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Abstract—We prove that there exists a constant ε > 0 such
that, assuming the Exponential Time Hypothesis for PPAD,
computing an ε-approximate Nash equilibrium in a two-player
n×n game requires time nlog1−o(1) n. This matches (up to the
o (1) term) the algorithm of Lipton, Markakis, and Mehta [54].

Our proof relies on a variety of techniques from the study of
probabilistically checkable proofs (PCP); this is the first time
that such ideas are used for a reduction between problems
inside PPAD.

En route, we also prove new hardness results for computing
Nash equilibria in games with many players. In particular, we
show that computing an ε-approximate Nash equilibrium in
a game with n players requires 2Ω(n) oracle queries to the
payoff tensors. This resolves an open problem posed by Hart
and Nisan [43], Babichenko [13], and Chen et al. [28]. In fact,
our results for n-player games are stronger: they hold with
respect to the (ε, δ)-WeakNash relaxation recently introduced
by Babichenko et al. [15].

Keywords-Computational complexity

I. INTRODUCTION

For the past decade, the central open problem in equilib-

rium computation has been whether two-player Nash equi-

librium admits a PTAS. We had good reasons to be hopeful:

there was a series of improved approximation ratios [51],

[34], [33], [23], [67] and several approximation schemes for

special cases [48], [35], [3], [17]. Yet most interesting are

two inefficient algorithms for two-player Nash:

• the classic Lemke-Howson algorithm [53] finds an

exact Nash equilibrium in exponential time; and

• a simple algorithm by Lipton, Markakis, and Mehta

[54] finds an ε-Approximate Nash Equilibrium in time

nO(logn).

Although the Lemke-Howson algorithm takes exponential

time, it has a special structure which places the problem in-

side the complexity class PPAD [57]; i.e. it has a polynomial

time reduction to the canonical problem ENDOFALINE1:

Definition I.1 (ENDOFALINE [32]). Given two circuits S
and P , with m input bits and m output bits each, such that

P (0m) = 0m �= S (0m), find an input x ∈ {0, 1}m such

that P (S (x)) �= x or S (P (x)) �= x �= 0m.

Proving hardness for problems in PPAD is notoriously

challenging because they are total, i.e. they always have a

1In the literature the problem has been called ENDOFTHELINE; we
believe that the name ENDOFALINE is a more accurate description.

solution, so the standard techniques from NP-hardness do

not apply. By now, however, we know that exponential and

polynomial approximations for two-player Nash are PPAD-

complete [32], [29], and so is ε-approximation for games

with n players [62].

However, ε-approximation for two-player Nash is unlikely

to have the same fate: otherwise, the quasi-polynomial algo-

rithm of [54] would refute the Exponential Time Hypothesis

for PPAD:

Hypothesis 1 (ETH for PPAD [15]). Solving ENDOFALINE

requires time 2Ω̃(n).2

Thus the strongest hardness result we can hope to prove

(given our current understanding of complexity3) is a quasi-

polynomial hardness that sits inside PPAD:

Theorem I.2 (Main Theorem). There exists a constant
ε > 0 such that, assuming ETH for PPAD, finding an ε-
Approximate Nash Equilibrium in a two-player n×n game
requires time T (n) = nlog1−o(1) n.

A. Techniques

Given an ENDOFALINE instance of size n, we construct a

two-player N ×N game for N = 2n
1/2+o(1)

whose approxi-

mate equilibria correspond to solutions to the ENDOFALINE

instance. Thus, assuming the “ETH for PPAD”, finding an

approximate equilibrium requires time 2n = N log1−o(1) N .

The main steps of the final construction are: (i) reducing

ENDOFALINE to a new discrete problem which we call

LOCALENDOFALINE; (ii) reducing LOCALENDOFALINE

to a problem of finding an approximate Brouwer fixed

point; (iii) reducing from Brouwer fixed point to finding

an approximate Nash equilibrium in a multiplayer game

over n1/2+o(1) players with 2n
1/2+o(1)

actions each; and (iv)

reducing to the two-player game.

The main novelty in the reduction is the use of techniques

such as error correcting codes and probabilistically check-

able proofs (PCPs) inside PPAD. In particular, the way we

use PCPs in our proof is very unusual.

2As usual, n is the size of the description of the instance, i.e. the size
of the circuits S and P .

3Given our current understanding of complexity, refuting ETH for
PPAD seems unlikely: there are matching black-box lower bounds [45],
[19]. Recall that the NP-analogue ETH [47] is widely used (e.g. [49], [55],
[1], [25], [30]), often in stronger variants such as SETH [46], [26] and
NSETH [27].
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Constructing the first gap: showing hardness of ε-
SUCCINCTBROUWER2

The first step in all known PPAD-hardness results for (ap-

proximate) Nash equilibrium is reducing ENDOFALINE to

the problem of finding an (approximate) Brouwer fixed point

of a continuous, Lipschitz function f : [0, 1]
n → [0, 1]

n
. Let

ε > 0 be an arbitrarily small constant. Previously, the state

of the art for computational hardness of approximation of

Brouwer fixed points was:

Theorem I.3 ([62], informal). It is PPAD-hard to find an
x ∈ [0, 1]

n such that ‖f (x)− x‖∞ ