
Amortized Dynamic Cell-Probe Lower Bounds from Four-Party
Communication

Omri Weinstein

Department of Computer Science
New York University

Huacheng Yu

Department of Computer Science
Stanford University

Abstract—This paper develops a new technique for
proving amortized, randomized cell-probe lower bounds
on dynamic data structure problems. We introduce a new
randomized nondeterministic four-party communication
model that enables “accelerated”, error-preserving sim-
ulations of dynamic data structures.

We use this technique to prove an
Ω(n (log n/ log log n)2) cell-probe lower bound for
the dynamic 2D weighted orthogonal range counting
problem (2D-ORC) with n/poly log n updates and
n queries, that holds even for data structures with
exp(−Ω̃(n)) success probability. This result not only
proves the highest amortized lower bound to date, but is
also tight in the strongest possible sense, as a matching
upper bound can be obtained by a deterministic data
structure with worst-case operational time. This is the
first demonstration of a “sharp threshold” phenomenon
for dynamic data structures.

Our broader motivation is that cell-probe lower bounds
for exponentially small success facilitate reductions from
dynamic to static data structures. As a proof-of-concept,
we show that a slightly strengthened version of our lower
bound would imply an Ω((log n/ log log n)2) lower bound
for the static 3D-ORC problem with O(n logO(1) n) space.
Such result would give a near quadratic improvement
over the highest known static cell-probe lower bound, and
break the long standing Ω(log n) barrier for static data
structures.

I. INTRODUCTION

Understanding the limitations of data structures in

the cell-probe model [Yao81] is one of the holy grails

of theoretical computer science, primarily since this

model imposes very weak implementation constraints

and hence captures essentially any imaginable data

structure. Unfortunately, this abstraction makes it notori-

ously difficult to obtain lower bounds on the operational

time of data structures, in spite of nearly four decades

of active research. For dynamic data structures, where a

sequence of n database operations (interleaved updates

and queries) is to be correctly maintained, the highest

amortized cell-probe lower bound to date is Ω(logn)
per operation, i.e., Ω(n log n) for a sequence of Θ(n)
operations (Pǎtraşcu and Demaine [PD06]1). The break-

1Notably, this bound holds only for high-probability data structures
which succeed on solving all queries with probability 1− n−Ω(1).

through work of Larsen [Lar12] brought a near-

quadratic improvement for worst-case number of probes

per operation. Larsen gave an Ω((log n/ log logn)2)
query time lower bound for the dynamic weighted
orthogonal range counting problem in two-dimensional

space (2D-ORC), which holds for any data structure

with at most polylogarithmic update time. In this fun-

damental problem, the data structure needs to maintain

a set of weighted points in the two-dimensional plane,

and support the following operations:

• update(r, c, w): insert a point at (r, c) with

weight w,

• query(r, c): the sum of weights of points dom-

inated by (r, c),2

where r, c, w ∈ [n].3 Larsen’s aforementioned bound is

tight when O(log2+ε n) update time is allowed, as there

is a deterministic data structure that solves the problem

using O(δ log2 n) probes per update and O((logδ n)
2)

probes per query in the worst-case for any δ > 1.

However, it is often the case that amortization can

reduce the average cell-probe complexity (a notable

example is the Union Find problem [Tar75], [Blu85]),

especially when randomization is permitted and the data

structure is allowed to err with constant probability per
query.

Indeed, one particular shortcoming of all known

dynamic data structure lower bounds is that they are

not robust to error: All previous lower bounds only

apply to deterministic, Las-Vegas or at most constant-

error randomized data structures (e.g., [FS89], [PD06],

[PT11], [Yu16]). A more robust question, which we

motivate below, is to study the rate of decay of success

probability in answering all (or most) of the queries, as

a function of the allocated resources (in our context,

the total number of probes). The distinction above

is similar in spirit to the difference between “direct

sum” theorems in complexity theory (e.g., [FKNN95],

[KKN95], [PT06], [BBCR10]) which assert a lower

bound on the number of resources required for solving

multiple instances of a given problem with constant

2A point (r′, c′) is dominated by (r, c) if r′ ≤ r and c′ ≤ c.
3[n] stands for the set of integers {1, 2, . . . , n}.

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.41

304

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.41

305

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.41

305

overall success, and “direct product” theorems such as

the celebrated parallel repetition theorem [Raz98] and

Yao’s XOR lemma [Yao82], which further asserts an

exponential decay in the success probability if insuf-

ficient resources are provided. Beyond unravelling the

nature of “parallel computation”, one of the primary

motivations of direct product theorems is black-box

hardness amplification (see e.g., [DS14] and references

therein). In the context of the cell-probe model, we

argue that such theorems open a new path for proving

both dynamic and static data structure lower bounds,

via reductions (more on this below).

Despite the long history of direct product theorems

in complexity theory (see e.g. [JPY12] and references

therein), we are not aware of any such result in the

cell-probe model.4 Indeed, a crucial assumption which

direct sum and product theorems rely on is the premise

that all copies of the problem are independent of each

other. Alas, in the dynamic data structure model, all q
queries Q1, Q2, . . . , Qq are essentially with respect to

the same (or slightly modified) database X! Due to this

(asymmetric) correlation, one should not expect generic

(“black-box”) direct product theorems for arbitrary dy-

namic data structure problems, and such a surprising

result may only be true due to the specific structure

of the underlying problem. The main result of this

paper asserts that the 2D-ORC problem exhibits such

interesting structure, leading to the following strong

amortized lower bound:

Theorem 1 (Amortized Lower Bound for 2D-ORC).
For any integer n, 1 ≤ c < o(log n/ log log n), and
any (randomized) data structure D in the cell-probe
model with word-size Θ(log n), there is a sequence of
n/ logc n updates and n − n/ logc n queries for the
2D-ORC problem, for which the probability (over the
randomness of D) that

• D probes o(n (log n/c log logn)
2
) cells in total,

and
• D is correct on all n− n/ logc n queries

is at most 2−n/ logc+O(1) n.

