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Abstract—We prove that any algorithm for learning
parities requires either a memory of quadratic size or
an exponential number of samples. This proves a recent
conjecture of Steinhardt, Valiant and Wager [15] and
shows that for some learning problems a large storage
space is crucial.

More formally, in the problem of parity learning, an
unknown string 𝑥 ∈ {0, 1}𝑛 was chosen uniformly at
random. A learner tries to learn 𝑥 from a stream of
samples (𝑎1, 𝑏1), (𝑎2, 𝑏2) . . ., where each 𝑎𝑡 is uniformly
distributed over {0, 1}𝑛 and 𝑏𝑡 is the inner product of 𝑎𝑡

and 𝑥, modulo 2. We show that any algorithm for parity
learning, that uses less than 𝑛2

25
bits of memory, requires

an exponential number of samples.
Previously, there was no non-trivial lower bound on the

number of samples needed, for any learning problem, even
if the allowed memory size is 𝑂(𝑛) (where 𝑛 is the space
needed to store one sample).

We also give an application of our result in the field
of bounded-storage cryptography. We show an encryption
scheme that requires a private key of length 𝑛, as well
as time complexity of 𝑛 per encryption/decryption of each
bit, and is provenly and unconditionally secure as long as
the attacker uses less than 𝑛2

25
memory bits and the scheme

is used at most an exponential number of times. Previous
works on bounded-storage cryptography assumed that the
memory size used by the attacker is at most linear in the
time needed for encryption/decryption.

I. INTRODUCTION

Parity learning can be solved in polynomial time, by
Gaussian elimination, using 𝑂(𝑛) samples and 𝑂(𝑛2)
memory bits. On the other hand, parity learning can be
solved by trying all the possibilities, using 𝑛 + 𝑜(𝑛)
memory bits and an exponential number of samples.

We prove that any algorithm for parity learning re-
quires either 𝑛2

25 memory bits, or an exponential number
of samples. Our result may be of interest from the points
of view of learning theory, computational complexity
and cryptography.

A. Learning Theory

The main message of this paper from the point
of view of learning theory is that for some learning
problems, access to a relatively large memory is crucial.
In other words, in some cases, learning is infeasible,
due to memory constraints. We show that there exist

concept classes that can be efficiently learnt from a
polynomial number of samples, if the learner has access
to a quadratic-size memory, but require an exponential
number of samples if the memory used by the learner is
of less than quadratic size. This gives a formally stated
and mathematically proved example for the intuitive
feeling that a “good” memory may be very helpful in
learning processes.

Many works studied the resources needed for learn-
ing, under certain information, communication or mem-
ory constraints (see in particular [14], [15] and the
many references given there). However, there was no
previous non-trivial lower bound on the number of
samples needed, for any learning problem, even when
the allowed memory size is bounded by the length of
one sample (where we don’t count the space taken by
the current sample that is being read).

The starting point of our work is the intriguing
recent work of Steinhardt, Valiant and Wager [15].
Steinhardt, Valiant and Wager asked whether there exist
concept classes that can be efficiently learnt from a
polynomial number of samples, but cannot be learnt
from a polynomial number of samples if the allowed
memory size is linear in the length of one sample.
They conjectured that the problem of parity learning
provides such a separation. Our main result proves that
conjecture.

Remark I.1. Conjecture 1.1 of [15] conjectures that for
any constant 𝜖 > 0, any algorithm for parity learning
requires either at least

(
1
4 − 𝜖

)
𝑛2 bits of memory, or

at least an exponential number of samples. Our main
result qualitatively proves this conjecture, but with a
constant of 1

20 , rather than 1
4 .

B. Computational Complexity

Time-space tradeoffs have been extensively studied in
the field of computational complexity, in many works
and various settings. Two brilliant lines of research were
particularly successful in establishing time-space lower
bounds for computation.

The first line of works [6], [1], [2], [7] gives explicit
examples for polynomial-time computable Boolean
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functions 𝑓 : {0, 1}𝑛 → {0, 1}, such that, any algorithm
for computing 𝑓 requires either at least 𝑛1−𝜖 memory
bits, where 𝜖 > 0 is an arbitrarily small constant, or
time complexity of at least Ω

(
𝑛
√
log 𝑛/ log log 𝑛

)
.

These bounds are proved for any branching program
that computes 𝑓 . Branching programs are the standard
and most general computational model for studying
time-space tradeoffs in the non-uniform setting (which is
the more general setting), and is also the computational
model that we use in the current work.

The second line of works [10], [11], [17], [18] (and
other works) studies time-space tradeoffs for 𝑆𝐴𝑇 (and
other 𝑁𝑃 problems), in the uniform setting, and proves
that any algorithm for 𝑆𝐴𝑇 requires either at least 𝑛1−𝜖

memory bits, or time complexity of at least 𝑛1+𝛿 (where
0 < 𝜖, 𝛿 < 1 are constants). For an excellent survey,
see [13].

Both lines of works obtain less than quadratic lower
bounds on the time needed for computation, under
memory constraints. Quadratic lower bounds on the
time needed for computation are not known, even if the
allowed memory-size is logarithmic. Comparing these
results to our work, one may ask what makes it possible
to prove exponential lower bounds on the time needed
for parity learning, under memory constraints, while the
known time-space lower bounds for computations are
significantly weaker? The main point to keep in mind is
that when studying time-space tradeoffs for computing
a function, one assumes that the input for the function
can always be accessed, and the space needed to store
the input doesn’t count as memory that is used by the
algorithm. Thus, the input is stored for free. In our
learning problem, it is assumed that after the learner saw
a sample, the learner cannot access that sample again,
unless the sample was stored in the learner’s memory.
The learner can always get a new sample that is “as
good as the old one”, but she cannot access the same
sample that she saw before (without storing it in the
memory).

Finally, let us note that by Barrington’s celebrated
result, any function in 𝑁𝐶 can be computed by a
polynomial-length branching program of width 5 [5].
Hence, proving super-polynomial lower bounds on the
time needed for computing a function, by a branching
program of width 5, would imply super-polynomial
lower bounds for formula size.

C. Cryptography

Assume that a group of (two or more) users share
a (random) secret key 𝑥 ∈ {0, 1}𝑛. Assume that user
Alice wants to send an encrypted bit 𝑀 ∈ {0, 1} to user
Bob. Let 𝑎 be a string of 𝑛 bits, uniformly distributed
over {0, 1}𝑛, and assume that both Alice and Bob know
𝑎 (we can think of 𝑎 as taken from a shared random

string and if a shared random string is not available
Alice can just choose 𝑎 randomly and send it to Bob).
Let 𝑏 be the inner product of 𝑎 and 𝑥, modulo 2. Thus, 𝑏
is known to both Alice and Bob and can be used as a one
time pad to encrypt/decrypt 𝑀 , that is, Alice encrypts
by computing 𝑀 ⊕ 𝑏 and Bob decrypts by computing
𝑀 = (𝑀 ⊕ 𝑏)⊕ 𝑏.

Assume that this protocol is used 𝑚+ 1 times, with
the same secret key 𝑥, where 𝑚 is less than exponential.
Denote by 𝑎𝑡, 𝑏𝑡 the string 𝑎 and bit 𝑏 used at time 𝑡.
Suppose that during all that time, an attacker could see
(𝑎1, 𝑏1), . . . , (𝑎𝑚, 𝑏𝑚), but the attacker has less than
𝑛2

25 bits of memory. Our main result shows that the
attacker cannot guess the secret key 𝑥, with better
than exponentially small probability. Therefore, using
the fact that inner product is a strong extractor (with
exponentially small error), even if the attacker sees
𝑎𝑚+1, the attacker cannot predict 𝑏𝑚+1, with better than
exponentially small advantage over a random guess.

Thus, if the attacker has less than 𝑛2

25 bits of memory,
the encryption remains secure as long as it is used less
than an exponential number of times.

Bounded-storage cryptography, first introduced by
Maurer [12] and extensively studied in many works,
studies cryptographical protocols that are secure under
the assumption that the memory used by the attacker
is limited (see for example [8], [4], [3], [16], [9],
and many other works). Previous works on bounded-
storage cryptography assumed the existence of a high-
rate source of randomness that streams random bits to
all parties. The main idea is that the attacker doesn’t
have sufficiently large memory to store all random bits,
and hence a shared secret key can be used to randomly
select (or extract) bits from the random source that the
attacker has very little information about.

In previous works, the number of random bits trans-
mitted during the encryption was assumed to be larger
than the memory-size of the attacker. Thus, the time
needed for encryption/decryption was at least linear in
the memory-size of the attacker. In contrast, the time
needed for encryption/decryption in our protocol is 𝑛,
while the encryption is secure against attackers with
memory of size 𝑛2

25 .

Remark I.2. If Alice and Bob want to transmit en-
crypted messages of length 𝑚, where 𝑚 ≥ 𝑛 (and the
attacker has 𝑂(𝑛2) bits of memory), our protocol has
no advantage over previous ones, as the time needed
for encryption/decription in our protocol is 𝑚𝑛. The
advantage of our protocol is in situations where the
users want to securely transmit many shorter messages.

D. Our Result

Parity Learning: In the problem of parity learning,
there is an unknown string 𝑥 ∈ {0, 1}𝑛 that was chosen
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uniformly at random. A learner tries to learn 𝑥 from
samples (𝑎, 𝑏), where 𝑎 ∈𝑅 {0, 1}𝑛 and 𝑏 = 𝑎 ⋅ 𝑥
(where 𝑎 ⋅ 𝑥 denotes inner product modulo 2). That
is, the learning algorithm is given a stream of sam-
ples, (𝑎1, 𝑏1), (𝑎2, 𝑏2) . . ., where each 𝑎𝑡 is uniformly
distributed over {0, 1}𝑛 and for every 𝑡, 𝑏𝑡 = 𝑎𝑡 ⋅ 𝑥.

Main Result:

Theorem 1. For any 𝑐 < 1
20 , there exists 𝛼 > 0,

such that the following holds: Let 𝑥 be uniformly
distributed over {0, 1}𝑛. Let 𝑚 ≤ 2𝛼𝑛. Let 𝐴 be an
algorithm that is given as input a stream of samples,
(𝑎1, 𝑏1), . . . , (𝑎𝑚, 𝑏𝑚), where each 𝑎𝑡 is uniformly dis-
tributed over {0, 1}𝑛 and for every 𝑡, 𝑏𝑡 = 𝑎𝑡 ⋅𝑥. Assume
that 𝐴 uses at most 𝑐𝑛2 memory bits and outputs a
string �̃� ∈ {0, 1}𝑛. Then, Pr[�̃� = 𝑥] ≤ 𝑂(2−𝛼𝑛).

Theorem 1 is restated, in a stronger1 and more
formal 2 form, as Theorem 2 in Section VII, and the
proof of Theorem 2 is given there.

II. PRELIMINARIES

For an integer 𝑛, denote [𝑛] = {1, . . . , 𝑛}. For 𝑎, 𝑥 ∈
{0, 1}𝑛, denote by 𝑎 ⋅ 𝑥 their inner product modulo 2.

For a function 𝑃 : Ω→ ℝ, we denote by ∣𝑃 ∣1 its ℓ1
norm. In particular, for two distributions, 𝑃,𝑄 : Ω →
[0, 1], we denote by ∣𝑃 −𝑄∣1 their ℓ1 distance.

For a random variable 𝑋 and an event 𝐸, we denote
by ℙ𝑋 the distribution of the random variables 𝑋 ,
and we denote by ℙ𝑋∣𝐸 the distribution of the random
variable 𝑋 conditioned on the event 𝐸.

Denote by 𝒰𝑛 the uniform distribution over {0, 1}𝑛.
For an affine subspace 𝑤 ⊆ {0, 1}𝑛, denote by 𝒰𝑤 the
uniform distribution over 𝑤.

For 𝑛 ∈ ℕ, denote by 𝒜(𝑛) the set of all affine
subspaces of {0, 1}𝑛.

III. PROOF OUTLINE

Computational Model: We model the learning algo-
rithm by a branching program. A branching program of
length 𝑚 and width 𝑑, for parity learning, is a directed
(multi) graph with vertices arranged in 𝑚 + 1 layers
containing at most 𝑑 vertices each. Intuitively, each layer
represents a time step and each vertex represents a mem-
ory state of the learner. In the first layer, that we think
of as layer 0, there is only one vertex, called the start
vertex. A vertex of outdegree 0 is called a leaf. Every
non-leaf vertex in the program has 2𝑛+1 outgoing edges,
labeled by elements (𝑎, 𝑏) ∈ {0, 1}𝑛 × {0, 1}, with ex-
actly one edge labeled by each such (𝑎, 𝑏), and all these

1Theorem 2 allows the algorithm to output an affine subspace of
dimension ≤ 3

5
𝑛, and bounds by 2−𝛼𝑛 the probability that 𝑥 belongs

to that affine subspace.
2Theorem 2 models the algorithm by a branching program, which

is more formal and clarifies that the theorem holds also in the (more
general) non-uniform setting.

edges going into vertices in the next layer. Intuitively,
these edges represent the action when reading (𝑎𝑡, 𝑏𝑡).
The samples (𝑎1, 𝑏1), . . . , (𝑎𝑚, 𝑏𝑚) ∈ {0, 1}𝑛 × {0, 1}
that are given as input, define a computation-path in
the branching program, by starting from the start vertex
and following at Step 𝑡 the edge labeled by (𝑎𝑡, 𝑏𝑡),
until reaching a leaf.

Each leaf 𝑣 in the program is labeled by an affine
subspace 𝑤(𝑣) ∈ 𝒜(𝑛), that we think of as the output
of the program on that leaf. The program outputs the
label 𝑤(𝑣) of the leaf 𝑣 reached by the computation-
path. We interpret the output of the program as a guess
that 𝑥 ∈ 𝑤(𝑣).

We also consider affine branching programs, where
every vertex 𝑣 (not necessarily a leaf) is labeled by an
affine subspace 𝑤(𝑣) ∈ 𝒜(𝑛), such that, the start vertex
is labeled by the space {0, 1}𝑛 ∈ 𝒜(𝑛), and for any
edge (𝑢, 𝑣), labeled by (𝑎, 𝑏), we have 𝑤(𝑢) ∩ {𝑥′ ∈
{0, 1}𝑛 : 𝑎⋅𝑥′ = 𝑏} ⊆ 𝑤(𝑣). These properties guarantee
that if the computation-path reaches a vertex 𝑣 then 𝑥 ∈
𝑤(𝑣). Thus, we can interpret 𝑤(𝑣) as an affine subspace
that is known to contain 𝑥.

An affine branching program is called accurate if for
(almost) all vertices 𝑣, the distribution of 𝑥, conditioned
on the event that the computation-path reached 𝑣, is
close to the uniform distribution over 𝑤(𝑣).

For exact definitions, see Section V.
The High-Level Approach: The proof has two parts.

We prove lower bounds for affine branching programs,
and we reduce general branching programs to affine
branching programs. The hard part is the reduction
from general branching programs to affine branching
programs. We note that this reduction is very wasteful
and expands the width of the branching program by
a factor of 2Θ(𝑛2). Nevertheless, since we allow our
branching program to be of width up to 2𝑂(𝑛2), this
is still affordable (as long as the exact constant in the
exponent is relatively small). We have to make sure
though that, when proving time-space lower bounds for
affine branching programs, the upper bounds that we
assume on the width of the affine branching programs
are larger than the expansion of the width caused by the
reduction.

Lower Bounds for Affine Branching Programs:
Assume that we have an affine branching program
of length at most 2𝑐𝑛 and width at most 2𝑐𝑛

2

, for
a small enough constant 𝑐. Fix 𝑘 = 4

5𝑛. We prove
that the probability that the computation-path reaches
some vertex that is labeled with an affine subspace of
dimension ≤ 𝑘 is at most 2−Ω(𝑛2).

