly intricate, in
terms of both the implementation and the analysis.

To break the logarithmic-time barrier, one has to take
a significantly different approach, which circumvents the
fading wave mechanism, and more importantly, the usage
of the counters 𝜙𝑣[𝑗]. Although our approach builds on
the BGS scheme, it borrows mainly from its simpler ideas,
successfully avoiding the use of the more complicated ones.
Thus, despite the resemblance between the two approaches,
our algorithm deviates significantly from the BGS scheme.
We too use a bucketing scheme with 𝑂(log 𝑛) levels.
However, to remove the dependency on the number of
levels from the update time, our level-maintenance scheme
cannot follow stringent criteria as in BGS. Instead, we use
a “lazy” approach, which changes the level of a vertex only
when necessary. When this happens, it essentially means
that the vertex will “rise” to a higher level. The BGS
algorithm also lets vertices rise to higher levels. However,
the “right” level computed by our algorithm is inherently
different than that computed by BGS. Roughly speaking,
while in the BGS algorithm it is crucial that a vertex 𝑣
would rise to the highest possible level satisfying a certain
condition, in our algorithm 𝑣 may rise to any such level.
To speed up the runtime, our algorithm will let 𝑣 rise to
the lowest such level. Consequently, as opposed to the BGS
algorithm that uses the 𝜙𝑣[𝑗] counters to determine the right
level for a vertex 𝑣, which may require Ω(log 𝑛) time, our
algorithm determines the right level using a single counter
that gradually increases “on the fly”, via a novel “level-
rising mechanism”. This level-rising mechanism is a central
ingredient in our algorithm, and is obtained by combining
ideas from BGS with numerous new ideas. We anticipate that
our level-rising mechanism will be applicable to additional
dynamic graph problems under the oblivious adversarial
model, where some subgraph structure has to be maintained.

II. THE UPDATE ALGORITHM

The update algorithm is applied following edge insertions
and deletions to and from the graph. In this section we
provide a complete description of this algorithm; refer to
the full version [26] for the pseudo-code of the algorithm.

2.1 Invariants and data structures. Our algorithm
maintains for each vertex 𝑣 a level ℓ𝑣 , with −1 ≤ ℓ𝑣 ≤
log5(𝑛 − 1). We use logarithms in base 5, whereas [3] use
logarithms in base 2. More generally, we use the constant 5
rather than 2 throughout. Following the BGS algorithm, our
algorithm will maintain the following two invariants.

Invariant 1: An edge (𝑢, 𝑣) with ℓ𝑢 > ℓ𝑣 is oriented by
the algorithm as 𝑢→ 𝑣. (If ℓ𝑢 = ℓ𝑣 , the orientation of (𝑢, 𝑣)
will be determined suitably by the algorithm.)

Invariant 2: (a) Any free vertex has level -1 and out-
degree 0. (So the maintained matching is maximal.) (b) Any
matched vertex has level at least 0. (c) The endpoints of any
matched edge are of the same level, and this level remains
unchanged until the edge is deleted from the matching. (We
henceforth define the level of a matched edge, which is at
least 0 by item (b), as the level of its endpoints.)

For each vertex 𝑣, we maintain linked lists 𝒩𝑣 and
𝒪𝑣 of its neighbors and outgoing neighbors, respectively.
The information about 𝑣’s incoming neighbors will be
maintained via a more detailed data structure ℐ𝑣: A hash
table, where each element corresponds to a distinct level
ℓ ∈ {−1, 0, . . . , log5(𝑛− 1)}. Specifically, an element ℐ𝑣[ℓ]
of ℐ𝑣 corresponding to level ℓ holds a pointer to the head of
a non-empty linked list that contains all incoming neighbors
of 𝑣 with level ℓ. If that list is empty, then the corresponding
pointer is not stored in the hash table. While the number of
pointers stored in the dynamic hash table ℐ𝑣 is bounded
by log5(𝑛 − 1) + 2, it may be much smaller than that. In
particular, the total space over all hash tables is linear in the
dynamic number of edges in the graph. We can use a static
array of size log5(𝑛 − 1) + 2 instead of a dynamic hash
table, but the total space usage over all these arrays will
be Ω(𝑛 log 𝑛). If the dynamic graph is usually dense (i.e.,
having Ω(𝑛 log 𝑛) edges), it is advantageous to use arrays,
as it is easier to implement all the basic operations (delete,
insert, search), and the time bounds become deterministic.

Note that no information whatsoever on the levels of 𝑣’s
outgoing neighbors is provided by the data structure 𝒪𝑣 .
In particular, to determine if 𝑣 has an outgoing neighbor
at a certain level (most importantly at level -1, i.e., a free
neighbor), we need to scan the entire list 𝒪𝑣 . On the other
hand, 𝑣 has an incoming neighbor at a certain level ℓ iff the
corresponding list ℐ𝑣[ℓ] is non-empty. It will not be in 𝑣’s
responsibility to maintain the data structure ℐ𝑣 , but rather
within the responsibility of 𝑣’s incoming neighbors.

We keep mutual pointers between the elements in the
various data structures: For any vertex 𝑣 and any outgoing
neighbor 𝑢 of 𝑣, we have mutual pointers between all

326327327

elements 𝑢 ∈ 𝒪𝑣, 𝑣 ∈ ℐ𝑢[ℓ𝑣], 𝑣 ∈ 𝑁𝑢, 𝑢 ∈ 𝑁𝑣 . For
example, when an edge (𝑢, 𝑣) oriented as 𝑣 → 𝑢 is deleted
from the graph, we get a pointer to either 𝑣 ∈ 𝑁𝑢 or
𝑢 ∈ 𝑁𝑣 , and through this pointer we delete all elements
𝑢 ∈ 𝒪𝑣, 𝑣 ∈ ℐ𝑢[ℓ𝑣], 𝑣 ∈ 𝑁𝑢, 𝑢 ∈ 𝑁𝑣 . As another example,
when the orientation of edge (𝑢, 𝑣) is flipped from 𝑢→ 𝑣 to
𝑣 → 𝑢, then assuming we have a pointer to 𝑣 ∈ 𝒪𝑢 (which is
the case in our algorithm), we can reach element 𝑢 ∈ ℐ𝑣[ℓ𝑢]
through the pointer, delete them both from the respective
lists, and then create elements 𝑢 ∈ 𝒪𝑣 and 𝑣 ∈ ℐ𝑢[ℓ𝑣]
with mutual pointers. We also keep mutual pointers between
a matched edge and its endpoints. (We do not provide a
complete description of the trivial maintenance of these
pointers for the sake of brevity.)

Following [3], we define 𝜙𝑣(ℓ) to be the number of
neighbors of 𝑣 with level strictly lower than ℓ.