Theorem 1 not only provides a near quadratic im-

provement over the previous highest amortized cell-

probe lower bound, but it is also tight in the strongest

possible sense, as it exhibits a “sharp threshold” phe-

nomenon for 2D-ORC: while O(n (log n/c log logn)
2
)

4It is noteworthy that, unlike direct product theorems in other
computational models such as two-prover games [Raz98], circuit com-
plexity [Yao82] and interactive models and proof systems [JPY12],
[BRWY13], the dynamic cell-probe model is closer to the setting
of sequential repetition, since the model is online: The data structure
needs to provide answers to one query before it receives the next. This
feature potentially makes the problem harder than “parallel repetition”
(where all problem instances appear in a “batch”).

probes are sufficient to solve the problem deterministi-
cally, Theorem 1 asserts that any dynamic data structure

that spends � n (log n/c log logn)
2

probes will have

success probability which is hardly any better than

the trivial success probability of randomly guessing
the answers to all queries! While a similar-in-spirit

phenomenon was previously shown by [CJL15] for

static data structures,5 to best of our knowledge, this

is the first result of its kind for dynamic problems in

the cell-probe model.

We note that it is possible to modify our proof of

Theorem 1 so that the lower bound holds even if the

second condition is relaxed to “D is correct on 99% of

the n − n/ logc n queries”. In many realistic dynamic

scenarios, where the data structure is executed as a sub-

procedure that supports a long sequence of (possibly

multi-user) applications (e.g., routing, navigation and

other network computations), this relaxed error criteria

is more suitable and much less restrictive than requiring

the data structure to succeed on all queries with an over-

all probability of 99%. Nevertheless, this “Chernoff-

type” variant of Theorem 1 rules out efficient dynamic

data structures for 2D-ORC even under this substantially

more modest and realistic requirement.

The broader agenda we suggest and promote in this

paper is that proving dynamic cell-probe lower bounds

for data structures with exponentially small success

probability facilitates reductions from dynamic to static
data structure problems. The general outline of such

reduction is as follows: suppose we can show that

any (randomized) dynamic data structure for a problem

P that has at least exp(−u) success probability in

answering a sequence of queries with u updates, must

probe at least t cells. We would like to argue that a static
data structure D with a too-good query time for some

static problem related to P , must use a lot of space.

Indeed, D can be used to solve the dynamic problem

P with > exp(−u) probability, simply by guessing
all u updates, preprocessing them and storing in the

memory in advance, which in turn would imply that

D must use a at least Ω(t) memory cells. Since in

the dynamic problem P , updates and queries are in-
terleaved, answering the ith query Qi requires knowing

precisely those updates preceding Qi in the sequence.

This means that D must guess (and store) not only the

updates themselves, but also the time (i.e., order) at

which they occurred. One way to incorporate this extra

information is to add an extra “time coordinate” to each

query and update of the problem P , which results in

a slightly augmented (static) problem P+. In general,

P+ might not correspond to any natural data structure

5In their setting, each query requires linear number of bits to
describe, which makes the exponentially low success probability more
expected.

305306306

problem, however, when P = 2D-ORC, this extra “time

coordinate” can be embedded as a third dimension

of the (weighted, two-dimensional) points, in which

case the augmented static problem P+ corresponds

to nothing else but the three-dimensional weighted

orthogonal range counting problem (3D-ORC). As a

proof-of-concept of the approach above, we show that

if the bound in Theorem 1 can be slightly strengthened

so that it holds for even smaller success probability

(by a polylogarithmic factor in the exponent), then the

following breakthrough result would follow for static

3D-ORC:

Proposition 1 (From dynamic 2D-ORC to static

3D-ORC). Suppose the probability in Theorem 1 can be
further reduced to n−3n/ logc n = 2−3n/ logc−1 n. Then
any (zero-error) static data structure for 3D-ORC that
uses n logO(1) n space, requires Ω

(
(log n/ log logn)2

)
query time.

In contrast, the best static lower bound to date for

orthogonal range counting (in any dimension) is only

Ω(logn/ log logn), even for linear-space data struc-

tures. In fact, no ω(logm) lower bound is known for

any static data structure problem, where m is the range

of the queries (e.g., m = n2 for 2D-ORC and m = n3

for 3D-ORC). So while the slightly stronger premise of

Proposition 1 appears to be non-trivial to prove (see

Section IV for discussion), if this approach can be

realized, it would yield a near-quadratic improvement

in static cell-probe lower bounds. The formal proof of

Proposition 1 can be found in the full version.

We remark that the aforementioned reduction is

merely an example, while other reductions (e.g., be-

tween different dynamic problems) may be possible

via similar outline. More generally, if one can show

that, conditioned on some (low probability) event W , a

solution to problem A produces a solution to problem

B, then ruling out efficient data structures for problem

B with ≈ Pr(W) success, would yield a cell-probe

lower bound for A as well.

In the remaining subsections of this introduction, we

provide a brief outline of the new techniques we develop

en-route to proving Theorem 1, and how they overcome

limitations of previous techniques used in the dynamic

cell-probe model.

A. Related work and previous techniques

Several techniques have been developed along the

years for proving lower bounds on the cell-probe com-

plexity of dynamic data structure problems. This line

of work was aimed not just at proving lower bounds

for a broader class of problems, but also at facilitating

higher lower bounds for stronger and more realistic

data structures (e.g., randomized, amortized). In most

problems and applications, it is natural to assume that

the description of an operation can fit in O(1) words,

and the most natural assumption on the word-size of the

cell-probe model is w = Θ(logn). In this regime, Fred-

man and Saks [FS89] first introduced the chronogram
method, and used it to prove an Ω(logn/ log log n)
lower bound for the 0-1 partial sum problem. This

lower bound stood as a record for 15 years, until

Pǎtraşcu and Demaine [PD04] introduced the informa-
tion transfer tree technique which led to a tight Ω(logn)
lower bound for general partial sum, improving the

highest lower bound by a factor of log logn. About a

decade later, Larsen [Lar12] showed how to combine the

chronogram method with the cell-sampling technique

(which was used for proving static data structure lower

bounds [PTW10]), and proved an Ω((log n/ log logn)2)
worst-case lower bound for 2D-ORC. In the natural

regime, this is also the highest lower bound proved

for any explicit problem hitherto. In the remainder of

this subsection, we outline Larsen’s approach and the

challenges in extending his techniques to the type of

dynamic lower bounds we seek.

