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Abstract—Party Ai of k parties A1, . . . , Ak receives on its
forehead a t-tuple (ai1, . . . , ait) of elements from the group
G = SL(2, q). The parties are promised that the interleaved
product a11 . . . ak1a12 . . . ak2 . . . a1t . . . akt is equal either to the
identity e or to some other fixed element g ∈ G. Their goal is
to determine which of e and g the interleaved product is equal
to, using the least amount of communication.

We show that for all fixed k and all sufficiently large
t the communication is Ω(t log |G|), which is tight. As an
application, we establish the security of the leakage-resilient
circuits studied by Miles and Viola (STOC 2013) in the “only
computation leaks” model. Our main technical contribution is
of independent interest. We show that if X is a probability
distribution on Gm such that any two coordinates are uniform
in G2, then a pointwise product of s independent copies of X
is nearly uniform in Gm, where s depends on m only.

Keywords-iterated group products, communication complex-
ity, mixing, interleaved group product, special linear group,
quasirandom group, number-on-forehead, leakage-resilient

I. INTRODUCTION AND OUR RESULTS

In the multiparty number-on-the-forehead model of

communication complexity [1] (cf. [2], [3]), k parties

A1, . . . , Ak wish to compute the value f(x1, . . . , xk) of

some function of k variables, where each xi belongs to

some set Xi. The party Ai knows the values of all the

xj apart from xi (one can think of xi as being written on

Ai’s forehead) and the aim is for the parties to determine

f(x1, . . . , xk). To do this, they are allowed to write bits on a

blackboard according to some protocol: the communication
complexity of f is the smallest number of bits they will need

to write in the worst case.

The overlap of information makes proving lower bounds

in this model useful and challenging. Useful, because such

bounds find a striking variety of applications; see for exam-

ple the book [3] for some of the earlier ones. This paper

adds to the list an application to cryptography. Challenging,

because obtaining a lower bound even for k = 3 parties typi-

cally requires different techniques from those that may work

for k = 2 parties. For example, consider the disjointness

function. After the two-party lower bounds [4], [5] it took

more than fifteen years to obtain multiparty lower bounds

[6], [7], and required new techniques, cf. [8]. In fact, despite
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substantial effort, tight bounds are not known even for k = 3
parties: see [9] for the state of the art. The lower bounds in

this paper are proved via a new technique: boosting pairwise
uniformity.

In this paper we consider the following problem, posed in

[10]. Each xi is a sequence (ai1, . . . , ait) of group elements,

and we define their interleaved product to be

x1 • x2 • · · · • xk = a11 . . . ak1a12 . . . ak2 . . . a1t . . . akt,

which we shall sometimes write as
∏t

j=1 a1j . . . akj . In

other words, the entire input is a k × t matrix of elements

from G, party i knows all the elements except those in row

i, and the interleaved product is the product in column order.

The parties are told that x1 • · · · • xk is equal either to the

identity e or to a specified group element g, and their job is

to determine which.

If the group is abelian the problem can be solved with

communication O(1) by just two players, using the public-

coin protocol for equality. Over any non-solvable group, a

communication lower bound of t/2O(k) follows via [11]

from the lower bound in [12] for generalized inner products;

see [10] for details. However, this bound is far from the

(trivial) upper bound of O(t log |G|), and it gives nothing

when t = O(1). Motivated by a cryptographic application

which is reviewed below, the paper [10] asks whether a

lower bound that grows with the size of the group, ideally

Ω(t log |G|), can be established over some group G for

k = 8 parties.

In the case of k = 2 parties, such Ω(t log |G|) bounds

have been recently established by the authors [13] over the

group G = SL(2, q) of 2 × 2 matrices with determinant 1
over the field with q elements.

Here we show that if t ≥ b2k

where b is a certain constant,

then the communication is at least (t/b2k

) log |G|, even for

randomized protocols that are merely required to offer a

small advantage over random guessing. In particular, for all

fixed k and all sufficiently large t we obtain an Ω(t log |G|)
lower bound, which is tight.