2.2 Procedure set-level(𝑣, ℓ). Whenever the update
algorithm examines a vertex 𝑣, it may need to re-evaluate
its level. After the new level ℓ is determined, the algorithm
calls Procedure set-level(𝑣, ℓ). The procedure starts by
updating the outgoing neighbors of 𝑣 about 𝑣’s new level.
Specifically, we scan the entire list 𝒪𝑣 , and for each vertex
𝑤 ∈ 𝒪𝑣 , we move 𝑣 from ℐ𝑤[ℓ𝑣] to ℐ𝑤[ℓ].

Suppose first that ℓ < ℓ𝑣 . In this case the level of 𝑣 is
decreased by at least one. As a result, we need to flip the
outgoing edges of 𝑣 towards vertices of level between ℓ+1
and ℓ𝑣 to be incoming to 𝑣. Specifically, we scan the entire
list 𝒪𝑣 , and for each vertex 𝑤 ∈ 𝒪𝑣 such that ℓ+1 ≤ ℓ𝑤 ≤
ℓ𝑣 , we perform the following operations: Delete 𝑤 from 𝒪𝑣 ,
add 𝑤 to ℐ𝑣[ℓ𝑤], delete 𝑣 from ℐ𝑤[ℓ], and add 𝑣 to 𝒪𝑤.

If ℓ > ℓ𝑣 , the level of 𝑣 is increased by at least one. As
a result, we flip 𝑣’s incoming edges from vertices of level
between ℓ𝑣 and ℓ− 1 to be outgoing of 𝑣. Specifically, for
each non-empty list ℐ𝑣[𝑖], with ℓ𝑣 ≤ 𝑖 ≤ ℓ − 1, and for
each vertex 𝑤 ∈ ℐ𝑣[𝑖], we perform the following operations:
Delete 𝑤 from ℐ𝑣[𝑖], add 𝑤 to 𝒪𝑣 , delete 𝑣 from 𝒪𝑤, and
add 𝑣 to ℐ𝑤[ℓ]. Note, however, that we do not know for
which levels 𝑖 the corresponding list is non-empty; the time
overhead needed to verify this information is 𝑂(ℓ).

Only after the data structures have been updated, we
set ℓ𝑣 = ℓ. The next observation is immediate from the
description of the procedure, assuming Invariants 1 and 2
hold. In particular, it shows that the runtime of this procedure
is at most 𝑂(𝑑𝑜𝑙𝑑out(𝑣) + 𝑑𝑛𝑒𝑤out(𝑣) + ℓ), where 𝑑𝑜𝑙𝑑out(𝑣)
and 𝑑𝑛𝑒𝑤out(𝑣) denote 𝑣’s out-degree before and after the
execution of this procedure, respectively.

Observation 2.1: Let ℓ𝑣 denote the out-degree of 𝑣 before
the execution of this procedure.

(1) If ℓ = ℓ𝑣 , the procedure does nothing, and the runtime
is constant.

(2) If ℓ < ℓ𝑣 , then 𝑑𝑛𝑒𝑤out(𝑣) ≤ 𝑑𝑜𝑙𝑑out(𝑣) and the procedure’s
runtime is 𝑂(𝑑𝑜𝑙𝑑out(𝑣)).

(3) If ℓ > ℓ𝑣 , then 𝑑𝑛𝑒𝑤out(𝑣) ≥ 𝑑𝑜𝑙𝑑out(𝑣) and the procedure’s
runtime is 𝑂(𝑑𝑛𝑒𝑤out(𝑣) + ℓ). Moreover, after the execution
of the procedure, all outgoing neighbors of 𝑣 are of level at
most ℓ − 1. In the particular case of ℓ𝑣 = −1 and ℓ = 0,
which occurs when a free vertex 𝑣 becomes matched at level
0, we have 𝑑𝑛𝑒𝑤out(𝑣) = 0; hence the procedure’s runtime in
this case is constant.

2.3 Procedures handle-insertion(𝑢, 𝑣) and
handle-deletion(𝑢, 𝑣). Following an edge insertion
(𝑢, 𝑣), we apply Procedure handle-insertion(𝑢, 𝑣).
Besides updating the relevant data structures in the obvious
way, this procedure matches between 𝑢 and 𝑣 if they are
both free, otherwise it leaves them unchanged. Matching 𝑢
and 𝑣 involves setting their level to 0 by making the calls
set-level(𝑢, 0) and set-level(𝑣, 0), whose runtime
is 𝑂(1) by Observation 2.1(3).

Following an edge deletion (𝑢, 𝑣), we apply Procedure
handle-deletion(𝑢, 𝑣). If edge (𝑢, 𝑣) does not belong
to the matching, we only need to update the relevant data
structures. In the case that edge (𝑢, 𝑣) is matched, both 𝑢
and 𝑣 become temporarily free, meaning that they are not
matched to any vertex yet, but their level remains temporar-
ily as before. (We handle them next, one after another, but
until each of them is handled, its level will exceed -1.) We
handle vertices 𝑢 and 𝑣 via Procedure handle-free, i.e.,
by calling handle-free(𝑢) and later handle-free(𝑣);
Procedure handle-free is the main ingredient of the
update algorithm, and is described next.

2.4 Procedure handle-free(𝑣). The execution of this
procedure splits into two cases.
Case 1: 𝑑out(𝑣) < 5ℓ𝑣+1. In other words, the first case
is when the out-degree of 𝑣 is not much greater than
5ℓ𝑣 , and we run Procedure deterministic-settle(𝑣)
described in Section 2.4.1.
Case 2: 𝑑out(𝑣) ≥ 5ℓ𝑣+1. We run Procedure
random-settle(𝑣) described in Section 2.4.2.

2.4.1 Procedure deterministic-settle(𝑣). The
procedure starts by scanning the list 𝒪𝑣 for a free vertex. By
Invariant 2(a), if no free vertex is found in 𝒪𝑣 , then 𝑣 does
not have any free neighbor. (Note that we ignore temporarily
free neighbors of 𝑣. See Section 3.1 for more details.) If no
free vertex is found in𝒪𝑣 , then 𝑣 becomes free and we set its
level ℓ𝑣 to -1 by calling to set-level(𝑣,−1). Otherwise
a free vertex is found in 𝒪𝑣 . In this case we match 𝑣 to an
arbitrary such vertex 𝑤, and set the levels of 𝑣 and 𝑤 to 0
by calling to set-level(𝑣, 0) and set-level(𝑤, 0).