We remark that other lower bounds have been

proved for the regime where w = ω(log n).
In particular, Pǎtraşcu [Pat07] proved a matching

Ω((log n/ log logn)2) lower bound for the 2D-ORC
problem, but only when both the weights of points and

word-size are log2+ε n bits long (we elaborate on the

connection between this result and our techniques in

Section I-B).

Larsen’s approach: To prove the aforementioned

Ω((log n/ log logn)2) lower bound for 2D-ORC,

one considers a sequence of n random updates.

The idea is to show that after these n updates have

been performed, a random query must probe many

cells. More specifically, the n updates are partitioned

into Θ(log n/ log log n) epochs: . . . ,Ui, . . . ,U2,U1,

where the i-th epoch Ui consists of βi updates for

β = poly logn. The goal is to show that in expectation,

a random query must read Ω(logn/ log log n) memory

cells that are written during epoch i, but never

overwritten later. Let us restrict the attention to epoch

i and assume that all updates in other epochs are

fixed arbitrarily (i.e., only Ui is random). Let Si

denote the set of cells whose last update occurred in

epoch i. Indeed, any cell that is written before epoch

i cannot contain any information about Ui, while

the construction guarantees that there are few cells

written after epoch i, due to the exponential decay

in the lengths of epochs. Thus, one concludes that

“most” of the information the data structure learns

about Ui comes from cell-probes to Si. Then the basic

idea is to sample a subset Ci ⊆ Si of a fixed size.

Then for each query, the fewer cells in Si the data

306307307

structure probes when answering it, the more likely

that all of them will belong to the random subset

Ci. Thus, if a random query probes too few cells in

Si (in expectation), there will be too many queries

that can be answered without probing any cell in

Si \ Ci. One then argues that the answers to these

queries reveal too much information about Ui, even

more than they should: all cells in Ci can contain

at most |Ci| · w bits of information. This yields a

lower bound on the number of cells a random query

must probe in Si, and implies a query time lower bound.

The above approach relies on the fact that update time

has a worst-case upper bound. Indeed, the statement

that “very few cells are probed after Ui” may no

longer hold when we only have an amortized guarantee

on the update time, because the data structure could

spend a long time on epoch U1 (say). In fact, if we

allow amortization for updates, the above sequence of

operations is no longer hard, since the data structure can

simply record each update until the last one, and then

spend O(n log n) time to construct a static 2D-ORC
data structure that operates in O(log n) query time. Over

the n updates, it only spends O(log n) time per update

“on average”. Obviously, this is not a good dynamic

data structure in general, because it is not even in a

ready-to-query state until the very end.

To prove an amortized lower bound, it is there-

fore necessary to interleave queries and updates as

in [PD04], [PD06], [PT11], [Yu16]. We observe that

a variation of Larsen’s approach can be adapted to

prove a zero-error-data-structure version of Lemma 3.

Combining this version of the lemma with our proof

of Theorem 1 would yield an alternate proof of our

amortized lower bound for zero-error data structures.

However, it seems highly non-trivial to generalize this

proof so that it applies to data structures with expo-

nentially small success probability. Roughly speaking,

on the one hand, the cell-sampling technique appears to

be inapplicable for simultaneous analysis of multiple

queries as it only applies to a fixed memory state,

whereas in our setup different queries are performed on

different memory states. On the other hand, the “direct

product” lower bound we seek requires analyzing the

conditional success probability (and performance) of a

given query, conditioned on success in previous queries.

Conditioning on this event may leak a lot of information

about previous updates, making the proof much more

subtle and hard to analyze (note that this was not an

issue for zero-error data structures!).

1) Communication-based techniques for dynamic
lower bounds: One of the successful approaches for

proving dynamic data structure lower bounds relies on

reductions from the communication complexity model,

where the general idea is to partition the operation se-

quence between Alice and Bob and the communication

task is to answer all queries in Bob’s operation interval.

To prove a (meaningful) lower bound on the number

of probes required by any data structure operating over

the operation sequence, one needs to show that Alice

and Bob can efficiently simulate any data structure for

the dynamic problem, so that a data structure with

too few probes induces a too-good-to-be-true protocol

for the communication game (the problem then boils

down to proving a communication lower bound for

the communication problem, which is often easier to

analyze). For the simulation to be fast, Bob needs to

be able to efficiently obtain the (memory contents of)

“relevant” cells probed in his interval that were updated

during Alice’s operation interval.

Indeed, the choice of the communication model is

crucial for the simulation argument: If the communi-

cation model is too weak, the simulation would be

“too slow” for proving a strong (or even meaning-

ful) cell-probe lower bound; On the other hand, if

the communication model is too strong, proving a

high lower bound on the amount of communication

may be extremely difficult or even impossible (as we

elaborate below). Pǎtraşcu [Pat07] used the standard

two-party randomized communication model to prove

an Ω((log n/ log log n)2) cell-probe lower bound on

2D-ORC, but only for (somewhat unnatural) weight-

size and word-size w = Θ(log2+ε n). This caveat

stems from his simulation being “too slow”: Pǎtraşcu’s

simulation argument requires Alice to send a very long

message (a Bloom Filter of length ≈ log2 n bits per

operation) in order for Bob to figure out the aforemen-

tioned set of “relevant” cells, hence for the simulation to

produce a non-trivial communication protocol, Alice’s

input size has to be larger than the number of bits trans-

mitted in the communication step (as Alice can always

send her input and the parties would be done). This is

precisely why points are chosen to have (log2+ε n)-bit

weights.

