
Ramanujan Graphs in Polynomial Time

Michael B. Cohen

Electrical Engineering and Computer Science
MIT

Cambridge, MA
micohen@mit.edu

Abstract—Recent work by Marcus, Spielman and Srivastava
proves the existence of bipartite Ramanujan (multi)graphs
of all degrees and all sizes. However, that paper did not
provide a polynomial time algorithm to actually compute such
graphs. Here, we provide a polynomial time algorithm to
compute certain expected characteristic polynomials related
to this construction. This leads to a deterministic polynomial
time algorithm to compute bipartite Ramanujan (multi)graphs
of all degrees and all sizes.

Keywords-Ramanujan graph, interlacing family, characteris-
tic polynomial, constructive

I. INTRODUCTION

Bipartite Ramanujan graphs can be defined as undirected

bipartite graphs with constant degree d such that all eigen-

values of the adjacency matrix, except the trivial ±d, have

absolute value at most 2
√
d− 1. It is known that this is the

smallest bound for which an infinite family–that is, a set of

such graphs of degree d containing graphs of arbitrarily large

size–can exist (originally due to Alon and Boppana). Explicit

algebraic constructions, naturally providing polynomial time

algorithms, of such graphs of certain particular degrees

and sizes have been known since the 1980s. However,

until recently it was not known whether infinite families of

bipartite Ramanujan graphs existed for all degrees.

Recent papers [1], [2], [3], however, have proved the

existence of these graphs for all degrees using a powerful

new tool known as “interlacing families.” They proceed by

bounding the roots of the expected characteristic polynomi-
als of the adjacency matrices of certain random graphs, then

showing that at least one specific graph must satisfy the same

bound. This interlacing family method naturally provides an

algorithm to find such a graph. Unfortunately, the steps of

this natural algorithm involve computing certain partially

specified expected characteristic polynomials. There were

no known polynomial time algorithms to compute these, so

none of these papers provided a polynomial time algorithm

to compute Ramanujan graphs.

In this paper, for [2] specifically, we provide a poly-

nomial time algorithm to explicitly compute the needed

polynomials by reducing to the computation of a certain

symbolic determinant. This provides a polynomial time

algorithm to compute the graphs from that paper. It inherits

the mild caveat of [2] that the resulting graph may have

repeated edges, producing what could be more properly

called Ramanujan multigraphs.

Additionally, it is still subject to the limitations of the

interlacing polynomial method, which does not seem to

easily allow producing non-bipartite Ramanujan graphs.

Furthermore, this new algorithm does not seem likely to be

helpful for [1] and some other uses of interlacing families,

such as the solution of the Kadison-Singer problem [4].

This is because it is an explicit algorithm for computing

the polynomials in the interlacing family, which is known,

in the cases of those results, to be #P-hard.

II. INTERLACING FAMILIES

The construction of [2] and the construction of this paper

are heavily based on the notion of an interlacing family. We

will use a slightly more general definition than is used in

that paper, and the specific interlacing family will also be

slightly different.

Definition 1. An interlacing family is a rooted tree with a

polynomial pk(x) assigned to each node k, such that:

1) All of the polynomials are monic, real-rooted and of

the same degree.

2) For any non-leaf node k, pk is a positive linear com-

bination of the polynomials assigned to the children

of k.

3) If two nodes k and k′ have the same parent, pk and

pk′ have a common interlacing. That is, the (j + 1)st

root of pk is not less than the jth root of pk′ or vice

versa.

For convenience, we will refer to tree nodes in the

interlacing family as “nodes” and vertices of the graph as

“vertices”.

The relevance of interlacing families stems from the

following key lemma (a rephrasing of Lemma 4.2 from [1]).

Lemma II.1. Let the real-rooted polynomials pi(x) all have
the same leading term with each pair of polynomials having
a common interlacing, and let p(x) be a positive linear
combination of the pi. Then at least one of the pi(x) must
have max root less than or equal to the max root of p(x).

This allows one to obtain both existential and computa-

tional results from interlacing families:

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.37

275

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.37

276

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.37

276

Lemma II.2. For any interlacing family with root r, there
is a leaf node l such that pl has max root less than or equal
to that of pr.

Proof: For any non-leaf node k, k must have a child

i such that the max root of pi is less than or equal to the

max root of pk, by Lemma II.1. We can then consider the

following process: begin with k = r. As long as k is not a

leaf, replace k with the child i of k such that pi has minimum

max root. Once k is a leaf, terminate and return k.