Next, we show that the procedure’s runtime is 𝑂(5ℓ𝑣).
Let 𝑑𝑜𝑙𝑑out(𝑣) denote 𝑣’s out-degree before the execution of
the procedure, and note that this procedure is invoked only
when 𝑑𝑜𝑙𝑑out(𝑣) < 5ℓ𝑣+1. Moreover, since 𝑣 is a temporarily
free vertex, its level at this stage is at least 0. The procedure
starts by scanning the list 𝒪𝑣 for a free vertex, which takes

327328328

𝑂(𝑑𝑜𝑙𝑑out(𝑣)) = 𝑂(5ℓ𝑣) time. Next, the procedure calls to
either set-level(𝑣,−1) or set-level(𝑣, 0). Since the
level of 𝑣 prior to either one of these calls is at least 0, 𝑣’s
level may only decrease, hence the runtime is bounded by
𝑂(𝑑𝑜𝑙𝑑out(𝑣)) = 𝑂(5ℓ𝑣) by Observations 2.1(1) and 2.1(2).
Finally, there is a potential call to set-level(𝑤, 0), which
increases the level of 𝑤 from -1 to 0; the runtime of this
call is constant by Observation 2.1(3).

We remark that the out-degree of 𝑣 after the potential
call to set-level(𝑣, 0) may be large, as it may have
many outgoing neighbors of level 0. However, by Obser-
vations 2.1(1) and 2.1(2), 𝑣’s new out-degree is bounded by
𝑑𝑜𝑙𝑑out(𝑣) < 5ℓ𝑣+1. Although we can afford to flip all edges
leading to those vertices (this would require at most 𝑂(5ℓ𝑣)
time, which we spend anyway), there is no need for it.

2.4.2 Procedure random-settle(𝑣). The procedure
employs what we refer to as a level-rising mechanism.
Roughly speaking, the procedure matches 𝑣 at some level ℓ∗

higher than ℓ𝑣 , with a random (possibly matched) neighbor
of level strictly lower than ℓ∗. More accurately, it attempts
to create such a matched edge (𝑣, 𝑤) at level ℓ∗ within time
𝑂(5ℓ

∗
); upon failure, it calls itself recursively to match 𝑤 at

yet a higher level, in which case 𝑣 becomes free and handled
via Procedure handle-free(𝑣).

Next, we describe this procedure, and the underlying
level-rising mechanism, in detail. We find it instructive to
provide this description in two stages. First, we outline the
two main challenges that this procedure has to cope with,
and the specific manner in which it copes with these chal-
lenges. Only after the appropriate intuition is established,
we turn to the formal description of the procedure.

Challenge 1. Recall that 𝜙𝑣(ℓ) is the number of 𝑣’s
neighbors of level strictly lower than ℓ. The reason we
restrict our attention to neighbors of 𝑣 of level strictly lower
than a certain threshold is fundamental. When choosing a
random mate 𝑤 for 𝑣, we cannot guarantee that 𝑤 would
be free. Assuming 𝑤 is matched to 𝑤′, matching 𝑣 with 𝑤
triggers the deletion of edge (𝑤,𝑤′) from the matching. This
edge deletion is induced by the algorithm itself rather than
the adversary, i.e., the edge remains in the graph but deleted
from the matching. Alas, a naive adversarial argument,
which bounds the expected number of edges that are deleted
from the graph until the matched edge is deleted from the
matching, does not hold for induced deletions. Coping with
induced deletions is the crux of the problem. As in [3],
when choosing a mate 𝑤 for 𝑣, we restrict our attention
to 𝑣’s neighbors of level strictly lower than that of 𝑣, or
more accurately, strictly lower than the new level to which
𝑣 rises in order to be matched. Restricting our attention to the
lower level neighbors is what allows us to employ a natural
(yet intricate) charging argument. On the other hand, this
restriction poses a nontrivial challenge, as we discuss next.

For an adversarial argument to work, it is crucial that
𝑣’s new level would depend on the probability with which
the new matched edge is chosen: If 𝑣’s new level is ℓ∗, the
probability that 𝑤 is chosen as 𝑣’s mate should be 𝑂(1/5ℓ

∗
).

To guarantee that this condition holds, however, 𝑣 must have
Ω(5ℓ

∗
) neighbors of level strictly lower than ℓ∗.

Since 𝑑out(𝑣) ≥ 5ℓ𝑣+1, it is easy to verify that such a
level ℓ∗ exists (see Lemma 2.2(1)). It is much less clear,
however, how to compute it efficiently. The challenge that
we face is actually more intricate: After setting the level ℓ𝑣
of 𝑣 to ℓ∗, we need to update the data structures accordingly.
For this scheme to work, the entire runtime should be
𝑂(5ℓ

∗
). To see where the difficulty lies, suppose we take

ℓ∗ to be ℓ𝑣 . Recalling that 𝑑out(𝑣) ≥ 5ℓ𝑣+1, 𝑣 has many
neighbors of level at most ℓ∗. However, we need that 𝑣
would have many neighbors of level strictly lower than ℓ∗,
and it is possible that most (or all) neighbors of 𝑣 have
level ℓ∗. One may try taking ℓ∗ to be ℓ𝑣 + 1. This would
indeed guarantee that 𝑣 has sufficiently many neighbors of
level strictly lower than ℓ∗. However, now there in another,
somewhat contradictory, problem. After setting ℓ∗ to ℓ𝑣 +1,
we need to update the data structures. In particular, we must
flip all incoming edges of 𝑣 from neighbors of level ℓ𝑣 to
be outgoing of 𝑣. This may be prohibitively expensive.

In general, the “right” level ℓ∗ should balance two contra-
dictory requirements: While 𝑣 should have sufficiently many
neighbors of level strictly lower than ℓ∗, it should not have
too many of them. Any level balancing these requirements
will do the job, but we also need to be able to compute
it efficiently. We next show that, somewhat surprisingly, a
sequential scan for the right level works smoothly.

Computing the “right” level for 𝑣: Set ℓ = ℓ𝑣 , and
gradually increase ℓ as long as 𝜙𝑣(ℓ + 1) ≥ 5ℓ+1. Let ℓ∗

be the level in which we stop the process, i.e., the minimum
level such that ℓ∗ ≥ ℓ𝑣 and 𝜙𝑣(ℓ

∗ + 1) < 5ℓ
∗+1.

We set 𝑣’s level to ℓ∗ by calling set-level(𝑣, ℓ∗),
thus updating the data structures, which involves flipping
all incoming edges of 𝑣 from neighbors of level between ℓ𝑣
and ℓ∗ − 1 to be outgoing of 𝑣.

The following lemma, whose proof is deferred to the full
version [26], is crucial for the correctness of the level-rising
mechanism. We stress that, to be able to efficiently compute
the level ℓ∗, we make critical use of the fact that we have
complete information of the incoming neighbors of 𝑣. This
fact is also crucial for the validity of Observation 2.1(3),
which, in turn, is what guarantees that the runtime of the
call to set-level(𝑣, ℓ∗) would also be in check.