Theorem I.1. There is constant b such that the follow-
ing holds. Let G = SL(2, q) for a prime power q. Let
P : Gk×t → {0, 1} be a c-bit k-party number-on-forehead
communication protocol. For g ∈ G denote by pg the prob-
ability that P outputs 1 over a uniform input (ai,j)i≤k,j≤t

such that
∏t

j=1 a1j . . . akj = g.
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If t ≥ b2k

then for any two g, h ∈ G we have |pg−ph| ≤
2c · |G|−t/b2

k

.

To prove this theorem we establish a result about mixing

of tuples of group elements which is of independent interest.

Call a distribution over Gm pairwise uniform if any two

coordinates are uniform in G2. We show that the product of

a sufficiently large number of pairwise uniform distributions

over Gm is approximately uniform over the entire space Gm.

Theorem I.2. Let G = SL(2, q). For every m ≥ 2 there
exists r such that the following is true. Let μ1, . . . , μr

be pairwise uniform distributions on Gm. Let μ be the
component-wise product of the μi. Then μ is 1/|G| close
in statistical distance to the uniform distribution over Gm.

As we shall see later, the parameter 1/|G| is not too

important in the sense that it can be made smaller by making

r larger. Note that the assumption that the distributions are

pairwise uniform cannot be relaxed to the assumption that

each coordinate is uniform. A simple counterexample is to

take m = 2 and every distribution to be uniform on the set

of points of the form (x, x).
Application to leakage-resilient cryptography.: We now

informally describe the application to cryptography we al-

luded to before – for formal definitions and extra discussion

we refer the reader to [10]. Also motivated by successful

attacks on cryptographic hardware, an exciting line of work

known as leakage-resilient cryptography considers models

in which the adversary obtains more information from cryp-

tographic algorithms than just their input/output behavior.

Starting with [14], a general goal in this area is to compile

any circuit into a new “shielded” circuit that is secure even

if an adversary can obtain partial information about the

values carried by the internal wires of the circuit during

the computation on inputs of their choosing. This partial

information can be modeled in two ways.

One way is the “only computation leaks” model [15]. Here

the compiled circuit is partitioned (by the compiler) into

topologically ordered sets of wires, i.e. in such a way that

the value of each wire depends only on wires in its set or

in sets preceding it. Goldwasser and Rothblum [16] give a

construction that is secure against any leakage function that

operates separately on each set, as long as the function has

bounded output length.

Another way is the “computationally bounded model,”

where the leakage function has access to all wires simul-

taneously but it is computationally restricted [17].

The paper [10] gives a new construction of leakage-

resilient circuits based on group products. This construction

enjoys strong security properties in the “computationally

bounded model” [10], [18]. Moreover, the construction was

shown to be secure even in the “only computation leaks”

model assuming that a lower bound such as that in Theorem

I.1 specialized to k = 8 parties holds.

In this work we obtain such bounds and thus we also

obtain the following corollary.

Corollary I.3. The leakage-resilient construction in [10] is
secure in the “only computation leaks” model.

Proof: Combine Theorem I.1 with Theorem 1.7 in [10].

This corollary completes the program of proving that the

construction in [10] is secure in both the “only computation

leaks” and the “computationally bounded” models. It seems

to be the first construction to achieve this.

A. Overview of techniques

In this section we give an overview of our techniques.

A key idea is to obtain our main Theorem I.1 by showing

that a certain collection of group products are jointly close

to uniform. The group products to consider arise naturally

from an application of the “box norm” (a.k.a. the multiparty

norm). We state this result as Theorem I.5 below, after a

definition of the measure of closeness to uniform that we

will work with.

Definition I.4. A distribution D on Gm is (ε, k)-good if for
any 1 ≤ i1 < · · · < ik ≤ m and any g1, . . . , gk ∈ G, the
probability, when x is sampled randomly from D, that xij

=
gj for j = 1, . . . , k is between (1− ε)n−k and (1 + ε)n−k.

To relate this definition to that of statistical distance,

note that if a distribution D on Gm is (ε, k)-good then the

projection of D to any k coordinates is ε-close to uniform

in statistical distance.