Without loss of generality, we can assume that all
vertices in the program are labeled with affine subspaces
of dimension ≥ 𝑘. Other vertices can just be removed as
the computation-path must reach a vertex labeled with
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a subspace of dimension 𝑘, before it reaches a vertex
labeled with a subspace of dimension < 𝑘 (because the
dimension can decrease by at most 1 along an edge).

We define the “orthogonal” to an affine subspace as
the vector space orthogonal to the vector space that
defines that affine subspace (that is, the vector space
that the affine subspace is given as it’s translation).

Let 𝑣 be a vertex in the program, such that, 𝑤(𝑣) is
of dimension 𝑘. It’s enough to prove that the probability
that the computation-path reaches 𝑣 is at most 2−Ω(𝑛2).

To prove this, we consider the vector spaces “orthog-
onal” to the affine subspaces that label the vertices along
the computation-path, and for each of them we consider
its intersection with the vector space “orthogonal” to
𝑤(𝑣). We note that, in each step, the probability that the
dimension of the intersection increases is exponentially
small (as it requires that the 𝑎𝑡 currently being read
is contained in some small vector space). Since the
dimension of the intersection must increase a linear
number of times, in order for the computation-path to
reach 𝑣, a simple union bound shows that the probability
to reach 𝑣 is at most 2−Ω(𝑛2).

The full details are given in Lemma VII.1.
From Branching Programs to Affine Branching Pro-

grams: In Section VI, we show how to simulate a
branching program by an accurate affine branching
program. We do that layer after layer. Assume that we
are already done with layer 𝑗 − 1, so every vertex in
layer 𝑗 − 1 is already labeled by an affine subspace,
and the distribution of 𝑥, conditioned on the event that
the computation-path reached a vertex, is close to the
uniform distribution over the affine subspace that labels
that vertex.

Now, take a vertex 𝑣 in layer 𝑗, and consider the
distribution of 𝑥, conditioned on the event that the
computation-path reached the vertex 𝑣. By the property
that we already know on layer 𝑗−1, this distribution is
close to a convex combination of uniform distributions
over affine subspaces of {0, 1}𝑛.

One could split 𝑣 into a large number of vertices,
one vertex for each affine subspace in the combination.
However, this practically means that we would have a
vertex for any affine subspace. We would like to keep
the number of vertices somewhat smaller. This is done
by grouping many affine subspaces into one group. The
group will be labeled by an affine subspace that contains
all the affine subspaces in the group. Moreover, we
will have the property that for each such group, the
uniform distribution over the affine subspace that labels
the group is close to the relevant weighted average
of the uniform distributions over the affine subspaces
in the group. Thus, practically, we can replace all the
affine subspaces in the group by one affine subspace
that represents all of them.

Lemma IV.3 shows that it is possible to group all
the affine subspaces into a relatively small number of
groups.

We note that the entire inductive argument is delicate,
as we cannot afford deteriorating the error multiplica-
tively in each step and need to make sure that all errors
are additive.

IV. DISTRIBUTIONS OVER AFFINE SUBSPACES

In this section, we study convex combinations of
uniform distributions over affine subspaces of {0, 1}𝑛.
Lemma IV.3 is the only result, proved in this section,
that is used outside the section.

In the following lemmas, we have a random variable
𝑊 ∈ 𝒜(𝑛) and we consider the distribution E𝑊 [𝒰𝑊 ].
This distribution is a convex combination of uniform
distributions over affine subspaces of {0, 1}𝑛.

The first lemma identifies a condition that implies
that the distribution E𝑊 [𝒰𝑊 ] is close to the uniform
distribution over {0, 1}𝑛.

Lemma IV.1. Let 𝑊 ∈ 𝒜(𝑛) be a random variable.
Let 𝑟 ≥ 𝑛

2 . Assume that for every 𝑎 ∈ {0, 1}𝑛, such
that 𝑎 ∕= 0⃗, and every 𝑏 ∈ {0, 1},

Pr
𝑊
[∀𝑥 ∈𝑊 : 𝑎 ⋅ 𝑥 = 𝑏] ≤ 2−𝑟.

Then ∣∣∣E
𝑊
[𝒰𝑊 ]− 𝒰𝑛

∣∣∣
1
< 2−(𝑟−

𝑛
2 ).

Proof: The proof is relatively easy, using Fourier
analysis, and is omitted in this version of the paper, due
to lack of space.

The next lemma shows that always there exists an
affine subspace 𝑠 ⊆ {0, 1}𝑛, such that the distribution
E𝑊 ∣(𝑊⊆𝑠)[𝒰𝑊 ] is close to the uniform distribution over
𝑠, and the event 𝑊 ⊆ 𝑠 occurs with non-negligible
probability.

Lemma IV.2. Let 𝑊 ∈ 𝒜(𝑛) be a random variable.
Let 𝑟 ≥ 𝑛

2 . There exists an affine subspace 𝑠 ⊆ {0, 1}𝑛,
such that:

1)
Pr
𝑊
[𝑊 ⊆ 𝑠] ≥ 2−

∑𝑛−dim(𝑠)−1
𝑖=0 (𝑟− 𝑖

2 ).

2) ∣∣∣∣ E
𝑊 ∣(𝑊⊆𝑠)

[𝒰𝑊 ]− 𝒰𝑠
∣∣∣∣
1

< 2−(𝑟−
𝑛
2 ).

Proof: The proof is by induction on 𝑛. The base
case, 𝑛 = 0, is trivial, because in this case the only
element of 𝒜(𝑛) is {⃗0}, so the lemma follows with
𝑠 = {⃗0}.

Let 𝑛 ≥ 1. If for every 𝑎 ∈ {0, 1}𝑛, such that 𝑎 ∕= 0⃗,
and every 𝑏 ∈ {0, 1}, we have Pr𝑊 [∀𝑥 ∈ 𝑊 : 𝑎 ⋅ 𝑥 =
𝑏] ≤ 2−𝑟, the proof follows by Lemma IV.1, with 𝑠 =
{0, 1}𝑛. Otherwise, there exists 𝑎 ∕= 0⃗, and 𝑏 ∈ {0, 1},
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such that, Pr𝑊 [∀𝑥 ∈ 𝑊 : 𝑎 ⋅ 𝑥 = 𝑏] > 2−𝑟. Denote by
𝑢 the (𝑛− 1)-dimensional affine subspace

𝑢 = {𝑥 ∈ {0, 1}𝑛 : 𝑎 ⋅ 𝑥 = 𝑏}.
Thus,

Pr
𝑊
[𝑊 ⊆ 𝑢] > 2−𝑟.

Consider the random variable 𝑊 ′ = 𝑊 ∣ (𝑊 ⊆ 𝑢).
Since 𝑢 is an (𝑛 − 1)-dimensional affine subspace, we
can identify 𝑢 with {0, 1}𝑛−1 and think of 𝑊 ′ as a
random variable over 𝒜(𝑛−1). Hence, by the inductive
hypothesis (applied with 𝑛− 1 and 𝑟− 1

2 ), there exists
an affine subspace 𝑠 ⊆ 𝑢, such that,

1)
Pr
𝑊 ′
[𝑊 ′ ⊆ 𝑠] ≥ 2−

∑𝑛−dim(𝑠)−1
𝑖=1 (𝑟− 𝑖

2 ).

2) ∣∣∣∣ E
𝑊 ′∣(𝑊 ′⊆𝑠)

[𝒰𝑊 ′ ]− 𝒰𝑠
∣∣∣∣
1

< 2−(𝑟−
𝑛
2 ).

We will show that 𝑠 satisfies the two properties claimed
in the statement of the lemma.

For the first property, note that since 𝑠 ⊆ 𝑢,

Pr[𝑊 ⊆ 𝑠] = Pr[𝑊 ⊆ 𝑢] ⋅ Pr[𝑊 ⊆ 𝑠 ∣𝑊 ⊆ 𝑢]

= Pr[𝑊 ⊆ 𝑢] ⋅ Pr[𝑊 ′ ⊆ 𝑠]

> 2−𝑟 ⋅ 2−
∑𝑛−dim(𝑠)−1

𝑖=1 (𝑟− 𝑖
2 ) = 2−

∑𝑛−dim(𝑠)−1
𝑖=0 (𝑟− 𝑖

2 ).