Lemma 2.2: Let 𝑑𝑜𝑙𝑑out(𝑣) and 𝑑𝑛𝑒𝑤out(𝑣) denote 𝑣’s out-
degree before and after the call to set-level(𝑣, ℓ∗),
respectively. Here ℓ𝑣 denotes the level of 𝑣 before the call,
whereas ℓ∗ is its level afterwards.

(1) ℓ𝑣 < ℓ∗ ≤ log5(𝑛 − 1). In particular, a level ℓ∗ as
required exists. Moreover, the call to set-level(𝑣, ℓ∗)

328329329

increases 𝑣’s level by at least one.

(2) After this call, all outgoing neighbors of 𝑣 are of level
at most ℓ∗ − 1, i.e., 𝜙𝑣(ℓ

∗) = 𝑑𝑛𝑒𝑤out(𝑣).

(3) 𝑑𝑜𝑙𝑑out(𝑣) ≤ 𝑑𝑛𝑒𝑤out(𝑣) and 5ℓ
∗ ≤ 𝑑𝑛𝑒𝑤out(𝑣) = 𝜙𝑣(ℓ

∗) ≤
𝜙𝑣(ℓ

∗ + 1) < 5ℓ
∗+1. (In particular, 𝑑𝑜𝑙𝑑out(𝑣) < 5ℓ

∗+1.)

(4) The runtime of computing ℓ∗ and calling to
set-level(𝑣, ℓ∗) is bounded by 𝑂(5ℓ

∗
).

Challenge 2. Lemma 2.2 implies that 𝑂(5ℓ
∗
) time suffices

for computing the “right” level ℓ∗ and letting 𝑣 rise to that
level by making the call set-level(𝑣, ℓ∗). Moreover, 𝑣
has at least 5ℓ

∗
outgoing neighbors after this call, all having

level at most ℓ∗ − 1. By picking uniformly at random an
outgoing neighbor 𝑤 of 𝑣 to match with, the matched edge
(𝑣, 𝑤) will be chosen with probability at most 1/5ℓ

∗
. Using

an adversarial argument, this matched edge can cover the
entire cost 𝑂(5ℓ

∗
) spent thus far in the amortized sense.

In order to add edge (𝑣, 𝑤) to the matching, however, we
need to update the data structures accordingly. In particular,
if 𝑤 is matched, say to 𝑤′, we must delete edge (𝑤,𝑤′)
from the matching; this is an induced edge deletion. As
mentioned, to cope with induced deletions, our charging
argument makes critical use of the fact that 𝑤 is of level
strictly lower than ℓ∗. However, this requirement by itself
would suffice only if we were guaranteed that edge (𝑤,𝑤′)
was chosen to the matching by 𝑤. (If the vertex initiating the
match is of level ℓ, then the cost of creating the matched edge
is 𝑂(5ℓ) by Lemma 2.2.) In general, this edge might have
been chosen to the matching by 𝑤′ rather than 𝑤, and so it
is critical that both endpoints 𝑤 and 𝑤′ would be of levels
strictly lower than ℓ∗ for the charging argument to work. To
this end, as in [3], we maintain the stronger invariant that
the endpoints of any matched edge are of the same level; see
Invariant 2(c). Consequently, to match 𝑣 with 𝑤, the invariant
requires that we let 𝑤 rise to the new level ℓ∗ of 𝑣. This
requirement, however, poses another nontrivial challenge.

We set the level ℓ𝑤 of 𝑤 to ℓ∗ by calling
set-level(𝑤, ℓ∗). This call updates the data structures
accordingly, which involves flipping all incoming edges
of 𝑤 from neighbors of level between ℓ𝑤 and ℓ∗ − 1 to
be outgoing of 𝑤. As before, this may be prohibitively
expensive. Specifically, by Observation 2.1(3), the runtime
of the call to set-level(𝑤, ℓ∗) is 𝑂(𝑑out(𝑤) + ℓ∗),
where 𝑑out(𝑤) is the new out-degree of 𝑤.

By setting the level of 𝑤 to ℓ∗, we have created a matched
edge (𝑣, 𝑤) at level ℓ∗. If and when this matched edge is
deleted from the graph, we will be able to cover an expected
cost of 𝑂(5ℓ

∗
) in the amortized sense. If 𝑑out(𝑤) < 5ℓ

∗+1,
the runtime of the call to set-level(𝑤, ℓ∗), and thus
of the entire procedure, is 𝑂(5ℓ

∗
), which can be cov-

ered in the amortized sense by the creation of the new
matched edge (𝑣, 𝑤). However, the complementary case
𝑑out(𝑤) ≥ 5ℓ

∗+1 is where the difficulty lies. Indeed, in

this case the runtime of the call to set-level(𝑤, ℓ∗) may
be significantly higher than 5ℓ

∗
. To cover it, we create a

matched edge at level higher than ℓ∗. To this end we first
delete the new matched edge (𝑣, 𝑤) from the matching, and
then invoke Procedure random-settle recursively, but
on 𝑤 this time.

The recursive call random-settle(𝑤) creates a
matched edge at level higher than ℓ∗, which, in the amortized
sense, can cover the cost of the call to set-level(𝑤, ℓ∗).
Thus, in each recursive call we rise to yet a higher level, at-
tempting to charge the yet-uncharged costs of the procedure
to the most recently created matched edge. We stress that
the level-rising mechanism is not a single computation of a
matched edge at some “right” level, but rather a recursive at-
tempt at doing so: Try, rise to a higher level upon failure, and
then try again. Note that the maximum level is log5(𝑛− 1).
Since 𝑑out(𝑤) ≤ deg(𝑤) ≤ 𝑛− 1 < 5log5(𝑛−1)+1, for any
vertex 𝑤, this recursive attempt eventually succeeds.

The procedure. Procedure random-settle(𝑣) starts by
computing the level ℓ∗ as described above (i.e., the first
level after ℓ𝑣 such that 𝜙𝑣(ℓ

∗ + 1) < 5ℓ
∗+1) and setting 𝑣’s

level accordingly by calling set-level(𝑣, ℓ∗). We then
pick uniformly at random an outgoing neighbor 𝑤 of 𝑣, to
match them. (Lemma 2.2(3) implies that the matched edge is
chosen with probability at most 1/5ℓ

∗
, whereas ℓ𝑤 ≤ ℓ∗−1

follows from Lemma 2.2(2).) If 𝑤 is matched, say to 𝑤′,
then we delete edge (𝑤,𝑤′) from the matching. This renders
𝑤′ temporarily free, meaning that it is not matched to any
vertex, but its level remains temporarily as before; 𝑤′ will
be handled soon, but in the interim, its level will exceed -1.