Theorem I.5. There is constant b such that the following
holds. Let k and t be integers, G = SL(2, q), m = 2k, and
t ≥ bm.

Let x0
1, x

1
1, . . . , x

0
k, x1

k be chosen independently and uni-
formly from Gt and consider the distribution μ on Gm whose
coordinate ε ∈ {0, 1}k is the interleaved product

xε1
1 • xε2

2 • · · · • xεk

k .

Then μ is (1/|G|t/bm

, m)-good.

The proof that Theorem I.5 implies Theorem I.1 is a

technically simple application of the “box norm.”

To prove Theorem I.5 we begin by writing μ as a

pointwise product of t independent distributions μi over Gm.

This pointwise product can also be regarded as convolution

∗ in Gm, or simply as sampling from each distribution

and then outputting the product. An important observation

now is that each μi is pairwise uniform: the marginal

distribution on any two coordinates will be uniform over

G2. This is the only property of the distributions that we

shall use: We show (cf. Theorem I.2) that the product of a

sufficiently large number of pairwise uniform distributions

over Gm is approximately uniformly distributed over the

entire space Gm. To prove this latter fact, we focus on the
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case m = 3; larger values of m are handled using induction.

We establish a “flattening lemma” that show that multiplying

four pairwise uniform distributions on G3 increases their

min-entropy (equivalently, reduces their infinity norm). The

proof of this relies on a result from our previous work [13],

which is all that we use about the group. We note however

that the arguments in [13] and in this paper are rather

different. The technique of boosting pairwise uniformity is

not present in [13]. Another difference is reflected in the

length t of the tuples to which the bounds apply. In [13]

t = 2 suffices, but here the lower bound only kicks in when

t is sufficiently large.

The authors’ previous work [13] has already sparked

interest among other group theorists: Shalev proved [19]

some of the conjectures in [13] obtaining also results related

to a conjecture by Thompson in group theory. We hope

that the present paper will stimulate further interaction with

other group theorists. Some specific open problems are (1)

to understand the minimum length t of the tuples for which a

lower bound holds, (2) to improve the dependency on k, and

(3) to extend the results to other groups. Regarding the latter

point, we note that in the case of k = 2 parties and tuples of

length t = 2 a lower bound holds for all finite (non-abelian)

simple groups [13]. For sharper bounds see [19]. But it is

still not clear how to prove a similar extension for other

settings of t or k.

Organization.: In §II we show that Theorem I.5 implies

the communication lower bound Theorem I.1. The next

sections are then devoted to the proof of Theorem I.5 and

Theorem I.2. Specifically, §III reduces our task to that of

going from pairwise to three-wise uniformity. And then we

establish the latter in §IV, where our flattening lemma is

proved.

II. PROOF THAT THEOREM I.5 IMPLIES THEOREM I.1

Consider the function d : Gtk → {0, 1,−1} that maps

x = (x1, . . . , xk) to 1 if x1 • · · · •xk = e, to −1 if x1 • · · · •
xk = g, and to 0 otherwise. Then we have

|pg − ph| = 0.5 · n · |Ex(−1)P (x)d(x)|.
Following previous work [12], [20], [21], [22], we bound

the latter expectation using the box norm ‖d‖� of d, defined

as

‖d‖2k

� = Ex0
1,x1

1,x0
2,x1

2,...,x0
k,x1

k

∏
ε∈{0,1}k

d(xε1
1 , . . . , xεk

k ).

Specifically, by e.g. Corollary 3.11 in [22], we have

0.5 · n · |Ex(−1)P (x)d(x)| ≤ 0.5 · n · 2c · ‖d‖�.

To conclude it remains to notice that Theorem I.5 allows

us to bound ‖d‖�. First, note that the product in ‖d‖2k

� is

equal to zero unless each of the 2k interleaved products xε1
1 •

· · ·•xεk

k is equal to 1 or g, in which case it is 1 if the number

of products equal to g is even and −1 if it is odd. If the 2k

products were uniform and independent, then the expectation

of the product would be zero. If instead they are (α, 2k)-
good then ‖d‖2k

� ≤ 2kα/n2k

, and so ‖d‖� ≤ 2α1/2k

/n.