For the second property, note that since 𝑠 ⊆ 𝑢,

E
𝑊 ∣(𝑊⊆𝑠)

[𝒰𝑊 ] = E
𝑊 ′∣(𝑊 ′⊆𝑠)

[𝒰𝑊 ′ ].

The next lemma is the main result of this section.

Lemma IV.3. Let 𝑊 ∈ 𝒜(𝑛) be a random variable.
Let 𝑟 ≥ 𝑛

2 . There exists a partial function 𝜎 : 𝒜(𝑛)→
𝒜(𝑛), such that:

1) Pr𝑊 [𝑊 ∕∈ domain(𝜎)] ≤ 2−2𝑛.
2) For every 𝑤 ∈ domain(𝜎), 𝑤 ⊆ 𝜎(𝑤).
3) For every 𝑠 ∈ image(𝜎),

∣∣∣∣ E
𝑊 ∣(𝜎(𝑊 )=𝑠)

[𝒰𝑊 ]− 𝒰𝑠
∣∣∣∣
1

< 2−(𝑟−
𝑛
2 ).

4) For every 𝑘 ∈ ℕ, there are at most

4𝑛 ⋅ 2
∑𝑛−𝑘−1

𝑖=0 (𝑟− 𝑖
2 )

elements 𝑠 ∈ image(𝜎), with dim(𝑠) ≥ 𝑘.

Proof: The proof is by repeatedly applying
Lemma IV.2. We start with the random variable 𝑊0 =
𝑊 , and apply Lemma IV.2 on 𝑊0. We obtain a subspace
𝑠0 (the subspace 𝑠 whose existence is guaranteed by
Lemma IV.2). For every 𝑤 ⊆ 𝑠0, we define 𝜎(𝑤) = 𝑠0.

We then define the random variable 𝑊1 = 𝑊0 ∣
(𝑊0 ∕⊆ 𝑠0), and apply Lemma IV.2 on 𝑊1. We obtain

a subspace 𝑠1 (the subspace 𝑠 whose existence is
guaranteed by Lemma IV.2). For every 𝑤 ⊆ 𝑠1 on which
𝜎 was still not defined, we define 𝜎(𝑤) = 𝑠1.

In the same way, in Step 𝑖, we define the random
variable 𝑊𝑖 = 𝑊𝑖−1 ∣ (𝑊𝑖−1 ∕⊆ 𝑠𝑖−1). Note that
𝑊𝑖 = 𝑊 ∣ (𝑊 ∕⊆ 𝑠0) ∧ . . . ∧ (𝑊 ∕⊆ 𝑠𝑖−1), that is,
𝑊𝑖 is the restriction of 𝑊 to the part of 𝒜(𝑛) where 𝜎
was still not defined. We apply Lemma IV.2 on 𝑊𝑖 and
obtain a subspace 𝑠𝑖 (the subspace 𝑠 whose existence
is guaranteed by Lemma IV.2). For every 𝑤 ⊆ 𝑠𝑖 on
which 𝜎 was still not defined, we define 𝜎(𝑤) = 𝑠𝑖.

We repeat this until Pr𝑊 [𝑊 ∕∈ domain(𝜎)] ≤ 2−2𝑛.
Note that for 𝑖′ < 𝑖, 𝑠𝑖′ ∕= 𝑠𝑖, because the support

of 𝑊𝑖 doesn’t contain any element 𝑤 ⊆ 𝑠𝑖′ . Hence, the
subspaces 𝑠0, 𝑠1, . . . are all different.

It remains to show that the four properties in the
statement of the lemma hold.

The first property is obvious because we continue to
define 𝜎 on more and more elements repeatedly, until
the first property holds.

The second property is obvious because we mapped
𝑤 to 𝑠𝑖 only if 𝑤 ⊆ 𝑠𝑖.

The third property holds by the second property
guaranteed by Lemma IV.2.

The fourth property holds because by the first prop-
erty guaranteed by Lemma IV.2, in each step where we
obtain a subspace 𝑠𝑖 of dimension at least 𝑘, we define
𝜎 on a fraction of at least 2−

∑𝑛−𝑘−1
𝑖=0 (𝑟− 𝑖

2 ) of the space
that still remains. Thus, after at most 4𝑛⋅2

∑𝑛−𝑘−1
𝑖=0 (𝑟− 𝑖

2 )

such steps we have Pr[𝑊 ∕∈ domain(𝜎)] ≤ 2−2𝑛, and
we stop. Thus, the number of elements 𝑠𝑖, of dimension
at least 𝑘, that we obtain in the process, is at most
4𝑛 ⋅ 2

∑𝑛−𝑘−1
𝑖=0 (𝑟− 𝑖

2 ).

V. BRANCHING PROGRAMS FOR PARITY LEARNING

Recall that in the problem of parity learning, there
is a string 𝑥 ∈ {0, 1}𝑛 that was chosen uniformly at
random. A learner tries to learn 𝑥 from a stream of sam-
ples, (𝑎1, 𝑏1), (𝑎2, 𝑏2) . . ., where each 𝑎𝑡 is uniformly
distributed over {0, 1}𝑛 and for every 𝑡, 𝑏𝑡 = 𝑎𝑡 ⋅ 𝑥.

A. General Branching Programs for Parity Learning

In the following definition, we model the learner by
a branching program. We allow the branching program
to output an affine subspace 𝑤 ∈ 𝒜(𝑛). We interpret the
output of the program as a guess that 𝑥 ∈ 𝑤. Obviously,
the output 𝑤 is more meaningful when dim(𝑤) is
relatively small.

Definition V.1. Branching Program for Parity Learn-
ing: A branching program of length 𝑚 and width 𝑑, for
parity learning, is a directed (multi) graph with vertices
arranged in 𝑚+1 layers containing at most 𝑑 vertices
each. In the first layer, that we think of as layer 0,
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there is only one vertex, called the start vertex. A vertex
of outdegree 0 is called a leaf. All vertices in the last
layer are leaves (but there may be additional leaves).
Every non-leaf vertex in the program has 2𝑛+1 outgoing
edges, labeled by elements (𝑎, 𝑏) ∈ {0, 1}𝑛 × {0, 1},
with exactly one edge labeled by each such (𝑎, 𝑏), and
all these edges going into vertices in the next layer. Each
leaf 𝑣 in the program is labeled by an affine subspace
𝑤(𝑣) ∈ 𝒜(𝑛), that we think of as the output of the
program on that leaf.

Computation-Path: The samples
(𝑎1, 𝑏1), . . . , (𝑎𝑚, 𝑏𝑚) ∈ {0, 1}𝑛 × {0, 1} that are
given as input, define a computation-path in the
branching program, by starting from the start vertex
and following at Step 𝑡 the edge labeled by (𝑎𝑡, 𝑏𝑡),
until reaching a leaf. The program outputs the label
𝑤(𝑣) of the leaf 𝑣 reached by the computation-path.

Success Probability: The success probability of the
program is the probability that 𝑥 ∈ 𝑤, where 𝑤 is
the affine subspace that the program outputs, and the
probability is over 𝑥, 𝑎1, . . . , 𝑎𝑚 (where 𝑥, 𝑎1, . . . , 𝑎𝑚
are uniformly distributed over {0, 1}𝑛, and for every 𝑡,
𝑏𝑡 = 𝑎𝑡 ⋅ 𝑥).

B. Affine Branching Programs for Parity Learning

Next, we define a special type of a branching program
for parity learning, that we call an affine branching pro-
gram for parity learning. In an affine branching program
for parity learning, every vertex 𝑣 (not necessarily a
leaf) is labeled by an affine subspace 𝑤(𝑣) ∈ 𝒜(𝑛).
We will have the property that if the computation-path
reaches 𝑣 then 𝑥 ∈ 𝑤(𝑣). Thus, we can interpret 𝑤(𝑣)
as an affine subspace that is known to contain 𝑥.