We set the level of 𝑤 to ℓ∗ by calling set-level(𝑤, ℓ∗),
which increases its level by at least one, and add edge (𝑣, 𝑤)
to the matching, thus creating a matched edge of level ℓ∗.
(If and when this matched edge is deleted from the graph,
we will be able to cover an expected cost of 𝑂(5ℓ

∗
) in the

amortized sense.)
The runtime of the call to set-level(𝑤, ℓ∗) is

𝑂(𝑑out(𝑤) + ℓ∗), where 𝑑out(𝑤) is the new out-degree
of 𝑤. If 𝑑out(𝑤) < 5ℓ

∗+1, this runtime is 𝑂(5ℓ
∗
), and it

can be covered in the amortized sense.
However, in the complementary case 𝑑out(𝑤) ≥ 5ℓ

∗+1,
the runtime may be significantly higher than 5ℓ

∗
. To cover

this runtime, we create a matched edge at level higher
than ℓ∗. To this end we first delete the new matched edge
(𝑣, 𝑤) from the matching, thus rendering 𝑣 and 𝑤 tem-
porarily free, and then invoke Procedure random-settle
recursively, by calling random-settle(𝑤). (This re-
cursive call creates a matched edge at level higher than
ℓ∗, which, in the amortized sense, can cover the cost
of the call to set-level(𝑤, ℓ∗).) It is possible that 𝑣
will become matched as a result of the recursive call to
random-settle(𝑤); if 𝑣 is not matched to any vertex,
we invoke Procedure handle-free(𝑣).

329330330

Finally, if 𝑤′ is not matched to any vertex, we invoke
Procedure handle-free(𝑤′).

III. ANALYSIS

3.1 Invariants. It is easy to verify that our update algo-
rithm satisfies Invariants 1 and 2. The only (technical) ex-
ception to Invariant 2 is with temporarily free vertices, which
are unmatched, yet their level exceeds -1. A vertex becomes
temporarily free after its matched edge is deleted, either
by the adversary (via procedure handle-deletion) or
via Procedure random-settle of the update algorithm.
When a (temporarily free) vertex 𝑣 is handled via Proce-
dure handle-free(𝑣), it may ignore its temporarily free
neighbors, as the corresponding edges may be incoming to
𝑣. In particular, Procedure deterministic-settle(𝑣)
deliberately ignores the temporarily free neighbors of 𝑣,
and as a result, 𝑣 may become free although it may have
temporarily free neighbors. (Obviously, this is a matter of
choice; we can change the procedure to consider temporarily
free neighbors of 𝑣 that belong to 𝒪𝑣 , but there is no
need.) For this reason, our update algorithm makes sure to
handle all vertices that become temporarily free later, via
appropriate calls to Procedure handle-free. Hence, if
any temporarily free neighbor 𝑤 of 𝑣 is ignored by 𝑣 and
𝑣 becomes free, the subsequent call to handle-free(𝑤)
will match 𝑤, either with 𝑣 or with another neighbor of 𝑤.

3.2 Epochs. Given any sequence of edge updates, an edge
(𝑢, 𝑣) may become matched or unmatched by the algorithm
at different update steps. The entire lifespan of an edge (𝑢, 𝑣)
consists of a sequence of epochs, which refer to the maximal
time intervals in which the edge is matched, separated by
the maximal time intervals in which the edge is unmatched.
(This notion of epoch was introduced in [3].) Formally, let
𝑒 = (𝑢, 𝑣) be any matched edge at some time step 𝑙. The
epoch ℰ(𝑒, 𝑙) corresponding to edge 𝑒 at time 𝑙 refers to
the maximal time interval containing 𝑙 during which the
edge (𝑢, 𝑣) is matched. By Invariant 2(c), the endpoints of
a matched edge are of the same level, and this level remains
unchanged. We henceforth define the level of an epoch to
be the level of the corresponding edge.

Any edge update that does not change the matching is
processed by our algorithm in constant time. However, an
edge update that changes the matching may trigger the
creation of some epochs and the termination of some epochs.
The computation cost of creating or terminating an epoch by
the algorithm may be large. Moreover, the number of epochs
created and terminated due to a single edge update may
be large by itself. Hence an amortized analysis is required.
Following the amortization scheme of [3], we re-distribute
the total computation performed at any step 𝑙 among the
epochs created or terminated at step 𝑙. Specifically, let ℰ1 =
ℰ(𝑒1, 𝑙), . . . , ℰ𝑗 = ℰ(𝑒𝑗 , 𝑙) (resp., ℰ ′1 = (𝑒′1, 𝑙), . . . , ℰ ′𝑘 =
(𝑒′𝑘, 𝑙)) be the epochs created (resp., terminated) at up-

date step 𝑙, and let 𝐶𝑐𝑟𝑒𝑎𝑡𝑒(ℰ1), . . . , 𝐶𝑐𝑟𝑒𝑎𝑡𝑒(ℰ𝑗) (resp.,
𝐶𝑡𝑒𝑟𝑚(ℰ ′1), . . . , 𝐶𝑡𝑒𝑟𝑚(ℰ ′𝑘)) be the respective computation
costs charged to the creation (resp., termination) of these
epochs. Then we re-distribute the total computation cost
performed at update step 𝑙, denoted by 𝐶(𝑙), to the respective
epochs so that 𝐶(𝑙) =

∑𝑗
𝑖=1 𝐶𝑐𝑟𝑒𝑎𝑡𝑒(ℰ𝑖)+

∑𝑘
𝑖=1 𝐶𝑡𝑒𝑟𝑚(ℰ ′𝑖).

Notice that any epoch created by Procedures
handle-insertion or deterministic-settle
is of level 0. On the other hand, we argue that any
epoch created by Procedure random-settle is of level
at least 1. Indeed, consider a vertex 𝑣 that is handled
via Procedure random-settle(𝑣). First note that
𝑑out(𝑣) ≥ 5ℓ𝑣+1 ≥ 1. By Invariant 2, ℓ𝑣 ≥ 0. By
the description of Procedure random-settle(𝑣) and
Lemma 2.2(1), we conclude that any epoch created by
this procedure is of level at least ℓ∗ > ℓ𝑣 . Applying now
Lemma 2.2, we derive the following corollary.

Corollary 3.1: For any epoch at level ℓ > 0, initiated by
vertex 𝑣 and corresponding to edge (𝑣, 𝑤):

(1) The out-degree of 𝑣 at the time the epoch is created is
at least 5ℓ and less than 5ℓ+1, though the out-degree of 𝑤
at that time may be significantly smaller or larger than 5ℓ.

(2) 𝑤 is chosen as 𝑣’s mate uniformly at random among all
outgoing neighbors of 𝑣 at that time, so the corresponding
edge (𝑣, 𝑤) becomes matched with probability at most 1/5ℓ.

3.3 Re-distributing the computation costs to epochs. By
re-distributing the total computation cost of the update
algorithm to the various epochs, we can visualize the entire
update algorithm as a sequence of creation and termination
of these epochs. The computation cost associated with an
epoch at level ℓ (hereafter, level-ℓ epoch) includes both its
creation cost and its termination cost.

The following lemma plays a central role in our analysis.
Although a similar lemma was proved in [3], our proof is
inherently different than the corresponding proof of [3].

Lemma 3.2: The total computation cost of the update
algorithm can be re-distributed to various epochs so that
the computation cost associated with any level-ℓ epoch is
bounded by 𝑂(5ℓ), for any ℓ ≥ 0.

Proof: The update algorithm is triggered following edge
insertions and edge deletions. Following an edge insertion,
we apply Procedure handle-insertion(𝑢, 𝑣). This pro-
cedure is called at most once per update step, and its runtime
is constant. We may disregard this constant cost (formally,
we charge this cost to the corresponding update step). Hence,
the lemma holds vacuously for edge insertions.

Following an edge deletion, we apply Procedure
handle-deletion(𝑢, 𝑣). This procedure is called at
most once per update step; disregarding the calls to
handle-free(𝑢) and handle-free(𝑣), this proce-
dure’s runtime is constant. We henceforth disregard this
constant cost (charging it to the corresponding update step),
and demonstrate how to re-distribute the costs of the calls to

330331331

handle-free(𝑢) and handle-free(𝑣) to appropriate
epochs in a manner satisfying the condition of the lemma.

Let 𝑧 ∈ {𝑢, 𝑣}. The execution of Procedure
handle-free(𝑧) splits into two cases. In the first
case 𝑑out(𝑧) < 5ℓ𝑧+1, and Procedure handle-free(𝑧)
invokes Procedure deterministic-settle(𝑧),
whose runtime is 𝑂(5ℓ𝑧). Even though Procedure
deterministic-settle(𝑧) may create a new
level-0 epoch, there is no need to charge this epoch
with any costs. The entire cost 𝑂(5ℓ𝑧) of Procedure
deterministic-settle(𝑧) is charged to the
termination cost of epoch ℰ((𝑢, 𝑣), 𝑙) (triggered by
the deletion of edge (𝑢, 𝑣) from the graph). which is of
level ℓ𝑧 , thus satisfying the condition of the lemma.

Otherwise 𝑑out(𝑧) ≥ 5ℓ𝑧+1, and Procedure
handle-free(𝑧) calls random-settle(𝑧).

The runtime of Procedure random-settle(𝑧) may be
much larger than 5ℓ𝑧 and even than 𝑑out(𝑧). To cover
the costs of this procedure, we create a new epoch at a
sufficiently high level, attempting to charge the costs of the
procedure to the creation cost of the new epoch. However,
this charging attempt may sometimes fail, in which case
we call the procedure recursively. Each recursive call will
create a new epoch at yet a higher level, attempting to charge
the yet-uncharged costs of the procedure to the creation
cost of the most recently created epoch. Since the levels
of epochs created during this process grow by at least
one with each recursion level, this recursive process will
terminate. Specifically, the depth of this recursive process
is bounded by log5(𝑛− 1). (Formally, one should also take
into account the calls to Procedure handle-free from
within Procedure random-settle, which may, in turn,
invoke Procedure random-settle.6) Next, we describe
the charging argument in detail.

For each recursion level of Procedure random-settle,
our charging argument may (slightly) over-charge the cur-
rent level’s costs, so as to cover some of the yet-uncharged
costs incurred by previous recursion levels. Denote by
random-settle(𝑧(𝑖)) the 𝑖th recursive call, with 𝑧(𝑖)

being the examined vertex. The initial call to Procedure
random-settle may be viewed as the 0th recursion level.
As argued below (see Claim 3.3), it may leave a “debt” to
the 1st recursion level, but this debt must be bounded by
𝑂(𝑑out(𝑧

(1))) units of cost. In general, for each 𝑖 ≥ 1, the
debt at recursion level 𝑖 (left by previous recursion levels)
must be bounded by 𝑂(𝑑out(𝑧

(𝑖))); in what follows we
may view this debt as part of the costs incurred at level 𝑖.
(Note that the initial call to the procedure has no debt.)

Observe that the 𝑖th recursive call
random-settle(𝑧(𝑖)) may also invoke Procedure

6Since the assertion that the recursive process terminates is a corollary of
our ultimate bound on the update time, an additional proof is not required.
Nevertheless, a simpler proof that is independent of our proof of the update
time bound is sketched in the full version [26].

handle-free. Our charging argument views the
call to handle-free as part of the execution of
random-settle(𝑧(𝑖)). More concretely, the costs
incurred by the call to handle-free are charged to
epochs that are created or terminated throughout the
execution of the 𝑖th recursive call random-settle(𝑧(𝑖)).
Note, however, that Procedure handle-free may, in
turn, invoke Procedure random-settle. Our charging
argument does not view the new call to random-settle
as part of the execution of random-settle(𝑧(𝑖)), but
rather as an independent call. More concretely, the costs of
the new call to Procedure random-settle are charged
only to epochs that are created or terminated throughout
the execution of this new call to random-settle.

To conclude the proof of Lemma 3.2, we use the following
claim, whose proof is deferred to the full version [26].

Claim 3.3: For any 𝑖 ≥ 0, we can re-distribute the
costs of the 𝑖th recursive call random-settle(𝑧(𝑖))
of Procedure random-settle (including the debt from
previous recursion levels, if any) to various epochs, al-
lowing a potential debt to the subsequent recursive call
random-settle(𝑧(𝑖+1)) (if the procedure proceeds to
recursion level 𝑖+ 1), so that:

(1) The cost charged to any level-ℓ epoch is bounded by
𝑂(5ℓ), for any ℓ.

(2) The debt left for recursion level 𝑖 + 1 is bounded by
𝑂(𝑑out(𝑧

(𝑖+1))). If the procedure terminates at recursion
level 𝑖, then no debt is allowed, i.e., the entire cost in this
case is re-distributed to the epochs.

By Claim 3.3, whenever Procedure random-settle ter-
minates, no debt whatsoever is left. Consequently, the entire
cost of this procedure (over all recursion levels) can be
re-distributed to various epochs in a manner satisfying the
conditions of Lemma 3.2. Lemma 3.2 follows.

3.4 Natural versus induced epochs. An epoch correspond-
ing to edge (𝑢, 𝑣) is terminated either because edge (𝑢, 𝑣)
is deleted from the graph, and then it is called a natural
epoch, or because the update algorithm deleted edge (𝑢, 𝑣)
from the matching, and then it is called an induced epoch.
Following [3], we will charge the computation cost of each
induced epoch ℰ of level ℓ ≥ 0 to the cost of the unique
epoch ℰ ′ whose creation “triggered” the termination of ℰ .