Pǎtraşcu and Thorup [PT11] somewhat remedied this

by introducing simulation in the two-party nondeter-
ministic communication model, in which a know-all

“prover” (Merlin) can help the players reduce their

communication by providing some (untrusted) advice
which requires verification. While this technique can

be used to speed up the simulation process (leading

to new dynamic lower bound for several data structure

problems), it turns out to be still too slow for the type of

lower bounds we seek (in particular for range-counting

problems). But even more importantly, the nondetermin-

istic reduction of [PT11] does not readily extend beyond

zero-error (Las-Vegas) data structures. Indeed, when

the data structure and hence the simulating protocol

307308308

are allowed to err, the simulation above naturally leads

to randomized nondeterministic communication models

such as MAcc ∩ coMAcc [BFS86]. Proving strong lower

bounds on such powerful models is a notoriously hard

open problem (see e.g., [Kla11]), and in our case may

even be impossible (indeed, the 2D-ORC problem is

related to computation of inner-products over finite

fields, which in turn admits a surprisingly efficient

(Õ(
√
n) bit) MA-protocol [AW08]).

B. Our techniques and the 4ANC communication model

We introduce a new randomized nondeterministic

communication model (which we hence term 4ANC)

that solves both problems above, namely, it enables

faster (error-preserving6) simulations of randomized

data structures, yet in some aspect is much weaker than

MAcc, and hence amenable to substantial lower bounds.

To enable a faster simulation (than [PT11], [Yu16]),

our model includes two provers (hence four parties in

total) who are communicating only with Bob: The first

prover (Merlin) is trusted but has limited “communi-

cation budget”, while the second prover (Megan) is

untrusted, yet has unlimited “communication budget”.

More precisely, the model requires Alice and Bob’s

computation to be correct only when Merlin is “honest”,

but charges for each bit sent by Merlin (hence the model

is only meaningful for computing two-party functions

with large range, as Merlin can always send the final

answer and the players would be done). In contrast,

the model doesn’t charge for Megan’s message length,

but requires Bob to verify that her message is correct

(with probability 1!). Intuitively, the model allows Bob

to receive some short “seed” of his choice (sent by

Merlin), in such way that this “seed” can be used to

extract much more information (a longer message sent

by Megan) in a verifiable (i.e., consistent) way.7

We show that this model can indeed help the players

“speed up” their simulation: Merlin can send a succinct

message (the “seed”, which in the data structure sim-

ulation would correspond to some “succinct encoding”

of memory addresses of the relevant (intersecting) cells

probed by the data structure in both Alice and Bob’s op-

eration intervals), after which Megan can afford to send

a significantly longer message (which is supposed to

be the actual memory addresses of the aforementioned

cells). Alice can then send Bob all the relevant content
of these cells (using communication proportional to

the number of “relevant” cells probed by the data

structure (times w)). If both Merlin and Megan are

6When seeking lower bound for data structures with tiny (exponen-
tially small) success, such reductions must not introduce any (non-
negligible) error, or else the soundness of the reduction is doomed to
fail.

7The main difference between ANC and the model defined in
[Yu16] is the trusted prover.

honest, Bob has all the necessary information to answer

his queries. Otherwise, if Megan is cheating (by sending

addresses inconsistent with Merlin’s seed), we argue

that Bob can detect this during his simulation given

all the information he received from Merlin and Alice,

yielding a fast and admissible 4ANC protocol.

For our setting of the parameters, this simulation

saves a poly log(n) factor in communication for Al-

ice, and a ≈ log n factor in communication for Bob,

compared to the standard nondeterministic simulations

of [PT11], [Yu16]. We stress that this speed-up is

essential to prove the cell-probe lower bound we seek

on 2D-ORC, and is likely to be important in future

applications.

To solve the second problem, namely, to limit the

power of the model (so that it is amenable to substantial

lower bounds), we impose two important constraints

on the non-deterministic advice of Merlin and Megan:

Firstly, the provers can only talk to Bob, hence the

model is asymmetric ; Secondly and most importantly,

we require that the provers’ advice are unambiguous,

i.e., Merlin’s (honest) message is uniquely determined

by some pre-specified function of the player’s inputs,

and similarly, for each message sent by Merlin (whether

he tells the truth or not), Megan’s (honest) message is

uniquely specified by the players’ inputs and Merlin’s

message. These restrictions are tailored for data struc-

ture simulations, since for any (deterministic) data struc-

ture D, the aforementioned set of “relevant” memory

cells probed by D is indeed a deterministic function of

the operation sequence.

We show that these two features imply a generic

structural fact about 4ANC protocols, namely, that low-

communication protocols with any nontrivial success
probability in this model induce large biased (i.e.,

“semi-monochromatic”) rectangles in the underlying

communication matrix (see Lemma 1). Intuitively, this

follows from the uniqueness property of the model,

which in turn implies that for any fixed messages sent by

Merlin, the resulting protocol induces a partition of the

input matrix into disjoint biased rectangles. In contrast,

we remark that rectangles induced by MAcc protocols

may overlap (as there may be multiple transcripts that

correspond to the same input (x, y)), which is part

of why proving strong lower bounds on MAcc is so

difficult.

Therefore, ruling out efficient randomized communi-

cation protocols (and hence a too-good-to-be-true data

structure) for a given communication problem boils

down to ruling out large biased rectangles of the cor-

responding communication matrix. Since we wish to

prove a lower bound for protocols with tiny (exponen-

tially small) success for 2D-ORC, we must rule out

rectangles with exponentially small “bias”. This “direct-

308309309

product” type result for 2D-ORC in the 4ANC model

(Lemma 2) is one of the main steps of the proof of

Theorem 1.

C. Organization

Due to space constraints, the next 5 pages of this

abstract only contain a high-level proof of our results,

where most proofs can be found in the full version. We

begin by formally defining the 4ANC model in Section

II. We then prove that 4ANC protocols can efficiently

simulate dynamic data structures (Section II-A), and on

the other hand, that efficient 4ANC protocols induce

large biased rectangles of the underlying communication

matrix (Section II-B). In Section III we state our main

technical lemma which rules out such rectangles (even

with exponentially small bias) for 2D-ORC (Lemma 2),

and finally tie the pieces together to conclude the proof

of Theorem 1. In Section IV, we conclude with some

discussion.

II. 4ANC: A NEW FOUR-PARTY

NONDETERMINISTIC COMMUNICATION MODEL

We now formally define the 4ANC model, which

is a randomized, asymmetric, non-deterministic com-

munication model involving four players: Alice, Bob,

Merlin and Megan. Let μ be a distribution over input

pairs (x, y) ∈ X × Y to Alice and Bob (respectively).

A 4ANC protocol P proceeds as follows: A public

random string r (of infinite length) is visible to all four

players (Merlin, Megan, Alice and Bob). Merlin and

Megan observe (x, y, r), and can each send, in turn, a

message (“advice”) to Bob before the communication

proceeds in a standard fashion between Alice and Bob.

As part of the protocol, P specifies, for each input pair

and public string r, a unique message Mmer(x, y, r)
that Merlin is supposed to send given that input pair

and random string (Merlin may not be honest, but

we will only require the computation to be correct

when he sends the correct message Mmer(x, y, r)). After

Merlin sends Bob his message mmer (which may or

may not be the “correct” message Mmer(x, y, r)), it is

Megan’s turn to send Bob a message. Once again, P
specifies (at most) one message8 Mmeg(x, y,mmer, r)
that Megan is supposed to send to Bob, given x, y, r and

Merlin’s message mmer (as we shall see, the difference

between Merlin and Megan’s role is that, unlike the

case with Merlin’s message, the players are responsible
to verify that Megan’s message is indeed correct, i.e.,

that mmeg = Mmeg(x, y,mmer, r), no matter whether

mmer = Mmer(x, y, r) or not!). In the next stage,

Alice and Bob communicate in the standard public-

coin communication model, after which Bob decides

8Instead of unique, Mmeg can be undefined for obviously wrong
mmer. But Mmeg(x, y,Mmer(x, y, r), r) is always defined.

to “proceed” or “reject” (this is the verification step of

Megan’s message). Finally, if Bob chooses to proceed,

he outputs a value v for f(x, y). These stages are

formally described in Figure 1.

Honest Protocol P̃ : Throughout the paper, we

denote by P̃ the honest execution of a 4ANC protocol

P . More formally, we define p̃(x, y, r, τ) to be the

joint probability distribution of x, y, r and P ’s tran-

script τ , when Merlin and Megan send the honest

messages (i.e., when mmer = Mmer(x, y, r) and mmeg =
Mmeg(x, y,mmer, r)). Note that p̃ induces a well defined

distribution on transcripts τ , since the transcript of P is

completely determined by (x, y, r) in this case.

A 4-party communication protocol P

0) Alice and Bob use public randomness to sample

a string r, visible to all four players.

1) Merlin sends a message mmer to Bob (mmer is

visible to Megan).

2) Megan sends a message mmeg to Bob.

3) Alice and Bob communicate based on their own

inputs and mmer and mmeg as if they were in

the classic communication setting with public

randomness.

4) Bob decides to proceed or reject.
5) If Bob chooses to proceed, he outputs a value

v.

Figure 1. A communication protocol P in the 4ANC model.

Definition 1 (Valid protocols). A 4ANC protocol P is
said to be valid if
• Bob proceeds if and only if mmeg =

Mmeg(x, y,mmer, r) (with probability 1).

Definition 2 (Computation and notation in the 4ANC
model). We say that a 4ANC protocol P δ-solves a two-
party function f : X × Y −→ Z with communication
cost (cA, cB , cM) under input distribution μ if the
following conditions hold.

1) (Perfect verification of Megan) P is a valid proto-
col.

2) (Communication and correctness) With probability
at least δ (over the “honest” distribution p̃ and
input distribution μ), the honest protocol P̃ sat-
isfies that Alice sends no more than cA bits, Bob
sends no more than cB bits, Merlin sends no more
than cM bits, and Bob outputs the correct value
(v = f(x, y)).

For a two-party function f : X × Y −→ Z and
parameters cM , cA, cB , we denote by Sucfμ (cA, cB , cM)
the largest probability δ for which there is a 4ANC

309310310

protocol that δ-solves f under μ with communication
cost (cA, cB , cM).

A. Data structure simulation in the 4ANC model

In this subsection, we show that it is possible to

efficiently simulate any dynamic data structure on any

sequence of operations in the 4ANC model with no

additional error. To this end, consider a (deterministic)

data structure D for some problem P , and fix a sequence

O of operations. Let IA and IB be two consecutive
intervals of operations in O such that IA occurs right

before IB . Let PD(IA) and PD(IB) be the set of cells

probed by D during IA and IB respectively (when D
is clear from context, we shall simply write P (IA) and

P (IB)). Alice is given all operations except for the ones

in IB , Bob is given all operations except for the ones in

IA. We now describe an 4ANC protocol that simulates

D on O and has the same output as D on all queries

in IB .

The naive approach for this simulation is to let Bob

simulate the data structure upto the beginning of IA,

then skip IA and continue the simulation in IB . To

collect the “relevant” information on what happened

in IA, each time D probes a cell that has not been

probed in IB before, Bob asks Alice whether this cell

was previously probed in IA, and if it was, he asks Alice

to send the new content of that cell. Unfortunately, this

approach requires Bob to send |P (IB)|·w bits and Alice

to send |P (IB)| + |P (IA) ∩ P (IB)| · w bits. However,

the players can do much better with Merlin’s and

Megan’s help: Merlin reports Bob, upfront, which cells

in P (IB) are probed in IA in some succinct encoding.