Definition V.2. Affine Branching Program for Parity
Learning: A branching program for parity learning is
affine if each vertex 𝑣 in the program is labeled by
an affine subspace 𝑤(𝑣) ∈ 𝒜(𝑛), and the following
properties hold:

1) Start vertex: The start vertex is labeled by the
space {0, 1}𝑛 ∈ 𝒜(𝑛).

2) Soundness: For an edge 𝑒 = (𝑢, 𝑣), labeled by
(𝑎, 𝑏), denote

𝑤(𝑒) = 𝑤(𝑢) ∩ {𝑥′ ∈ {0, 1}𝑛 : 𝑎 ⋅ 𝑥′ = 𝑏}.
Then,

𝑤(𝑒) ⊆ 𝑤(𝑣).

Given an affine branching program for parity learn-
ing, and samples (𝑎1, 𝑏1), . . . , (𝑎𝑚, 𝑏𝑚), such that, for
every 𝑡, 𝑏𝑡 = 𝑎𝑡 ⋅ 𝑥, it follows by induction that for
every vertex 𝑣 in the program, if the computation-path
reaches 𝑣 then 𝑥 ∈ 𝑤(𝑣). In particular, the output 𝑤
of the program always satisfies 𝑥 ∈ 𝑤, and thus the
success probability of an affine program is always 1.

C. Accurate Affine Branching Programs for Parity
Learning

For a vertex 𝑣 in a branching program for parity
learning, we denote by ℙ𝑥∣𝑣 the distribution of the
random variable 𝑥, conditioned on the event that the
vertex 𝑣 was reached by the computation-path.

Definition V.3. 𝜖-Accurate Affine Branching Pro-
gram for Parity Learning: An affine branching pro-
gram of length 𝑚 for parity learning is 𝜖-accurate if
all the leaves are in the last layer, and the follow-
ing additional property holds (where 𝑥, 𝑎1, . . . , 𝑎𝑚 are
uniformly distributed over {0, 1}𝑛, and for every 𝑡,
𝑏𝑡 = 𝑎𝑡 ⋅ 𝑥):

3) Accuracy: Let 0 ≤ 𝑡 ≤ 𝑚. Let 𝑉𝑡 be the vertex in
layer 𝑡, reached by the computation-path. Let 𝑦𝑡 be
a random variable uniformly distributed over the
subspace 𝑤(𝑉𝑡). Then,

∣ℙ𝑉𝑡,𝑥 − ℙ𝑉𝑡,𝑦𝑡
∣1 ≤ 𝜖,

or, equivalently,

E
𝑉𝑡

∣∣ℙ𝑥∣𝑉𝑡
− 𝒰𝑤(𝑉𝑡)

∣∣
1
≤ 𝜖.

VI. FROM BRANCHING PROGRAMS TO AFFINE

BRANCHING PROGRAMS

In this section, we show that any branching pro-
gram 𝐵 for parity learning can be simulated by an
affine branching program 𝑃 for parity learning. Roughly
speaking, each vertex of the simulated program 𝐵 will
be represented by a set of vertices of the simulating
program 𝑃 . Note that the width of 𝑃 will typically be
significantly larger than the width of 𝐵.

More precisely, a branching program 𝐵 for parity
learning is simulated by a branching program 𝑃 for
parity learning if there exists a mapping Γ from the
vertices of 𝑃 to the vertices of 𝐵, and the following
properties hold:

1) Preservation of structure: For every 𝑖, Γ maps
layer 𝑖 of 𝑃 to layer 𝑖 of 𝐵. Moreover, Γ maps
leaves to leaves and non-leaf vertices to non-leaf
vertices. Note that Γ is not necessarily one-to-one.

2) Preservation of functionality: For every edge
(𝑢, 𝑣), labeled by (𝑎, 𝑏), in 𝑃 , there is an edge
(Γ(𝑢),Γ(𝑣)), labeled by (𝑎, 𝑏), in 𝐵.

Lemma VI.1. Let 𝑘′ < 𝑛. Assume that there exists a
length 𝑚 and width 𝑑 branching program 𝐵 for parity
learning (of size 𝑛), such that: all leaves of 𝐵 are in the
last layer; the output of 𝐵 is always an affine subspace
of dimension ≤ 𝑘′; and the success probability of 𝐵
is 𝛽.

Let 𝑛
2 ≤ 𝑟 ≤ 𝑛. Let 𝜖 = 4𝑚 ⋅ 2−(𝑟−𝑛

2 ). Then, there
exists an 𝜖-accurate length 𝑚 affine branching program
𝑃 for parity learning (of size 𝑛), such that:
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1) For every 𝑘 < 𝑛, the number of vertices in 𝑃 , that
are labeled with an affine subspace of dimension
𝑘, is at most

4𝑛 ⋅ 2
∑𝑛−𝑘−1

𝑖=0 (𝑟− 𝑖
2 ) ⋅ 𝑑𝑚.

2) For every 𝑘, such that, 𝑘′ < 𝑘 < 𝑛, the output of
𝑃 is an affine subspace of dimension < 𝑘, with
probability of at least

𝛽 − 𝜖− 2−(𝑘−𝑘′).

Proof: For every 0 ≤ 𝑗 ≤ 𝑚, let 𝜖𝑗 = 4𝑗 ⋅2−(𝑟−𝑛
2 ).

We will use Lemma IV.3 to turn, inductively, the layers
of 𝐵, one by one, into layers of an 𝜖-accurate affine
branching program, 𝑃 . In Step 𝑗 of the induction, we
will turn layer 𝑗 of 𝐵 into layer 𝑗 of 𝑃 , and define the
label 𝑤(𝑣) ∈ 𝒜(𝑛) for every vertex 𝑣 in that layer of
𝑃 . Formally, we will construct, inductively, a sequence
of programs 𝐵,𝑃0, . . . , 𝑃𝑚 = 𝑃 , where each program
is of length 𝑚, and for every 𝑗, the program 𝑃𝑗 differs
from the previous program only in layer 𝑗 (and in the
edges going into layer 𝑗 and out of layer 𝑗). After Step 𝑗
of the induction, we will have a branching program 𝑃𝑗 ,
such that, layers 0 to 𝑗 of 𝑃𝑗 form an affine branching
program for parity learning. In addition, the following
inductive hypothesis will hold:

Inductive Hypothesis:: Let ℒ𝑗 be the set of vertices
in layer 𝑗 of 𝑃𝑗 . Let 𝑉𝑗 be the vertex in ℒ𝑗 , reached by
the computation-path of 𝑃𝑗 . Note that 𝑉𝑗 is a random
variable that depends on 𝑥, 𝑎1, . . . , 𝑎𝑗 (and recall that
𝑥, 𝑎1, . . . , 𝑎𝑚 are uniformly distributed over {0, 1}𝑛,
and for every 𝑡, 𝑏𝑡 = 𝑎𝑡 ⋅ 𝑥). The inductive hypothesis
is that there exists a random variable 𝑈𝑗 over ℒ𝑗 , such
that, if 𝑦𝑗 is a random variable uniformly distributed
over the subspace 𝑤(𝑈𝑗), then

∣∣ℙ𝑉𝑗 ,𝑥 − ℙ𝑈𝑗 ,𝑦𝑗

∣∣
1
≤ 𝜖𝑗

2 . (1)

The inductive hypothesis is equivalent to the accuracy
requirement (see Definition V.3) for layer 𝑗 of 𝑃𝑗 , up to
a small multiplicative constant in the accuracy, but we
need to assume it in this slightly different form, in order
to avoid deteriorating the accuracy by a multiplicative
factor in each step of the induction.