An induced epoch is terminated only by Procedure
random-settle. Consider the first call to Procedure
random-settle(𝑧), which we also view as the 0th
recursion level. First, some vertex 𝑤 of level ℓ𝑤 lower
than ℓ∗ is chosen as a random mate for vertex 𝑧, and a
level-ℓ∗ epoch ℰ((𝑧, 𝑤), 𝑙) is created. If 𝑤 is matched to
𝑤′, the edge (𝑤,𝑤′) is deleted from the matching, and
we view the creation of the level-ℓ∗ epoch ℰ((𝑧, 𝑤), 𝑙) as
terminating the level-ℓ𝑤′ epoch ℰ((𝑤,𝑤′), 𝑙). Next, suppose
that 𝑑out(𝑤) ≥ 5ℓ

∗+1. In this case the newly created
epoch ℰ((𝑧, 𝑤), 𝑙) is terminated, and immediately afterwards

331332332

we make the 1st recursive call to random-settle(𝑤).
By Lemma 2.2(1), the call to random-settle(𝑤) is
guaranteed to create a new epoch ℰ((𝑤, 𝑥), 𝑙) at level ℓ′

higher than ℓ∗, where 𝑥 is a random outgoing neighbor of 𝑤,
which is of level ℓ𝑥 lower than ℓ′ by Lemma 2.2(2). We view
the creation of the level-ℓ′ epoch ℰ((𝑤, 𝑥), 𝑙) as terminating
the level-ℓ∗ epoch ℰ((𝑧, 𝑤), 𝑙). Furthermore, if 𝑥 is matched
to 𝑥′, the edge (𝑥, 𝑥′) is deleted from the matching, and
we view the creation of the level-ℓ′ epoch ℰ((𝑤, 𝑥), 𝑙) as
terminating the level-ℓ𝑥′ epoch ℰ((𝑥, 𝑥′), 𝑙) as well. We
have shown that the creation of epoch ℰ((𝑤, 𝑥), 𝑙) at the
1st recursion level terminates (at most) two epochs of lower
levels. Exactly the same reasoning applies to an arbitrary
recursion level 𝑖 by induction. To summarize, the creation
of a new epoch terminates at most two epochs, both of which
are of levels strictly lower than that of the created epoch.
That is, if the level of the created epoch is ℓ and the levels
of the terminated epochs are ℓ1 and ℓ2, then ℓ1, ℓ2 < ℓ.

We say that a level ℓ is induced if the number of induced
level-ℓ epochs exceeds the number of natural level-ℓ epochs;
otherwise it is natural. Next, we show that the computation
costs incurred by any induced level can be charged to
the computation costs at higher levels. Specifically, in any
induced level ℓ we can define a one-to-one mapping from
the natural to the induced epochs. For each induced epoch,
at most one natural epoch (at the same level) is mapped to
it; any natural epoch that is mapped to an induced epoch is
called semi-natural. By definition, for any induced level ℓ,
all natural ℓ-level epochs are semi-natural. For the natural
levels, however, we do not define such a mapping. Thus for
any natural level, all natural epochs terminated at that level
remain as before; these epochs are called fully-natural.

We define the recursive cost of an epoch as the sum of
its actual cost and the recursive costs of the (at most) two
induced epochs terminated by it as well as the (at most) two
semi-natural epochs mapped to them; the recursive cost of a
level-0 epoch is its actual cost. Denote the highest recursive
cost of any level-ℓ epoch by 𝐶ℓ, for any ℓ ≥ 0. (Obviously
𝐶ℓ is monotone non-decreasing with ℓ.) By Lemma 3.2, we
get the recurrence 𝐶ℓ ≤ 2̂𝐶ℓ1 + 2𝐶ℓ2 + 𝑂(5ℓ) ≤ 4𝐶ℓ−1 +
𝑂(5ℓ), where ℓ1, ℓ2 < ℓ, with the base condition 𝐶0 = 𝑂(1).
This recurrence resolves to 𝐶ℓ = 𝑂(5ℓ).

Corollary 3.4: For any ℓ ≥ 0, the recursive cost of any
level-ℓ epoch is bounded by 𝑂(5ℓ).

By definition, the sum of recursive costs over all fully-
natural epochs is equal to the sum of actual costs over all
epochs (fully-natural, semi-natural and induced) that have
been terminated throughout the update sequence.

3.5 Bounding the algorithm’s runtime. During any
sequence of 𝑡 updates, the total number of epochs created
equals the number of epochs terminated and the number
of epochs that remain alive at the end of the 𝑡 updates. To
bound the computation cost charged to all epochs that remain

alive at the end of the update sequence, one may use an
argument similar to [3]. However, instead of distinguishing
between terminated epochs and ones that remain alive, we
find it cleaner to get rid of those epochs that remain alive
by deleting all edges of the final graph, one after another.
That is, we append additional edge deletions at the end of
the original update sequence, so as to finish with an empty
graph. The order in which these edges are deleted from the
graph may be random, but it may also be deterministic, as
long as it is oblivious to the maintained matching.

This tweak guarantees that no epoch remains alive at the
end of the update sequence. As a result, the sum of recursive
costs over all fully-natural epochs will bound the sum
of actual costs over all epochs (fully-natural, semi-natural
and induced) that have been created (and also terminated)
throughout the update sequence, or in other words, it will
bound the total runtime of the algorithm. Note that the total
runtime of the algorithm may only increase as a result of this
tweak. Since we increase the length of the update sequence
by at most a factor of 2, an amortized runtime bound of
the algorithm with respect to the new update sequence will
imply the same (up to a factor of 2) amortized bound with
respect to the original sequence.

Let 𝑌 be the r.v. for the sum of recursive costs over all
fully-natural epochs terminated during the entire sequence.
Note that 𝑌 stands for the total runtime of the algorithm.

Lemma 3.5: 𝑌 = 𝑂(𝑡+ 𝑛 log 𝑛) w.h.p.
The proof of Lemma 3.5 is deferred to the full version
[26]. While it follows similar lines as in [3], the bound it
provides shaves a logarithmic factor from the bound of [3].
(This is because our algorithm is inherently different than
the BGS algorithm and since other parts in the analysis are
different.) Moreover, there is a significant difference between
our proof and that of BGS. In particular, we extend the epoch
definition as follows. Consider an arbitrary epoch initiated
by some vertex 𝑢 at some update step 𝑙. An epoch is ter-
minated when its matched edge (𝑢, 𝑣) becomes unmatched
(i.e., deleted from the matching); the (interrupted) duration
of the epoch is defined as the number of outgoing edges of 𝑢
at time 𝑙 that get deleted from the graph between time step
𝑙 and the epoch’s termination. This definition of duration
is given in [3], and it coincides with the epoch definition
of Section 3.2. We define the uninterrupted duration of the
epoch as the number of outgoing edges of 𝑢 at time 𝑙 that get
deleted from the graph between time step 𝑙 and the time that
the random matched edge (𝑢, 𝑣) is deleted from the graph.