The max root of the current node k is monotonically

decreasing as this process progresses, so this always returns

a leaf node with max root less than or equal to that of pr.

Now we consider a computational version of this state-

ment. We define a computational representation as a

polynomial-time algorithm to exactly compute the coeffi-

cients of each polynomial pk (expressed as rational num-

bers, with a polynomially bounded number of bits), plus a

polynomial time algorithm to list all children of a node.

First, we will need an algorithm to test whether the max

root of a polynomial is at most
√
q, for some integer q.

Lemma II.3. Let p be a real-rooted polynomial with explic-
itly given rational coefficients, and q be an integer. Then one
can test whether the max root of p is ≤ √q in polynomial
time.

Proof: We compute the polynomial p′(x) = p(x+
√
q);

we can compute the coefficients of this explicitly in the form

a+ b
√
q (i.e. work over Q[

√
q]), where a and b are rational

numbers. p then has max root ≤ √q if and only if p′ has

max root ≤ 0 (that is, all of its roots are non-positive). Since

p′ is real-rooted (as p is real-rooted), this occurs if and only

if all coefficients of p are nonnegative: the “if” direction

follows from the fact that nonnegative coefficients imply that

p′(x) > 0 for all x > 0, while the “only if” direction follows

from the factorization p′(x) =
∏

roots y(x − y). Finally, it

remains to be able to determine whether a + b
√
q ≥ 0 for

rational numbers a and b. Here, if a and b have the same

sign this is immediate. If a and b have opposite signs, then

a+ b
√
q ≥ 0 if and only if a ≥ −b√q. Squaring both sides,

we see that this in turn is true if and only if a2 ≥ b2q when

a is positive, or a2 ≤ b2q if a is negative.

Lemma II.4. For any interlacing family root r, with polyno-
mially bounded depth and a computational representation,
and where pr has max root at most

√
q for some integer q,

then there is a polynomial time algorithm to report a leaf l
such that pl has max root ≤ √q.

Proof: The proof is essentially the same. Again, we

track a “current” node k, which is initialized to r; we will

maintain the invariant that the max root of pk is at most√
q. As long as k is not a leaf, we list its children i, and

compute pi for each. Next, we test whether each of these pi

has max root ≤ √q using Lemma II.3. By Lemma II.1, at

least one of these children must have max root at most
√
q;

we then set k to this child, maintaining the invariant. Once

k is a leaf, we terminate and return it. The total number of

iterations is at most the depth of the tree.

III. THE MATCHING INTERLACING FAMILY

Our aim is to use an interlacing family to find a bipartite

Ramanujan graph of degree d on n vertices.

Here, we are interested in obtaining a graph whose

adjacency matrix has bounded max nontrivial eigenvalue–

we crucially use the fact that the eigenvalues of the adja-

cency matrix of a bipartite graph are symmetric around 0,

and thus if the maximum nontrivial eigenvalue is at most

2
√
d− 1, the minimum is at least −2√d− 1 and the graph

is Ramanujan.

To get this out of an interlacing family, we would like the

leaves of that family to correspond to the characteristic poly-

nomials, divided by the factors from the trivial eigenvalues,

of the adjacency matrices of d-regular bipartite graphs on n
vertices. We will construct such an interlacing family, which

we will call the Matching Interlacing Family. This family is

slightly different from the one presented in [2], since that

one has an exponentially deep tree and so is not directly

suitable for algorithmic use.

To get this, we will look at the combination of d perfect

bipartite matchings. We index the vertices of the graph so

that vertices 1 through n
2 are on one side of the bipartition

and vertices n
2 + 1 through n are on the other. Then we

define a partially specified matching as a bipartite matching

that matches vertices 1 through t, for some 0 ≤ t < n
2 , and

does not match any vertices from t+ 1 through n
2 .

Then we will define a node in our family as corresponding

to a sequence of r bipartite matchings, for r ≤ d, such that

all except the last are complete and the last is either a com-

plete bipartite matching or a partially specified matching.

The children of a node are those that add the next unmatched

vertex to the partially specified matching, or begin a new

partially specified matching (matching vertex 1) if the last

matching is complete. The leaves are sequences of d perfect

matchings, which combine to a d-regular bipartite graph on

n vertices.

For each node in the interlacing family, we furthermore

view it as corresponding to a probability distribution over

d-regular bipartite graphs on n vertices. This is simply uni-

formly randomly completing the partially specified matching

if present, then adding d − r uniformly random complete

bipartite matchings. It may be immediately seen that the

probability distribution assigned to a node is the average of

the distributions assigned to its children, and the root is the

combination of d random bipartite graphs.

Finally, we define the polynomial assigned to a node as

the expected characteristic polynomial, over the distribution

of graphs associated with the node, of the adjacency matrix,

276277277

divided by the factors from the trivial eigenvalues (x+d)(x−
d).

Lemma III.1. The Matching Interlacing Family is an inter-
lacing family.

The proof of this lemma depends on several results from

[2]:

Lemma III.2 (The second part of Lemma 2.2 from [2]).
Two monic real-rooted polynomials of the same degree, p1
and p2, have a common interlacing if and only if all convex
combinations of p1 and p2 are real-rooted.

Theorem III.1 (Theorem 3.3 from [2]). Let Ai be arbitrary
deterministic symmetric d × d matrices, and let Sij be
independent random swap matrices (that is, Sij swaps
two indices sij and tij with some probability αij , and is
the identity with probability 1 − αij). Then the expected
characteristic polynomial of the random matrix

∑
i

⎛
⎝ Ni∏

j=1

Sij

⎞
⎠Ai

⎛
⎝ Ni∏

j=1

Sij

⎞
⎠

T

is real-rooted.

Lemma III.3 (Lemma 3.5 from [2]). A uniformly random
permutation matrix P can be expressed as

∏N
j=1 Sj , where

Sj are independent random swap matrices (in the same
sense as in Theorem III.1).

Proof of Lemma III.1: Since the distribution associated

with a non-leaf node is the average of the distribution of

its children, it immediately follows that the polynomial

associated with a non-leaf node is the average (which is,

in particular, a positive linear combination) of the polyno-

mials associated with its children. All of the characteristic

polynomials are of n×n matrices, so they all are all monic

polynomials of the same degree. It remains to show that the

polynomials are real-rooted and that any two siblings: that

is, the same sequences of matchings followed by partially

specified matchings differing only in the assignment of

the last matched vertex, are assigned polynomials with a

common interlacing.
To do this, we first note that interlacing and real-

rootedness is not affected by dividing out the terms from the

trivial eigenvalues, since that always removes the same real

roots from all polynomials. Therefore, we just need to show

that the expected characteristic polynomials themselves are

real-rooted and interlacing for siblings.
We note that we can write the random adjacency matrix

for a node k as(
r−1∑
i=1

P k
i M(P k

i)
T

)
+ P k

r M(P k
r)

T +
d∑

i=r+2

PiMPT
i

where M is an arbitrary bipartite matching, P k
i for i < r

are deterministic permutation matrices that permute it into

the already-selected complete matchings, P k
r is a partially

random permutation providing the matched edges and the

remaining random edges, and Pi for i > r are uniformly

random permutations. We may apply Lemma III.3 to express

P k
r as a product of independent random swaps times a deter-

ministic matrix and Pi for i > r as a product of independent

random swaps. This puts it in the form needed to apply

Theorem III.1, implying that this expected characteristic

polynomial is real-rooted.

To get the interlacing, we note that for any sibling node

k′, we may express its random adjacency matrix as(
r−1∑
i=1

P k
i M(P k

i)
T

)
+ SP k

r M(P k
r)

TST +
d∑

i=r+2

PiMPT
i

where S is a deterministic swap matrix that simply swaps

the two different partners of the last matched node in the

siblings. Any convex combination with the sibling then can

be expressed as an expected characteristic polynomial of

the same form, except with S now a random swap matrix

with some probability. We can then apply Lemma III.3

and Theorem III.1 in the same manner as before, showing

that any convex combination of the expected characteristic

polynomials for two siblings is real-rooted. Finally, by

Lemma III.2, this means the two siblings have a common

interlacing.

Furthermore, the root node of the Matching Interlac-

ing Family is the expected characteristic polynomial of

the combination of d uniformly random complete bipartite

matchings on n vertices, divided by the trivial factors. It is

proved in [2] that this has max root bounded by 2
√
d− 1.

Therefore, Lemma II.4, applied to this interlacing family,

would produce a bipartite Ramanujan graph. However, this

requires a computational representation. Using an explicit

representation of the matchings to index the nodes, the

ability to efficiently list the children is immediate. What

remains is to give a polynomial-time algorithm to compute

the needed expected characteristic polynomial (the naive

algorithm, simply summing over all possible assignments,

is far from being polynomial time).

IV. SIMPLIFYING THE PROBLEM

Fortunately, we can substantially simplify the polynomial

computation problem here.