Given Merlin’s succinct message, Megan can send Bob

the actual memory addresses of these cells, and the

players will be able to easily verify these addresses are

consistent with the “seed” sent by Merlin, as the model

requires. With this information in hand, Bob only needs

to ask Alice for the contents of relevant cells in his

simulation, instead of every cell in P (IB). Moreover,

it allows Bob to send this set of cells in batch, further

reducing his message length. We turn to describe the

formal simulation.9

Protocol SIMD for Simulating D:
1) (Protocol specification of Mmer.) Merlin simu-

lates D upto the end of IB , and generates

P (IA), P (IB). He sends Bob the sizes |P (IA)|,
|P (IB)| and |P (IA) ∩ P (IB)|.10 Then he writes

downs the sequence of cells probed during IB in

the chronological order (if a cell is probed more

9We remark that a similar idea of encoding the cells by their update
times was recently used by Clifford, Jalsenius and Sach [CJS14].

10Note that although Bob knows all the operations in IB , he still
does not know P (IB), since the operations in IA are unknown to
him, and the data structure can be adaptive.

than once, he keeps only the first occurrence).

Each cell in the sequence is associated with a

bit, indicating whether this cell is also in P (IA).
By definition, this sequence has length |P (IB)|,
in which |P (IA) ∩ P (IB)| cells are associated

with a “1”. Merlin sends Bob the set of indices

in the sequence associated with a “1”. Note that

Merlin’s message encodes for each i, whether the

i-th time (during IB) that D probes a new cell, it

was previously probed during IA.

2) (Protocol specification of Mmeg.) Megan simulates

D upto the beginning of IA, saves a copy of

the memory MA, continues the simulation up to

the beginning of IB , and saves a copy of the

memory MB . Then she continues to simulate D
on IB based on the contents of MA with the

advice from Merlin. That is, whenever she needs

to probe a cell that has not been probed in IB
before, if this is the i-th time that this happens

and Merlin’s message has i encoded in the set,

Megan copies the content of the cell from MB

to the current memory, writes down the address

of the cell and continues the simulation. Basically

Megan simulates D assuming Merlin’s claim about

which cells probed in IB are probed in IA is

correct. If there is anything inconsistent during

the simulation, Mmeg is undefined, e.g., |P (IB)|
or |P (IA) ∩ P (IB)| is different from what Merlin

claims, or D breaks during the simulation due to

the wrong contents of the memory, etc. As long

as Merlin’s message is consistent with Megan’s

simulation, she sends the set of actual memory

addresses of cells she has written down during

the simulation (i.e., the set P (IA) ∩ P (IB) from

Merlin’s advice).

3) (Bob asks the contents of P (IA)∩P (IB).) Denote

the set of addresses received from Megan by S.

If |S|
= |P (IA) ∩ P (IB)|, Bob rejects. Alice and

Bob use public randomness to sample a random

(hash) function h : [2w] → [|P (IA)|]. Bob sends

Alice the set of hash-values h(S).
4) (Alice replies with the contents.) Alice simulates

D and obtains the set P (IA). For each hash-value

b ∈ h(S), Alice sends Bob both addresses and

contents of all cells in P (IA) that are mapped to

this value (i.e., of h−1(b) ∩ P (IA)).
5) (Bob simulates D and verifies Megan.) Bob checks

whether Alice sends the information about all cells

in S. If not, he rejects. Otherwise, he simulates

the data structure up to the beginning of IA, and

then updates all cells in S to the new values. Bob

continues the simulation on IB from this memory

state. At last, Bob checks whether the simulation

matches Merlin’s claim and whether S is exactly

310311311

the set P (IA)∩P (IB) according to the simulation.

If either check fails, he rejects. Otherwise, he

proceeds, and generates the output of D on all

queries in IB .

The analysis of the protocol can be found in the full

version.

B. Efficient 4ANC protocols induce large biased rect-
angles

Let P be a four-party communication protocol com-

puting f over a product input distribution μ = μx ×
μy in the 4ANC communication model, with cost

(cA, cB , cM) and success probability δ. The following

lemma asserts that if P is efficient (has low communi-

cation) and has any “non-trivial” accuracy in computing

the underlying function f , then there must be a large

biased-column-monochromatic rectangle in the commu-

nication matrix of f (see the full version for the formal

definition). We note that a variant of this lemma can be

proved for general (non-product) distributions. Due to

space restriction, the proof will be in the full version.

Lemma 1 (4ANC protocols imply large biased rectan-

gles for product distributions). M(f) has a rectangle
R = X × Y such that: 1) R is δ

2 · 2−cM -column-
monochromatic; 2) μx(X) ≥ δ

4 · 2−(cM+cA+cB); 3)
μy(Y) ≥ δ

4 · 2−(cM+cB).

III. THE AMORTIZED DYNAMIC CELL-PROBE

COMPLEXITY OF 2D-ORC

In this section, we prove our main theorem, an

amortized lower bound for 2-dimensional weighted or-

thogonal range counting (2D-ORC) problem. To prove

the theorem, we first define a hard distribution D on

the operation sequence for 2D-ORC, and fix a data

structure D. By Yao’s Minimax Principle [Yao77], we

can always fix the random bits used by D, so that

the probability that D is correct on all queries and

makes too few probes is preserved. We may assume D
is deterministic from now on. Consider the execution

of D on a random sequence of operations. We shall

decompose this sequence into many communication

games in the 4ANC model, in a way that guarantees that

if D is fast and has decent success probability, then most

of the games can be solved with low communication

cost and non-trivial success probability. On the other

hand, we prove that non of these induced games can

be solved both efficiently and with non-trivial accuracy.

Combining these two facts together, we conclude that

no data structure can be fast and have decent success

probability simultaneously.

Hard distribution D: The sequence always has

n/ logc n updates and n − n/ logc n queries such that

there are (about) logc n queries between two consecutive

updates. Every update inserts a point at a uniformly

random location in the [n] × [n] grid with a random

weight uniformly chosen from [n]. Each query is a

uniformly random point in the [n]×[n] grid. The random

sequence is independent across the updates and the

queries.