Base Case:: In the base case of the induction, 𝑗 = 0,
we define 𝑃0 by just labeling the start vertex of 𝐵 by
{0, 1}𝑛 ∈ 𝒜(𝑛). Thus, the start vertex property in the
definition of an affine branching program is satisfied.
The soundness property is trivially satisfied because the
restriction of 𝑃0 to layer 0 contains no edges. Since
we always start from the start vertex, the distribution
of the random variable 𝑥, conditioned on the event that
we reached the start vertex, is just 𝒰𝑛, and hence the
inductive hypothesis (Equation (1)) holds with 𝑈0 = 𝑉0.

Inductive Step:: Assume that we already turned lay-
ers 0 to 𝑗−1 of 𝐵 into layers 0 to 𝑗−1 of 𝑃 . That is, we
already defined the program 𝑃𝑗−1, and layers 0 to 𝑗−1
of 𝑃𝑗−1 satisfy the start vertex property, the soundness
property, and the inductive hypothesis (Equation (1)).
We will now show how to define 𝑃𝑗 from 𝑃𝑗−1, that is,
how to turn layer 𝑗 of 𝐵 into layer 𝑗 of 𝑃 .

Let 𝑈𝑗−1 ∈ ℒ𝑗−1 be the random variable that satisfies
the inductive hypothesis (Equation (1)) for layer 𝑗 − 1
of 𝑃𝑗−1. Let 𝑦𝑗−1 be a random variable uniformly dis-
tributed over the subspace 𝑤(𝑈𝑗−1). Let 𝑎 ∈𝑅 {0, 1}𝑛.
Let 𝑏 = 𝑎⋅𝑦𝑗−1. Let 𝐸 = (𝑈𝑗−1, 𝑉 ) be the edge labeled
by (𝑎, 𝑏) outgoing 𝑈𝑗−1 in 𝑃𝑗−1. Thus, 𝑉 is a vertex
in layer 𝑗 of 𝑃𝑗−1. Let 𝑊 = 𝑤(𝐸), where 𝑤(𝐸) is
defined as in the soundness property in Definition V.2.
That is,

𝑤(𝐸) = 𝑤(𝑈𝑗−1) ∩ {𝑥′ ∈ {0, 1}𝑛 : 𝑎 ⋅ 𝑥′ = 𝑏},
where (𝑎, 𝑏) is the label of 𝐸, and 𝑤(𝑈𝑗−1) is the label
of 𝑈𝑗−1 in 𝑃𝑗−1.

Let 𝑣 be a vertex in layer 𝑗 of 𝑃𝑗−1 (and note that 𝑣
is also a vertex in layer 𝑗 of 𝐵). Let

𝑊𝑣 =𝑊 ∣(𝑉 = 𝑣).

Let 𝜎𝑣 : 𝒜(𝑛) → 𝒜(𝑛) be the partial function whose
existence is guaranteed by Lemma IV.3, when applied
on the random variable 𝑊𝑣 . Extend 𝜎𝑣 : 𝒜(𝑛)→ 𝒜(𝑛)
so that it outputs the special value ∗ on every element
where it was previously undefined.

In the program 𝑃𝑗 , we will split the vertex 𝑣 into
∣image(𝜎𝑣)∣ vertices (where image(𝜎𝑣) already con-
tains the additional special value ∗). For every 𝑠 ∈
image(𝜎𝑣), we will have a vertex (𝑣, 𝑠). If 𝑠 ∕= ∗, we
label the vertex (𝑣, 𝑠) by the affine subspace 𝑠, and we
label the additional vertex (𝑣, ∗) by {0, 1}𝑛. For every
𝑠 ∈ image(𝜎𝑣), the edges going out of (𝑣, 𝑠) (in 𝑃𝑗) will
be the same as the edges going out of 𝑣 in 𝑃𝑗−1. That is,
for every edge (𝑣, 𝑣′) (from layer 𝑗 to layer 𝑗+1) in the
program 𝑃𝑗−1, and every 𝑠 ∈ image(𝜎𝑣), we will have
an edge ((𝑣, 𝑠), 𝑣′) with the same label, (from layer 𝑗
to layer 𝑗 + 1) in the program 𝑃𝑗 .

We will now define the edges going into the vertices
(𝑣, 𝑠) in the program 𝑃𝑗 . For every edge 𝑒 = (𝑢, 𝑣),
labeled by (𝑎, 𝑏), (from layer 𝑗 − 1 to layer 𝑗), in
the program 𝑃𝑗−1, consider the affine subspace 𝑤 =
𝑤(𝑒) = 𝑤(𝑢) ∩ {𝑥′ ∈ {0, 1}𝑛 : 𝑎 ⋅ 𝑥′ = 𝑏} (as in the
soundness property in Definition V.2), where 𝑤(𝑢) is
the label of 𝑢 in 𝑃𝑗−1. Let 𝑠 = 𝜎𝑣(𝑤).

In 𝑃𝑗 , we will have the edge (𝑢, (𝑣, 𝑠)) (labeled by
(𝑎, 𝑏)), from layer 𝑗 − 1 to layer 𝑗, that is, we connect
𝑢 to (𝑣, 𝑠). Note that the edge (𝑢, (𝑣, 𝑠)) satisfies
the soundness property in the definition of an affine
branching program: If 𝑠 ∕= ∗, the vertex (𝑣, 𝑠) is labeled
by 𝑠 = 𝜎𝑣(𝑤) and by Property 2 of Lemma IV.3,
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𝑤 ⊆ 𝜎𝑣(𝑤). If 𝑠 = ∗, the vertex (𝑣, 𝑠) is labeled by
{0, 1}𝑛 and hence the soundness property is trivially
satisfied.

Proof of the Inductive Hypothesis:: Next, we will
prove the inductive hypothesis (Equation (1)), for 𝑃𝑗 .
We will define the random variable 𝑈𝑗 ∈ ℒ𝑗 as follows:

As before, let 𝑈𝑗−1 ∈ ℒ𝑗−1 be the random variable
that satisfies the inductive hypothesis (Equation (1)) for
layer 𝑗 − 1 of 𝑃𝑗−1. Let 𝑦𝑗−1 be a random variable
uniformly distributed over the subspace 𝑤(𝑈𝑗−1). Let
𝑎 ∈𝑅 {0, 1}𝑛. Let 𝑏 = 𝑎 ⋅ 𝑦𝑗−1. Let 𝐸 = (𝑈𝑗−1, 𝑉 )
be the edge labeled by (𝑎, 𝑏) outgoing 𝑈𝑗−1 in 𝑃𝑗−1.
Thus, 𝑉 is a vertex in layer 𝑗 of 𝑃𝑗−1. As before, let
𝑊 = 𝑤(𝐸) = 𝑤(𝑈𝑗−1) ∩ {𝑥′ ∈ {0, 1}𝑛 : 𝑎 ⋅ 𝑥′ = 𝑏}.
As before, for a vertex 𝑣 in layer 𝑗 of 𝑃𝑗−1, let
𝜎𝑣 : 𝒜(𝑛) → 𝒜(𝑛) be the partial function whose
existence is guaranteed by Lemma IV.3, when applied
on the random variable 𝑊𝑣 = 𝑊 ∣(𝑉 = 𝑣), and extend
𝜎𝑣 : 𝒜(𝑛) → 𝒜(𝑛) so that it outputs the special value
∗ on every element where it was previously undefined.

We define 𝑈𝑗 = (𝑉, 𝜎𝑉 (𝑊 )) ∈ ℒ𝑗 . Let 𝑦𝑗 be a
random variable uniformly distributed over the subspace
𝑤(𝑈𝑗), and let 𝑉𝑗 be the vertex in ℒ𝑗 , reached by the
computation-path of 𝑃𝑗 . We need to prove that

∣∣ℙ𝑉𝑗 ,𝑥 − ℙ𝑈𝑗 ,𝑦𝑗

∣∣
1
≤ 2𝑗 ⋅ 2−(𝑟−𝑛

2 ). (2)

Let 𝑦′𝑗 be a random variable uniformly distributed
over the subspace 𝑊 . Equation (2) follows by the
following two equations and by the triangle inequality:

∣∣∣ℙ𝑈𝑗 ,𝑦′𝑗 − ℙ𝑈𝑗 ,𝑦𝑗

∣∣∣
1
≤ 2 ⋅ 2−(𝑟−𝑛

2 ). (3)

∣∣∣ℙ𝑉𝑗 ,𝑥 − ℙ𝑈𝑗 ,𝑦′𝑗

∣∣∣
1
≤ 2(𝑗 − 1) ⋅ 2−(𝑟−𝑛

2 ). (4)

Thus, it is sufficient to prove Equation (3) and Equa-
tion (4). We will start with Equation (3).