First, consider an arbitrary c-regular bipartite graph G, and

let G′ be G plus a uniformly random bipartite matching.

Now, we note that Theorem 4.10 of [2] (proved via [5])

gives a formula for the expected characteristic polynomial

of the adjacency matrix of of G′ in terms of the characteristic

polynomial of G itself. Furthermore, for any fixed degree,

this formula is linear–it expresses the coefficients of the

expected characteristic polynomial of G′ as linear combi-

nations of the coefficients of the characteristic polynomial

of G–and directly allows computation in polynomial time.

277278278

By linearity of expectation, even if G itself is a random

graph, as long as it has known constant degree the expected

characteristic polynomial of G′ can be computed from the

expected characteristic polynomial of G.

This means that to compute the expected characteristic

polynomial of the distribution of graphs associated with

a node of the Matching Interlacing Family, it suffices to

be able to do it in the case where the partially specified

matching is the last one. We can always simply take the

expected characteristic polynomial for the graph consisting

of the first r matchings only, then linearly transform this to

account for the d−r remaining uniformly random matchings.

This amounts to taking the expected characteristic polyno-

mial of a bipartite graph (the complete matchings plus the

edges already selected in the partially specified matching)

plus a random bipartite matching precisely covering some

given subset of the vertices (which will be the unmatched

vertices from the partially specified matching). This is the

expected characteristic polynomial of a random matrix of

the form (
0 (A+ PB)

(A+ PB)
T 0

)

where A is a fixed matrix and PB is a random permutation

on some sub-block B (with rows and columns corresponding

to unmatched vertices on both sides), and zero outside the

block.

Next, we note that one can perform the quadrature argu-

ment from [2]. We perform orthogonal changes of basis to

the rows and columns of A + PB (which always preserves

the characteristic polynomial of interest) that keep the block

structure of B, but transform the all-ones vector within the

block to a basis vector. This isolates the non-mean-zero part

of the permutation matrix, as in [2]’s quadrature. We may

fold that part into A, asking for the expected characteristic

polynomial of (
0 (Â+ P̂B̂)

(Â+ P̂B̂)
T 0

)

where Â is the change of variables applied to A+E[PB], and

P̂B̂ is the change of variables applied to PB−E[PB] (noting

that E[PB] is precisely the part of PB aligned with the all-

ones vector on the block). We define B̂ as the containing

the directions from B orthogonal to the all-ones vector. B̂
is (l − 1)-dimensional if B was l-dimensional.

Note that P̂B̂ are not actually permutation matrices in that

block, but the result of a change of variables of a permutation

matrix (minus its all-ones component) in the original basis.

More specifically, consider the unit basis vectors ei in the

original block B. If we project off their component in the

direction of the all-ones vector, then apply the change of

variables, we get a regular simplex of l vectors êi, with all

pairs at distance exactly
√
2 centered at the origin, in Rl−1.

P̂B̂ is then a linear transformation that randomly permutes

the êi (while acting as the identity outside the block B̂).

Now, we have the main quadrature result:

Theorem IV.1. Let M be an arbitrary n×n symmetric ma-
trix, and let P̂B̂ be a random matrix that randomly permutes
the vertices of an l−1-dimensional regular simplex, centered
at 0, within an l − 1-dimensional block B̂, while acting
as the identity outside B̂. Then the expected characteristic
polynomial of

M +

(
0 P̂B̂

P̂T
B̂

0

)

is equal to the expected characteristic polynomial of

M +

(
0 QB̂

QT
B̂

0

)

where QB̂ is a Haar-random (i.e. uniformly random) or-
thogonal matrix on the block B̂.

This implies that we can instead ask for the expected

characteristic polynomial of(
0 (Â+QB̂)

(Â+QB̂)
T 0

)

Finally, we note that this is a symmetric block-off-

diagonal matrix, allowing us to apply the following lemma:

Lemma IV.1. Given a square matrix M , let p be the
characteristic polynomial of the block-off-diagonal matrix

N =

(
0 M

MT 0

)

and p′ be the characteristic polynomial of MTM . Then
p(x) = p′(x2).

Proof: This follows from the fact that the eigenvalues

of N can be placed in correspondence to those of MTM :

an eigenvalue of y in MTM corresponds to two eigenvalues

±√y in N . That in turn means that each factor (x− y) of

p′ becomes a factor (x+
√
y)(x−√y) = (x2 − y) in p.