Plugging in α = 1/|G|t/bm

for m = 2k completes the proof.

III. GOING FROM 2-WISE UNIFORMITY TO 3-WISE

SUFFICES

In this section we prove Theorem I.5 assuming the next

theorem which will be proved in the next section. Recall that

we write ∗ for convolution, and that the convolution of two

distributions μ and ν is the same as the distribution obtained

by sampling independently from μ and ν and outputting the

product.

Theorem III.1. There is a constant d such that the fol-
lowing holds. Let μ1, . . . , μd be (1/

√
n, 2)-good probability

distributions on G3. Then μ1 ∗ · · · ∗ μd is (1/n2, 3)-good.

The choice of polynomials 1/
√

n and 1/n2 will be

convenient in a later proof by induction, but is not too

important. Indeed, any bound of this type can be quickly

improved if one makes the products slightly longer, as shown

by the following lemma which we will use several times.

Lemma III.2. Let μ and ν be (ε, k)-good probability
distributions on Gm. Then μ ∗ ν is (ε2, k)-good.

Proof: The convolution of the projection of the distribu-

tions on to any k coordinates is the same as the projection of

the convolution, so it is enough to consider the case m = k.

Let H be any finite group (we shall be interested in the

case H = Gk), let U be the uniform distribution on H ,

and let μ and ν be distributions on H such that ‖μ−U‖∞
and ‖ν − U‖∞ are both at most ε/n. Let α = μ − U and

β = ν − U . Then for every x we have

μ ∗ ν(x) =
∑

yz=x

(
1
n

+ α(y)
) (

1
n

+ β(z)
)

=
1
n

+
∑
yz=x

α(y)β(z).

where the second inequality follows from the fact that α and

β are functions that sum to zero.

But |∑yz=x α(y)β(z)| ≤ n(ε/n)2 = ε2/n, from which

it follows that ‖μ ∗ ν − U‖∞ ≤ ε2/n. Applying this when

H = Gk we obtain the result.

Using the above two results and induction we obtain the

following simple corollary of Theorem III.1.

Corollary III.3. There is a constant d such that the fol-
lowing holds. Let m ≥ 3, and let μ1, . . . , μdm be (1/n, 2)-
good probability distributions on Gm, where |G| = n. Then
μ1 ∗ · · · ∗ μdm is (1/n, m)-good.

Proof of Corollary III.3 from Theorem III.1: In the

proof we use that (ε, k)-good implies (ε, k − 1)-good, as

can be seen by summing on one coordinate. We prove this

290291291



by induction on m. For m = 3 this is Theorem III.1. Now

we assume the corollary for m− 1 and prove it for m. Let

νi, i = 1, . . . , d, be the product of dm−1 consecutive μi.

For an element y of Gm we write y0 for the first m − 3
coordinates, and y1 for the other three. Pick any x ∈ Gm.

We need to bound

Pr[∗i≤dνi = x] =

Pr[∗i≤dν
1
i = x1| ∗i≤d ν0

i = x0] · Pr[∗i≤dν
0
i = x0]. (1)

By induction, each ν0
i is (1/n, m − 3)-good, and so

by Lemma III.2 ∗i≤dν
0
i is (1/n2, m − 3)-good. Thus, the

rightmost term in Equation (1) is between (1−1/n2)/nm−3

and (1 + 1/n2)/nm−3.

Now we bound the conditional probability in Equation

(1). Let αi be the distribution v1
i on G3 conditioned on any

fixing of v0
i . We claim that αi is (1/

√
n, 2)-good. Indeed,

by the assumption the probability p that two coordinates of

αi equal any fixed pair satisfies

(1− 1/n)/nm−1

(1 + 1/n)/nm−3
≤ p ≤ (1 + 1/n)/nm−1

(1− 1/n)/nm−3

which implies

1− 1/
√

n

n2
≤ p ≤ 1 + 1/

√
n

n2

for large enough n.

Hence, by Theorem III.1 the convolution of the αi is

(1/n2, 3)-good.

Putting together these bounds for the two factors in the

right-hand side of Equation (1) we get that the proba-

bility in Equation (1) lies between (1 − 1/n2)2/nm and

(1 + 1/n2)2/nm, from which the result follows.

We remark that this corollary implies Theorem I.2 stated

in the introduction.

The last piece that we need to prove Theorem I.5 is the

following lemma.

Lemma III.4. Let μ be the distribution over Gm in Theorem
I.5, and let also t be as in Theorem I.5. Then μ is the
component-wise product of t independent distributions, each
of which is pairwise uniform.

Proof: Recall that m = 2k. Let us write xεi
i =

(aεi
i1, . . . , a

εi

ik). Then for each ε ∈ {0, 1}k we have

xε1
1 • xε2

2 • · · · • xεk

k = aε1
11 . . . aεk

k1a
ε1
12 . . . aεk

k2 . . . aε1
1t . . . aεk

kt.

Now for 1 ≤ j ≤ t let sj be the m-tuple

(aε1
1j . . . aεk

kj)ε∈{0,1}k . Then the m-tuple (xε1
1 • xε2

2 • · · · •
xεk

k )ε∈{0,1}k is the pointwise product of the sj . That is,

writing sj(ε) for aε1
1j . . . aεk

kj , we have that

xε1
1 • xε2

2 • · · · • xεk

k = s1(ε)s2(ε) . . . st(ε)

for every ε ∈ {0, 1}k.

Note that the m-tuples sj are independent and distributed

as follows. We choose elements u0
1, u

1
1, u

0
2, u

1
2, . . . , u

0
k, u1

k

uniformly and independently at random from G and we form

an m-tuple s by setting s(ε) = uε1
1 uε2

2 . . . uεk

k .

We note that s is pairwise uniform. That is, if you take

any pair of distinct elements ε, η in {0, 1}k, then the pair

(s(ε), s(η)) is uniformly distributed in G2. To see this,

choose some i such that εi 	= ηi. Conditioning on the values

of u
εj

j and u
ηj

j for every j 	= i, we find that we are looking at

two products of the form auεi
i b and cuηi

i d. For this to equal

(g, h), we need uεi
i = a−1gb−1 and uηi

i = c−1hd−1. Since

uεi
i and uηi

i are independent and uniformly distributed, this

happens with probability 1/|G|2.

We note that the distribution s in the proof is far from be-

ing uniformly distributed, since there are only n2k possible

2k-tuples of this form.

Now Theorem I.5 follows easily.

Proof of Theorem I.5: Let m be 2k. Let d be the

constant in Corollary III.3. Write the distribution μ as the

product of t independent distributions μi, each of which

is pairwise uniform, using Lemma III.4. Group the μi in

consecutive blocks of length dm. The convolution in each

block is (1/n, m)-good by Corollary III.3. By repeated ap-

plications of Lemma III.2 we obtain that the final distribution

is (1/nt/bm

, m)-good. The change of the constant from d to

b is to handle the case in which t/dm is not a power of two.

IV. FROM 2-WISE TO 3-WISE UNIFORMITY

In this section we prove Theorem III.1. First we fix

some notation. Throughout the section G is the group

SL(2, q) and |G| = n. For a real-valued function f , its �∞,

�1, and �2 norms are respectively ‖f‖∞ = maxx |f(x)|,
‖f‖1 =

∑
x |f(x)|, and ‖f‖2 = (

∑
x f(x)2)1/2. To prove

the theorem we show that if we convolve pairwise-uniform

distributions over G3, then we reduce their �∞ norm. To

get a sense of the parameters, note that the assumption of

pairwise uniformity implies an upper bound of 1/n2 on this

norm, and that the minimum possible value is 1/n3. So we

are aiming to use convolutions to get down from 1/n2 to

about 1/n3. Actually, it is more convenient to work with

the �2 norm, but by convolving again we can turn to the �∞
norm thanks to the following simple fact.