More formally, let DU be the uniform distribution

over all possible n3 updates, DQ be the uniform dis-

tribution over all possible n2 queries. Let Di be the

distribution for i-th operation, i.e., Di = DU if i
is multiple of logc n, and Di = DQ otherwise. Let

D = D1 ×D2 × · · · ×Dn be our hard distribution over

sequences of n operations. We will focus on D in the

following.

The Distributional Communication Game
G2D-ORC(k, q, n): Let X be the set of k-tuples

of weighted points in [n] × [n] with weights

from [n], Y be the set of q-tuples of unweighted
points in [n] × [n]. Let the input distribution

μ = μx × μy be the uniform distribution over

X × Y . Then, x = ((x1, w1), . . . , (xk, wk)) is a

k-tuple of weighted points and y = (y1, . . . , yq)
is a q-tuple of unweighted points. Let

2D-ORC(x, y) : ([n]2 × [n])k × ([n]2)q → [kn]q

denote the function whose output is a q-tuple of

numbers from [kn], whose i-th coordinate is the sum

of wj’s for which xj ≤ yi,
11 i.e.,

2D-ORC(x, y)i :=
∑

j:xj≤yi

wj .

The input of the communication game

G2D-ORC(k, q, n) can be embedded into a sequence of

operations for the 2D-ORC data structure problem,

such that Alice’s input corresponds to k updates, Bob’s

input corresponds to q queries, and output for the

communication game corresponds to the answers to

the q queries. Assuming there is a good data structure

D, we can solve G2D-ORC(k, q, n) efficiently using the

simulation protocol in Section II-A. See full version for

more details. On the other hand, the following lemma

asserts that the probability of any 4ANC protocol

with communication (o(
√
kq), o(q log n), o(q log n)) in

solving all q queries of G2D-ORC correctly, is hardly any

better than the trivial probability obtained by randomly

guessing the answers. An intuitive overview and the

formal proof of this lemma can be found in the full

version.

Lemma 2 (“Direct Product” for 2D-ORC in the 4ANC
model). For n large enough, k ≥ √

n and k/q ∼

11xj ≤ yi means both coordinates of xj are no larger than the
corresponding coordinates of yi.

311312312

log1000 n,

SucG2D-ORC
μ

(
0.5

√
kq, 0.005q log n, 0.0005q log n

)
≤ 2−0.2q log logn.

Combining the communication lower bound for

G2D-ORC(k, q, n) with a simulation argument gives us

a lower bound on the efficiency and accuracy of D in

IA and IB . More details can be found the full version.

Lemma 3. Let O be a random sequence of operations
sampled from D, let IA and IB be two consecutive
intervals in O, such that |IB | ≥

√
n and |IA| ∼

|IB | logc+1000 n, and denote by O<IA the sequence of
operations preceding IA. Then conditioned on O<IA ,
the probability that all of the following events occur
simultaneously is at most 2 · 2−0.2|IB | log logn:

1) |P (IA)| ≤ |IA| log2 n
2) |P (IB)| ≤ |IB | log2 n;
3) |P (IA) ∩ P (IB)| ≤ |IB | logn

200(c+1002) log logn ;
4) D answers all queries in IB correctly.

Using the above lemma, we are finally ready to prove

our data structure lower bound for 2D-ORC (Theorem

1). Intuitively, if the data structure D correctly answers

all queries under D, then Lemma 3 is essentially saying

either |P (IA)| or |P (IB)| is large, or during IB , D
reads at least Ω(|IB | · log n/c log log n) cells that are

also probed in IA. If the former happens too often,

it is not hard to see that D makes too many probes

in total. Otherwise, “on average” for every operation

in IB , D must read at least Ω(logn/c log logn) cells

whose last probe was in IA. This argument holds as

long as |IA| ∼ |IB | · logc+O(1) n and |IB | ≥
√
n.

Thus, during an operation, “on average” D has to

read Ω(log n/c log logn) cells whose last probe was

anywhere between
√
n and

√
n · logc+O(1) n opera-

tions ago, Ω(logn/c log log n) cells whose last probe

was between
√
n · logc+O(1) n and

√
n · log2(c+O(1)) n

operations ago, and so on. All these sets of cells are

disjoint, and there are Ω(logn/c log logn) such sets.

This gives us that “on average”, each operation has

to probe Ω((log n/c log logn)2) cells in total. While

Lemma 3 does not account for the number of cells

probed during any particular operation (but only the

total number of probes), summing up the lower bounds

for relevant interval pairs, the above argument gives an

amortized lower bound assuming D correctly answers

all queries.

When D is allowed to err, a natural approach is to

partition the sequence into disjoint intervals {I}, and

interpret the overall success probability as the product

of conditional success probabilities for queries in I
conditioned on the event that D succeeds on all queries

preceding I . When the overall success probability is

“non-trivial”, there will be a constant fraction of I’s

with “non-trivial” success probability conditioned on

succeeding on all previous intervals. As Lemma 3

also holds for D that is correct with exponentially in

|IB | log logn small probability, the argument outlined

in the last paragraph still goes through. A more careful

argument proves the theorem. The formal proof can be

found in the full version.

IV. FINAL REMARKS ON

DATA-STRUCTURE-DEPENDENT HARD

DISTRIBUTION

Although only a slightly strengthened version of

Theorem 1 is required by Proposition 1, making the

improvement still seems non-trivial, as it forces us

to break Yao’s Minimax Principle in the cell-probe

model. In the cell-probe model, one direction of the

principle is still true: A lower bound for deterministic

data structures on a fixed hard input distribution is

always a lower bound for any randomized data structure

on its worst-case input. This is the direction that we (and

also many previous works) use in the proof. But the

other direction may no longer hold: Even if for every

possible input distribution, we managed to design an

efficient deterministic data structure, it is still possible

that no randomized data structure has good worst-case-

input guarantees.

Indeed, for the dynamic 2D-ORC problem and any

distribution over operation sequences with n/ logc n
updates and n − n/ logc n queries, we can solve it

trivially if only n−3n/ logc n correct probability is re-

quired: hard-wire the most-likely sequence of n/ logc n
updates, and answer all queries based on it. Thus,

each update and query can be done in constant time.