That means that our characteristic polynomial could be

obtained by taking the characteristic polynomial of (Â +
QB̂)

T (Â+QB̂) and replacing x with x2. Since this is again

a linear map on the coefficients, the expected characteristic

polynomial of the block off-diagonal matrix can also be

obtained by applying this transformation to the expected

characteristic polynomial of (Â + QB̂)
T (Â + QB̂). Com-

puting expected characteristic polynomials for matrices of

that form is therefore sufficient.

V. COMPUTING THE EXPECTED CHARACTERISTIC

POLYNOMIAL

The (n/2− k)th coefficient of the characteristic polyno-

mial of an (n/2)×(n/2) matrix ZTZ is equal to (−1)n/2−k

278279279

times the sum of squares of all k × k minors of Z. For

Z = Â+QB̂ , we can express this sum as∑
U,V s.t. |U |=|V |=k

det((Â+QB̂)U,V)
2

where U and V are subsets of rows and columns, respec-

tively, and MU,V is the submatrix of M containing the rows

in U and the columns in V .

By the multilinearity of the determinant, we may write

det((Â+QB̂)U,V)

=
∑

U ′⊆U,V ′⊆V,
|U ′|=|V ′|

(
sign(U, V, U ′, V ′) det(ÂU ′,V ′)

det((QB̂)U\U ′,V \V ′)

)

where sign(U, V, U ′, V ′) is ±1 depending on the sets. We

may then look at the expected value of the square of this

determinant:

EQB̂
[det((Â+QB̂)U,V)

2]

=
∑

U ′⊆U,V ′⊆V,
|U ′|=|V ′|,

U ′′⊆U,V ′′⊆V,
|U ′′|=|V ′′|

⎛
⎜⎜⎝

sign(U, V, U ′, V ′) sign(U, V, U ′′, V ′′)
det(ÂU ′,V ′) det(ÂU ′′,V ′′)

EQB̂

[
det((QB̂)U\U ′,V \V ′)
det((QB̂)U\U ′′,V \V ′′)

]
⎞
⎟⎟⎠

Luckily, whenever U ′ �= U ′′ or V ′ �= V ′′, at least one

row or column of (QB̂)U\U ′,V \V ′ or (QB̂)U\U ′′,V \V ′′ is

a symmetric random variable conditioned on the other one,

and so

EQB̂
[det((QB̂)U\U ′,V \V ′) det((QB̂)U\U ′′,V \V ′′)] = 0

We can then write the expected value as

EQB̂
[det((Â+QB̂)U,V)

2]

=
∑

U ′⊆U,V ′⊆V,
|U ′|=|V ′|

EQB̂
[det((QB̂)U\U ′,V \V ′)2] det(ÂU ′,V ′)2

We define

fB̂(U, V, U
′, V ′) = EQB̂

[det((QB̂)U\U ′,V \V ′)2].

If U \ U ′ or V \ V ′ is not contained within the block B̂,

(QB̂)U\U ′,V \V ′ includes a zero row or column, so

fB̂(U, V, U
′, V) = 0

Otherwise,

fB̂(U, V, U
′, V ′) =

1(
l̂

|U | − |U ′|
)

by a symmetry argument (where l̂ is the dimension of the

block B̂).

The expected value of the sum of the squares of all of the

k × k minors is then

∑
U,V

s.t. |U |=|V |=k

⎛
⎜⎜⎝ ∑

U ′⊆U,V ′⊆V,
|U ′|=|V ′|

fB̂(U,U
′, V, V ′) det(ÂU ′,V ′)2

⎞
⎟⎟⎠

Switching the order of summation, we can write it as

∑
U ′,V ′

s.t. |U ′|=|V ′|

⎛
⎜⎜⎜⎜⎜⎝

∑
U,V

s.t. U ′⊆U,V ′⊆V,
|U |=|V |=k

fB̂(U,U
′, V, V ′)

⎞
⎟⎟⎟⎟⎟⎠ det(ÂU ′,V ′)2

But now we can note that

∑
U,V

s.t. U ′⊆U,V ′⊆V,
|U |=|V |=k

fB̂(U,U
′, V, V ′) =

(
ˆl −Or

B̂
(U ′)

k − |U ′|
)(

ˆl −Oc
B̂
(V ′)

k − |U ′|
)

(
l̂

k − |U ′|
)

where l̂ is the dimension of the block B̂, Or
B̂
(U ′) gives

the number of rows in U ′ contained in B̂ and Oc
B̂
(V ′) is

analogous with columns. This follows simply follows from

counting the number of choices of U and V for which

fB̂(U,U
′, V, V ′) is nonzero (precisely those U and V that

make U \ U ′ and V \ V ′ fully contained in the block B̂),

combined with the value of f when it is nonzero.