Fact IV.1. For any distributions μ and ν it holds that ‖μ ∗
ν‖∞ ≤ ‖μ‖2‖ν‖2.

Proof: For any x, μ ∗ ν(x) =
∑

y μ(y)ν(y−1x) ≤√∑
y μ(y)2

√∑
y ν(y)2, using the Cauchy-Schwarz in-

equality.

We rely on the following result from our previous work.

Theorem IV.2 ([13]). Let G = SL(2, q). Let u and v be
two independent distributions over G2. Let a be sampled
according to u and b according to v. Then, for every g ∈ G:

|Pr
a,b

[a • b = g]− 1/n| ≤ n−Ω(1) · n · ‖u‖2 · ‖v‖2.

291292292



To get a sense of the parameters, note that if u and v
are uniform over an α and β fraction of G2 respectively,

then ‖u‖2 = (αn2)−1/2 and ‖v‖2 = (βn2)−1/2, and so the

upper bound is (αβ)−1/2n−Ω(1)/n. Thinking of α and β
as constants, and summing over all elements of G, we can

then deduce that the distribution of a • b is 1/nΩ(1) close

to uniform over G in statistical distance. However, jumping

ahead we will apply this theorem not to distributions but to

non-negative functions.

We now state and prove the flattening lemma.

Lemma IV.3. Let μ and ν be two non-negative functions
defined on G3 and suppose that however you fix two coordi-
nates of one of the functions and sum over the third, the total
is at most n−2. Then ‖μ∗ν‖22 ≤ n−3+n−Ω(1)

√‖μ‖∞‖ν‖∞.

Proof: Expanding out the definition of ‖μ ∗ ν‖22 we

obtain∑
x1y1=z1w1

∑
x2y2=z2w2

∑
x3y3=z3w3

μ(x1, x2, x3)ν(y1, y2, y3)·

· μ(z1, z2, z3)ν(w1, w2, w3).

We can rewrite this as∑
a,b,x1,x2,y1,y2

∑
x3y3=z3w3

μ(x1a, x2, x3)ν(y1, by2, y3)·

· μ(x1, x2b, z3)ν(ay1, y2, w3).

By averaging, it follows that there exist x1, x2, y1, y2 such

that

‖μ ∗ ν‖22 ≤ n4
∑
a,b

∑
x3y3=z3w3

μ(x1a, x2, x3)ν(y1, by2, y3)·

· μ(x1, x2b, z3)ν(ay1, y2, w3). (2)

Define α(a, x) to be μ(x1a, x2, x), β(b, y) to be

ν(y1, by2, y), γ(b, z) to be μ(x1, x2b, z) and δ(a, w) to be

ν(ay1, y2, w3). Then we can rewrite this inequality as

‖μ ∗ ν‖22 ≤ n4
∑
a,b

∑
xy=zw

α(a, x)β(b, y)γ(b, z)δ(a, w).

Now let us set u(x, w) to be
∑

a α(a, x)δ(a, w) and v(y, z)
to be

∑
b β(b, y)γ(b, z). Note that by our hypotheses on μ

and ν,∑
x

u(x, w) =
∑

a

δ(a, w)
∑

x

α(a, x) =

∑
a

δ(a, w)
∑

x

μ(x1a, x2, x) ≤ n−2
∑

a

δ(a, w) ≤ n−4,

(3)

with three similar inequalities for summing over the other

coordinate and for v. We also have for each x, w that

u(x, w) ≤ ‖α‖∞
∑

a

δ(a, w) = n−Ω(1)‖μ‖∞n−2,

with a similar argument giving the same bound for ‖v‖∞.

Our earlier bound (2) can be rewritten as

‖μ ∗ ν‖22 ≤ n4
∑

xy=zw

u(x, w)v(y, z).