Roughly speaking, to prove Lemma 3.5, one should
establish independence between the durations of the various
epochs, and then employ it to argue that sufficiently many
epochs at each level have w.h.p. long durations. To this end,
we find it crucial to analyze the uninterrupted durations of
epochs rather than their (interrupted) durations. If the epoch
is natural, its uninterrupted duration equals its duration.
For an induced epoch, however, its uninterrupted duration

332333333

may be significantly larger than its duration. Consequently,
proving that many epochs at each level have w.h.p. long
uninterrupted durations is rather useless, if it turns out that
most of them are induced. For this reason, we need to
be able to restrict our attention to levels where there are
sufficiently many natural epochs, and this is exactly why
we distinguished between natural and induced levels, or
analogously, between fully-natural and semi-natural epochs.

It is not difficult to extend the high probability proof to
obtain IE(𝑌) = 𝑂(𝑡+𝑛 log 𝑛). Shaving the 𝑂(𝑛 log 𝑛) term
from the high probability bound, and consequently from
the expected bound, requires additional new ideas; see the
full version [26] for the details. We remark that there are
alternative proofs for obtaining an expected bound of 𝑂(𝑡),
without deriving it from the high probability bound.

Finally, the space usage of our algorithm is linear in the
dynamic number of edges in the graph.

Theorem 3.6: Starting from an empty graph on 𝑛 fixed
vertices, a maximal matching (and thus 2-MCM and also 2-
MCVC) can be maintained over any sequence of 𝑡 edge
insertions and deletions in 𝑂(𝑡) time in expectation and
w.h.p., and using 𝑂(𝑛 + 𝑚) space, where 𝑚 denotes the
dynamic number of edges.

Acknowledgements. The author is grateful to Amir
Abboud, Surender Baswana, Sayan Bhattacharya, Manoj
Gupta, David Peleg, Sandeep Sen, Noam Solomon and
Virginia Vassilevska Williams for helpful discussions.

REFERENCES

[1] A. Abboud and V. V. Williams. Popular conjectures imply
strong lower bounds for dynamic problems. In Proc. 55th
FOCS, pages 434–443, 2014.

[2] A. Anand, S. Baswana, M. Gupta, and S. Sen. Maintaining
approximate maximum weighted matching in fully dynamic
graphs. In Proc. 32nd FSTTCS, pages 257–266, 2012.

[3] S. Baswana, M. Gupta, and S. Sen. Fully dynamic maximal
matching in 𝑂(log 𝑛) update time. In Proc. of 52nd FOCS,
pages 383–392, 2011.

[4] A. Bernstein and C. Stein. Fully dynamic matching in bipartite
graphs. In 42nd ICALP, pages 167–179, 2015.

[5] A. Bernstein and C. Stein. Faster fully dynamic matchings
with small approximation ratios. In Proc. of 26th SODA, pages
692–711, 2016.

[6] S. Bhattacharya, M. Henzinger, and G. F. Italiano. Determinis-
tic fully dynamic data structures for vertex cover and matching.
In Proc. 26th SODA, pages 785–804, 2015.

[7] L. Carter and M. N. Wegman. Universal classes of hash
functions. In Proc. 9th STOC, pages 106–112, 1977.

[8] R. Duan and S. Pettie. Linear-time approximation for maxi-
mum weight matching. J. ACM, 61(1):1, 2014.

[9] M. Gupta. Maintaining approximate maximum matching in an
incremental bipartite graph in polylogarithmic update time. In
Proc. 34th FSTTCS, pages 227–239, 2014.

[10] M. Gupta and R. Peng. Fully dynamic (1 + 𝜖)-approximate
matchings. In 54th FOCS, pages 548–557, 2013.

[11] M. He, G. Tang, and N. Zeh. Orienting dynamic graphs, with
applications to maximal matchings and adjacency queries. In
Proc. 25th ISAAC, pages 128–140, 2014.

[12] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for
maximum matchings in bipartite graphs. SIAM J. Comput.,
2(4):225–231, 1973.

[13] Z. Ivković and E. L. Lloyd. Fully dynamic maintenance of
vertex cover. In 19th WG, pages 99–111, 1993.

[14] B. M. Kapron, V. King, and B. Mountjoy. Dynamic graph
connectivity in polylogarithmic worst case time. In Proc. of
24th SODA, pages 1131–1142, 2013.

[15] S. Khot and O. Regev. Vertex cover might be hard to approxi-
mate to within 2-epsilon. J. Comput. Syst. Sci., 74(3):335–349,
2008.

[16] T. Kopelowitz, R. Krauthgamer, E. Porat, and S. Solomon.
Orienting fully dynamic graphs with worst-case time bounds.
In Proc. 41st ICALP, pages 532–543, 2014.

[17] T. Kopelowitz, S. Pettie, and E. Porat. Higher lower bounds
from the 3SUM conjecture. In Proc. of 26th SODA, pages
1272–1287, 2016.

[18] Z. Lotker, B. Patt-Shamir, and S. Pettie. Improved distributed
approximate matching. In Proc. SPAA, pages 129–136, 2008.

[19] Z. Lotker, B. Patt-Shamir, and A. Rosén. Distributed approx-
imate matching. SIAM J. Comput., 39(2):445–460, 2009.

[20] S. Micali and V. V. Vazirani. An 𝑂(
√

∣𝑉 ∣∣𝐸∣) algorithm for
finding maximum matching in general graphs. In Proc. 21st
FOCS, pages 17–27, 1980.

[21] O. Neiman and S. Solomon. Simple deterministic algorithms
for fully dynamic maximal matching. In Proc. 45th STOC,
pages 745–754, 2013.

[22] K. Onak and R. Rubinfeld. Maintaining a large matching and
a small vertex cover. In Proc. STOC, pages 457–464, 2010.

[23] D. Peleg. Distributed Computing: A Locality-Sensitive Ap-
proach. SIAM, 2000.

[24] D. Peleg and S. Solomon. Dynamic (1 + 𝜖)-approximate
matchings: A density-sensitive approach. In Proc. of 26th
SODA, pages 712–729, 2016.

[25] P. Sankowski. Faster dynamic matchings and vertex connec-
tivity. In Proc. 18th SODA, pages 118–126, 2007.

[26] S. Solomon. Fully Dynamic Maximal Matching in Constant
Update Time. CoRR, abs/1604.08491, 2016.

[27] V. V. Vazirani. An improved definition of blossoms and
a simpler proof of the MV matching algorithm. CoRR,
abs/1210.4594, 2012.

333334334