We define

g(l̂, k, k′, p, q) =

(
l̂ − p

k − k′

)(
l̂ − q

k − k′

)
(

l̂

k − k′

)
We may then write the expected sum of the squares of

the k × k minors as

∑
k′,p,q

g(l̂, k, k′, p, q)

⎛
⎜⎜⎜⎝

∑
U ′,V ′ s.t. |U ′|=|V ′|=k′,
Or

B̂
(U ′)=p,Oc

B̂
(V ′)=q

det(ÂU ′,V ′)2

⎞
⎟⎟⎟⎠

That is, we can compute the coefficients of our expected

characteristic polynomial as linear functions in the values

Ck′,p,q =

⎛
⎜⎜⎜⎝

∑
U ′,V ′ s.t. |U ′|=|V ′|=k′,
Or

B̂
(U ′)=p,Oc

B̂
(V ′)=q

det(ÂU ′,V ′)2

⎞
⎟⎟⎟⎠

It remains to be able to compute these values. Note that

without the constraints of Or
B̂

and Oc
B̂

, this would just be a

sum of squared minors of a particular size, which correspond

to the coefficients of the characteristic polynomial of ÂT Â.

279280280

When B̂ covers the entire matrix, they must simply be equal

to k′, so the expected characteristic polynomial can therefore

be computed using only the characteristic polynomial of

ÂT Â itself. That makes sense as that is a special case of

a finite free convolution from [5]. This does not work when

B̂ does not cover the whole matrix.
However, we can introduce a trivariate determinant poly-

nomial, extending the standard characteristic polynomial

P (λ, tr, tc)

=det(ˆAT ((I −D
ˆB

r) + trD
ˆB

r) ˆA((I −D
ˆB

c) + tcD
ˆB

c) + λI)

where DB̂
r is the diagonal matrix with ones in the rows

in B̂ and zeroes in the others, and DB̂
c the same for the

columns in B̂. The coefficient of this trivariate polynomial

on λ(n/2−k′)tprt
q
c now provides precisely the value Ck′,p,q

that we are looking for.
One way to see this is to note that that for fixed tr,

tc, it is det(ĀT Ā + λI), where Ā is Â with the rows in

B̂ multiplied by
√
tr and the columns in B multiplied by√

tc. The λ(n/2−k′) coefficient of that polynomial is the

sum of the squares of the k′ × k′ minors of Ā. The extra

multiplications by
√
tr and

√
tc multiply the contribution of

a minor with p rows and q columns overlapping the block

by by tpr and tqc . Thus each such minor has its contribution

overall scaled by λ(n/2−k′)tprt
q
c .

Furthermore, as there are only a constant number of

variables and the matrix is only constant degree in each,

we can simply evaluate the determinant of this symbolically

in polynomial time. This gives us polynomial time compu-

tation of the needed expected characteristic polynomials and

therefore, by Lemma II.4, the Ramanujan graphs.

ACKNOWLEDGEMENTS

The author thanks Jonathan Kelner, Daniel Spielman, and

Nikhil Srivastava for helpful discussions. This work was

supported by National Science Foundation award 1111109.

REFERENCES

[1] A. Marcus, D. A. Spielman, and N. Srivastava, “Interlacing
families i: Bipartite ramanujan graphs of all degrees,” in
Foundations of Computer Science (FOCS), 2013 IEEE 54th
Annual Symposium on, Oct 2013, pp. 529–537.

[2] A. W. Marcus, D. A. Spielman, and N. Srivastava, “Interlacing
families iv: Bipartite ramanujan graphs of all sizes,” in Foun-
dations of Computer Science (FOCS), 2015 IEEE 56th Annual
Symposium on, Oct 2015, pp. 1358–1377.

[3] C. Hall, D. Puder, and W. F. Sawin, “Ramanujan coverings of
graphs,” arXiv preprint arXiv:1506.02335, 2015.

[4] A. Marcus, D. A. Spielman, and N. Srivastava, “Interlacing
families ii: Mixed characteristic polynomials and the kadison-
singer problem,” arXiv preprint arXiv:1306.3969, 2013.

[5] ——, “Finite free convolutions of polynomials,” arXiv preprint
arXiv:1504.00350, 2015.

280281281