On the right-hand side there is an interleaved product of the

kind to which Theorem IV.2 can be applied. Since by (3)

we have
∑

x u(x, w) ≤ n−4 for each w, we also have that∑
x,w u(x, w) ≤ n−3. From this and our estimate for ‖u‖∞

it follows that
∑

x,w u(x, w)2 ≤ ‖μ‖∞/n5. And we have a

similar bound for v. Therefore, Theorem IV.2 implies that∑
xy=zw

u(x, w)v(y, z)

= n−1‖u‖1‖v‖1 + n · n−Ω(1)‖u‖2‖v‖2
≤ n−Ω(1)

√
‖μ‖∞‖ν‖∞/n4.

Note that here we are applying the theorem to the probability

distributions u/‖u‖1 and v/‖v‖1, and then we multiply by

‖u‖1‖v‖1. This implies that

‖μ ∗ ν‖22 ≤ n−3 + n−Ω(1)
√
‖μ‖∞‖ν‖∞,

which proves the result.

Corollary IV.4. Let μ1, μ2, μ3, μ4 be non-negative functions
defined on G3 and suppose that they all satisfy the condition
that μ and ν satisfy in Lemma IV.3. Further suppose that
‖μi‖∞ ≤ α for every i ∈ {1, 2, 3, 4}.

Then

‖μ1 ∗ μ2 ∗ μ3 ∗ μ4‖∞ ≤ n−3 + n−Ω(1)α.

Proof: This follows by applying Lemma IV.3 to μ1 and

μ2 and to μ3 and μ4 and then applying Fact IV.1 to μ1 ∗μ2

and μ3 ∗ μ4.

The next lemma shows that convolution preserves one of

the main properties we used.

Lemma IV.5. Let μ and ν be non-negative functions defined
on G3 and suppose that whenever you fix two coordinates
of μ or ν and sum over the other, you get at most n−2. Then
the same is true of μ ∗ ν.

Proof: For each (z1, z2, z3) ∈ G we have

μ ∗ ν(z1, z2, z3)

=
∑
x1

∑
x2

∑
x3

μ(x1, x2, x3)ν(x−1
1 z1, x

−1
2 z2, x

−1
3 z3).

If we fix z1 and z2 and sum over z3 we obtain∑
x1

∑
x2

∑
x3,z3

μ(x1, x2, x3)ν(x−1
1 z1, x

−1
2 z2, x

−1
3 z3).

But for each x1, x2, we have∑
x3,z3

μ(x1, x2, x3)ν(x−1
1 z1, x

−1
2 z2, x

−1
3 z3)

=
∑

x

μ(x1, x2, x)
∑

y

ν(x−1
1 z1, x

−1
2 z2, y) ≤ n−4.
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The result follows on summing over x1 and x2.

Proof of Theorem III.1.: If we divide each μi by

(1 + 1/
√

n), then we obtain functions νi that satisfy the

conditions of Lemma IV.3 and such that ‖νi‖∞ is at most

1/n2. Applying Corollary IV.4 a constant number of times,

using Lemma IV.5 to argue that the assumptions are satisfied

throughout, we deduce that a convolution of a constant

number � of such functions has infinity norm at most

n−3(1 + n−Ω(1)). If we now multiply one such convolution

by (1+1/
√

n)� we obtain a probability distribution μ with

‖μ‖∞ ≤ n−3(1 + n−Ω(1))(1 + 1/
√

n)� ≤ n−3(1 + n−Ω(1))

for large enough n.

This is close to our goal of bounding ‖μ − U‖∞. To

achieve the goal, we use the following fact about any two

probability distributions α and β over G3:

‖α∗β−U‖2∞ = ‖(α−U)∗(β−U)‖2∞ ≤ ‖α−U‖22‖β−U‖22
= (‖α‖22 − 1/n3)(‖β‖22 − 1/n3).

In our case we have ‖μ‖22 ≤ ‖μ‖∞ ≤ n−3(1 + n−Ω(1)).
So we convolve one more time and apply the above fact to

obtain a distribution μ′ such that ‖μ′−U‖∞ ≤ n−Ω(1)/n3.

Hence, μ′ is (n−Ω(1), 3)-good. Now if we convolve another

constant number of times and apply Lemma III.2 we obtain

a distribution which is (n−2, 3)-good, as desired.
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