When the most-likely sequence of updates occurs (with

probability ≥ n−3n/ logc n), all queries will be answered

correctly. Thus, to improve Theorem 1, one would have

to design a “data-structure-dependent” hard distribution,

adversarially tailored to each data structure we are

analyzing, and carrying out such argument seems to

require new ideas.

REFERENCES

[AW08] Scott Aaronson and Avi Wigderson. Algebriza-
tion: a new barrier in complexity theory. In
Proceedings of the 40th Annual ACM Symposium
on Theory of Computing, pages 731–740, 2008.

[BBCR10] Boaz Barak, Mark Braverman, Xi Chen, and
Anup Rao. How to compress interactive com-
munication. In Proceedings of the 42nd ACM
Symposium on Theory of Computing, STOC 2010,
pages 67–76, 2010.

312313313

[BFS86] László Babai, Peter Frankl, and Janos Simon.
Complexity classes in communication complexity
theory (preliminary version). In 27th Annual
Symposium on Foundations of Computer Science,
pages 337–347, 1986.

[Blu85] Norbert Blum. On the single-operation worst-
case time complexity on the disjoint set union
problem. In STACS 85, 2nd Symposium of The-
oretical Aspects of Computer Science, pages 32–
38, 1985.

[BRWY13] Mark Braverman, Anup Rao, Omri Weinstein,
and Amir Yehudayoff. Direct products in com-
munication complexity. In 54th Annual IEEE
Symposium on Foundations of Computer Science,
FOCS 2013, pages 746–755, 2013.

[CJL15] Raphaël Clifford, Allan Grønlund Jørgensen, and
Kasper Green Larsen. New unconditional hard-
ness results for dynamic and online problems.
CoRR, abs/1504.01836, 2015.

[CJS14] Raphaël Clifford, Markus Jalsenius, and Ben-
jamin Sach. Cell-probe bounds for online edit
distance and other pattern matching problems.
CoRR, abs/1407.6559, 2014.

[DS14] Irit Dinur and David Steurer. Direct product test-
ing. In IEEE 29th Conference on Computational
Complexity, CCC 2014, pages 188–196, 2014.

[FKNN95] Tomàs Feder, Eyal Kushilevitz, Moni Naor, and
Noam Nisan. Amortized communication com-
plexity. SIAM Journal on Computing, 24(4):736–
750, 1995. Prelim version by Feder, Kushilevitz,
Naor FOCS 1991.

[FS89] Michael L. Fredman and Michael E. Saks. The
cell probe complexity of dynamic data structures.
In Proceedings of the 21st Annual ACM Sympo-
sium on Theory of Computing, pages 345–354,
1989.

[JPY12] Rahul Jain, Attila Pereszlényi, and Penghui Yao.
A direct product theorem for the two-party
bounded-round public-coin communication com-
plexity. In 53rd Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2012,
pages 167–176, 2012.

[KKN95] Mauricio Karchmer, Eyal Kushilevitz, and Noam
Nisan. Fractional covers and communication
complexity. SIAM J. Discrete Math., 8(1):76–92,
1995.

[Kla11] Hartmut Klauck. On Arthur Merlin games in
communication complexity. In Proceedings of the
26th Annual IEEE Conference on Computational
Complexity, CCC 2011, pages 189–199, 2011.

[Lar12] Kasper Green Larsen. The cell probe complexity
of dynamic range counting. In Proceedings of
the 44th Symposium on Theory of Computing
Conference, STOC 2012, pages 85–94, 2012.

[Pat07] Mihai Patrascu. Lower bounds for 2-dimensional
range counting. In Proceedings of the 39th An-
nual ACM Symposium on Theory of Computing,
STOC 2007, pages 40–46, 2007.

[PD04] Mihai Pǎtraşcu and Erik D. Demaine. Tight
bounds for the partial-sums problem. In Proceed-
ings of the Fifteenth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2004, pages
20–29, 2004.

[PD06] Mihai Pǎtraşcu and Erik D. Demaine. Logarith-
mic lower bounds in the cell-probe model. SIAM
J. Comput., 35(4):932–963, 2006.

[PT06] Mihai Patrascu and Mikkel Thorup. Higher
lower bounds for near-neighbor and further rich
problems. In 47th Annual IEEE Symposium on
Foundations of Computer Science FOCS 2006,
pages 646–654, 2006.

[PT11] Mihai Pǎtraşcu and Mikkel Thorup. Don’t rush
into a union: take time to find your roots. In
Proceedings of the 43rd ACM Symposium on
Theory of Computing, STOC 2011, pages 559–
568, 2011.

[PTW10] Rina Panigrahy, Kunal Talwar, and Udi Wieder.
Lower bounds on near neighbor search via metric
expansion. In 51th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2010,
pages 805–814, 2010.

[Raz98] Ran Raz. A parallel repetition theorem. SIAM
Journal on Computing, 27(3):763–803, June
1998. Prelim version in STOC ’95.

[Tar75] Robert Endre Tarjan. Efficiency of a good but not
linear set union algorithm. J. ACM, 22(2):215–
225, 1975.

[Yao77] Andrew Chi-Chih Yao. Probabilistic computa-
tions: Toward a unified measure of complexity.
In 18th Annual Symposium on Foundations of
Computer Science, pages 222–227, 1977.

[Yao81] Andrew Chi-Chih Yao. Should tables be sorted?
J. ACM, 28(3):615–628, 1981.

[Yao82] Andrew Chi-Chih Yao. Theory and applications
of trapdoor functions (extended abstract). In 23rd
Annual Symposium on Foundations of Computer
Science, FOCS 1982, pages 80–91, 1982.

[Yu16] Huacheng Yu. Cell-probe lower bounds for dy-
namic problems via a new communication model.
In Proceedings of the 48th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2016,
Cambridge, MA, USA, June 18-21, 2016, pages
362–374, 2016.

313314314