By Property 3 of Lemma IV.3, for every 𝑣 in layer 𝑗
of 𝑃𝑗−1, and every 𝑠 ∈ image(𝜎𝑣) ∖ {∗},

∣∣∣∣ E
𝑊 ∣(𝑉=𝑣),(𝜎𝑣(𝑊 )=𝑠)

[𝒰𝑊 ]− 𝒰𝑠
∣∣∣∣
1

< 2−(𝑟−
𝑛
2 ).

By the definitions of 𝑦′𝑗 and 𝑈𝑗 ,

E
𝑊 ∣(𝑉=𝑣),(𝜎𝑣(𝑊 )=𝑠)

[𝒰𝑊 ] = E
𝑊 ∣(𝑈𝑗=(𝑣,𝑠))

[𝒰𝑊 ]

= ℙ𝑦′𝑗 ∣(𝑈𝑗=(𝑣,𝑠)).

By the definition of 𝑦𝑗 ,

𝒰𝑠 = ℙ𝑦𝑗 ∣(𝑈𝑗=(𝑣,𝑠))

Hence∣∣∣ℙ𝑦′𝑗 ∣(𝑈𝑗=(𝑣,𝑠)) − ℙ𝑦𝑗 ∣(𝑈𝑗=(𝑣,𝑠))

∣∣∣
1
< 2−(𝑟−

𝑛
2 ).

Taking expectation over 𝑈𝑗 , and taking into account
that, by Property 1 of Lemma IV.3, for every 𝑣,
Pr(𝜎𝑣(𝑊 ) = ∗) ≤ 2−2𝑛, we obtain

∣∣∣ℙ𝑈𝑗 ,𝑦′𝑗 − ℙ𝑈𝑗 ,𝑦𝑗

∣∣∣
1
= E

𝑈𝑗

∣∣∣ℙ𝑦′𝑗 ∣𝑈𝑗
− ℙ𝑦𝑗 ∣𝑈𝑗

∣∣∣
1

< 2−(𝑟−
𝑛
2 ) + 2−2𝑛 ⋅ 2,

which proves Equation (3).
We will now prove Equation (4). Let 𝒯 be the fol-

lowing probabilistic transformation from ℒ𝑗−1×{0, 1}𝑛
to ℒ𝑗 × {0, 1}𝑛. Given (𝑢, 𝑧) ∈ ℒ𝑗−1 × {0, 1}𝑛, the
transformation 𝒯 chooses 𝑎 ∈𝑅 {0, 1}𝑛 and 𝑏 = 𝑎 ⋅ 𝑧,
and outputs (𝑉, 𝑧), where 𝑉 ∈ ℒ𝑗 is the vertex obtained
by following the edge labeled by (𝑎, 𝑏) outgoing 𝑢 in 𝑃𝑗 .

By the definition of the computation-path, 𝒯 (𝑉𝑗−1, 𝑥)
has the same distribution as (𝑉𝑗 , 𝑥). By the definition
of 𝑈𝑗 , 𝑦𝑗 , 𝑦

′
𝑗 , we have that 𝒯 (𝑈𝑗−1, 𝑦𝑗−1) has the same

distribution as (𝑈𝑗 , 𝑦
′
𝑗). Hence, by the triangle inequal-

ity and the inductive hypothesis,
∣∣∣ℙ𝑉𝑗 ,𝑥 − ℙ𝑈𝑗 ,𝑦′𝑗

∣∣∣
1
=

∣∣ℙ𝒯 (𝑉𝑗−1,𝑥) − ℙ𝒯 (𝑈𝑗−1,𝑦𝑗−1)

∣∣
1

≤ ∣∣ℙ𝑉𝑗−1,𝑥 − ℙ𝑈𝑗−1,𝑦𝑗−1

∣∣
1
≤ 2(𝑗 − 1) ⋅ 2−(𝑟−𝑛

2 ),

which gives Equation (4).
Since, by induction, layers 0 to 𝑗−1 of 𝑃𝑗−1 form an

affine branching program for parity learning, and since
we already saw that all the edges between layer 𝑗 − 1
and layer 𝑗 of 𝑃𝑗 satisfy the soundness property in the
definition of an affine branching program, we have that
layers 0 to 𝑗 of 𝑃𝑗 form an affine branching program
for parity learning.
𝑃 is 𝜖-Accurate:: We will now prove that the final

branching program 𝑃 = 𝑃𝑚, that we obtained, satisfies
the requirements of the lemma. We already know that
𝑃 is an affine branching program for parity learning.

We will start by proving that 𝑃 is 𝜖-accurate. Let 0 ≤
𝑡 ≤ 𝑚. Let 𝑉𝑡 be the vertex in layer 𝑡 of 𝑃 , reached by
the computation-path of 𝑃 . Let 𝑧𝑡 be a random variable
uniformly distributed over the subspace 𝑤(𝑉𝑡), We need
to prove that,

∣ℙ𝑉𝑡,𝑥 − ℙ𝑉𝑡,𝑧𝑡 ∣1 ≤ 𝜖. (5)

Recall that by the inductive hypothesis (Equation (1)),
there exists a random variable 𝑈𝑡 over layer 𝑡 of 𝑃 , such
that, if 𝑦𝑡 is a random variable uniformly distributed
over the subspace 𝑤(𝑈𝑡), then

∣ℙ𝑉𝑡,𝑥 − ℙ𝑈𝑡,𝑦𝑡
∣1 ≤ 𝜖

2 , (6)

and this also implies

∣ℙ𝑉𝑡
− ℙ𝑈𝑡

∣1 ≤ 𝜖
2 .
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By the last inequality and since for every 𝑣 in layer 𝑡
of 𝑃 , it holds that ℙ𝑧𝑡∣(𝑉𝑡=𝑣) = ℙ𝑦𝑡∣(𝑈𝑡=𝑣) (since they
are both uniformly distributed over 𝑤(𝑣)), we have

∣ℙ𝑉𝑡,𝑧𝑡 − ℙ𝑈𝑡,𝑦𝑡
∣1 = ∣ℙ𝑉𝑡

− ℙ𝑈𝑡
∣1 ≤ 𝜖

2 . (7)

Equation (5) follows by Equation (6), Equation (7) and
the triangle inequality.
𝑃 Satisfies the Additional Properties:: We will now

prove that 𝑃 satisfies the two additional properties
claimed in the statement of the lemma. The first prop-
erty holds since Property 4 of Lemma IV.3 ensures that
for every vertex in layers 1 to 𝑚 of the branching
program 𝐵, we obtain at most 4𝑛 ⋅ 2

∑𝑛−𝑘−1
𝑖=0 (𝑟− 𝑖

2 )

vertices in the branching program 𝑃 that are labeled
with affine subspaces of dimension 𝑘.

It remains to prove the second property. Let 𝑉𝑚 =
(𝑉, 𝑆) be the vertex in layer 𝑚 of 𝑃 , reached by
the computation-path of 𝑃 . Note that 𝑉𝑚 is a random
variable that depends on 𝑥, 𝑎1, . . . , 𝑎𝑚 (and recall that
𝑥, 𝑎1, . . . , 𝑎𝑚 are uniformly distributed over {0, 1}𝑛,
and for every 𝑡, 𝑏𝑡 = 𝑎𝑡 ⋅ 𝑥).

Note that 𝑉 is the vertex in layer 𝑚 of 𝐵, reached by
the computation-path of 𝐵 (on the same 𝑥, 𝑎1, . . . , 𝑎𝑚).
This is true since 𝑃 simulates 𝐵. More precisely, by the
construction, if on 𝑥, 𝑎1, . . . , 𝑎𝑚, the program 𝑃 reaches
(𝑉, 𝑆), then, on the same 𝑥, 𝑎1, . . . , 𝑎𝑚, the program 𝐵
reaches 𝑉 .

Since the success probability of 𝐵 is 𝛽,

Pr[𝑥 ∈ 𝑤(𝑉 )] = 𝛽,

where 𝑤(𝑉 ) is the label of 𝑉 in 𝐵. Let 𝑦𝑚 be a random
variable uniformly distributed over the subspace 𝑤(𝑉𝑚),
where 𝑤(𝑉𝑚) is the label of 𝑉𝑚 in 𝑃 . Since 𝑃 is 𝜖-
accurate,

∣ℙ𝑉,𝑥 − ℙ𝑉,𝑦𝑚
∣1 ≤ ∣ℙ𝑉,𝑆,𝑥 − ℙ𝑉,𝑆,𝑦𝑚

∣1
= ∣ℙ𝑉𝑚,𝑥 − ℙ𝑉𝑚,𝑦𝑚

∣1 ≤ 𝜖.

Thus,

Pr[𝑦𝑚 ∈ 𝑤(𝑉 )] ≥ Pr[𝑥 ∈ 𝑤(𝑉 )]− 𝜖 = 𝛽 − 𝜖.

Let 𝑘 > 𝑘′. Recall that 𝑤(𝑉 ) is of dimension ≤ 𝑘′.
Thus, if 𝑤(𝑉𝑚) is of dimension ≥ 𝑘, the (conditional)
probability that 𝑦𝑚 ∈ 𝑤(𝑉 ) is at most 2𝑘

′−𝑘. Thus,

𝛽−𝜖 ≤ Pr[𝑦𝑚 ∈ 𝑤(𝑉 )] ≤ Pr[dim(𝑤(𝑉𝑚)) < 𝑘]+2𝑘
′−𝑘.

That is,

Pr[dim(𝑤(𝑉𝑚)) < 𝑘] ≥ 𝛽 − 𝜖− 2−(𝑘−𝑘′).

VII. TIME-SPACE LOWER BOUNDS FOR PARITY

LEARNING

In this section, we will use Lemma VI.1 to prove
Theorem 2, our main result. Recall that Theorem 2 is
stronger than Theorem 1, and hence Theorem 1 follows
as well. We start by a lemma that will be used, in the
proof of Theorem 2, to obtain time-space lower bounds
for affine branching programs.

Lemma VII.1. Let 𝑘 < 𝑛. Let 𝑃 be a length 𝑚 affine
branching program for parity learning (of size 𝑛), such
that, for every vertex 𝑢 of 𝑃 , dim(𝑤(𝑢)) ≥ 𝑘. Let 𝑣
be a vertex of 𝑃 , such that, dim(𝑤(𝑣)) = 𝑘. Then, the
probability that the computation-path of 𝑃 reaches 𝑣 is
at most

𝑚𝑛−𝑘 ⋅ 2
∑𝑛−𝑘−1

𝑗=0 (𝑛−2𝑘−𝑗).

Proof: The proof is omitted in this version of the
paper, due to lack of space. An outline of the proof was
given in Section III.

Theorem 2. For any 𝑐 < 1
20 , there exists 𝛼 > 0, such

that the following holds: Let 𝐵 be a branching program
of length at most 2𝛼𝑛 and width at most 2𝑐𝑛

2

for parity
learning (of size 𝑛), such that, the output of 𝐵 is always
an affine subspace of dimension ≤ 3

5𝑛. Assume for
simplicity and without loss of generality that all leaves
of 𝐵 are in the last layer. Then, the success probability
of 𝐵 (that is, the probability that 𝑥 is contained in the
subspace that 𝐵 outputs) is at most 𝑂(2−𝛼𝑛).

Proof: Let 0 < 𝛼 < 1
5 be a sufficiently small con-

stant (to be determined later on). Let 𝐵 be a branching
program of length 𝑚 = 2𝛼𝑛 and width 𝑑 = 2𝑐𝑛

2

for
parity learning (of size 𝑛), such that, the output of 𝐵 is
always an affine subspace of dimension ≤ 3

5𝑛. Assume
for simplicity and without loss of generality that all
leaves of 𝐵 are in the last layer. Denote by 𝛽 the success
probability of 𝐵.

Let 𝑟 =
(
1
2 + 2𝛼

) ⋅ 𝑛. Let 𝑘 = 4
5𝑛. By Lemma VI.1,

there exists a length 𝑚 affine branching program 𝑃 for
parity learning (of size 𝑛), such that:

1) The number of vertices in 𝑃 , that are labeled with
an affine subspace of dimension 𝑘, is at most

4𝑛 ⋅ 2
∑𝑛−𝑘−1

𝑖=0 (𝑟− 𝑖
2 ) ⋅ 𝑑𝑚.

2) The output of 𝑃 is an affine subspace of dimension
≤ 𝑘, with probability of at least

𝛽 − 4 ⋅ 2−𝛼𝑛 − 2−
1
5𝑛 ≥ 𝛽 − 5 ⋅ 2−𝛼𝑛.

Assume without loss of generality that every vertex
𝑢 of 𝑃 , such that dim(𝑤(𝑢)) = 𝑘, is a leaf. (Otherwise,
we can just redefine 𝑢 to be a leaf by removing all the
edges going out of it). Assume without loss of generality
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that for every vertex 𝑢 of 𝑃 , dim(𝑤(𝑢)) ≥ 𝑘. (Other-
wise, we can just remove 𝑢 as it is unreachable from
the start vertex, since we defined all vertices labeled by
subspaces of dimension 𝑘 to be leaves and since by the
soundness property in Definition V.2, the dimensions
along the computation-path can only decrease by 1 in
each step).

By Lemma VII.1, and by substituting the values of
𝑚, 𝑑, 𝑘, 𝑟, the probability that the computation-path of
𝑃 reaches some vertex that is labeled with an affine
subspace of dimension 𝑘 is at most

(
4𝑛 ⋅ 2

∑𝑛−𝑘−1
𝑖=0 (𝑟− 𝑖

2 ) ⋅ 𝑑𝑚
)

⋅
(
𝑚𝑛−𝑘 ⋅ 2

∑𝑛−𝑘−1
𝑖=0 (𝑛−2𝑘−𝑖)

)

= 4𝑛𝑚 ⋅ 2𝑐𝑛2 ⋅
(
2
∑𝑛−𝑘−1

𝑖=0 ( 1
2𝑛+2𝛼𝑛− 𝑖

2 )
)

⋅
(
2𝛼𝑛(𝑛−𝑘) ⋅ 2

∑𝑛−𝑘−1
𝑖=0 (− 3

5𝑛−𝑖)
)

= 4𝑛𝑚 ⋅ 2𝑐𝑛2 ⋅ 2(𝑛−𝑘)(3𝛼𝑛− 1
10𝑛) ⋅

(
2
∑𝑛−𝑘−1

𝑖=0 (− 3
2 𝑖)

)

= 4𝑛𝑚 ⋅ 2𝑐𝑛2 ⋅ 2(𝑛−𝑘)(3𝛼𝑛− 1
10𝑛) ⋅ 2− 3

4 (𝑛−𝑘)⋅(𝑛−𝑘−1)

= 4𝑛𝑚 ⋅ 2𝑐𝑛2 ⋅ 2 1
5𝑛(3𝛼𝑛− 1

10𝑛− 3
20𝑛+

3
4 )

= 4𝑛𝑚 ⋅ 2𝑛2(𝑐+ 3
5𝛼− 1

20+
3

20𝑛 ).

Thus, if 𝛼 < 5
3

(
1
20 − 𝑐

)
, this probability is at most

2−Ω(𝑛2), and hence,

𝛽 − 5 ⋅ 2−𝛼𝑛 ≤ 2−Ω(𝑛2).

That is,
𝛽 ≤ 𝑂(2−𝛼𝑛).
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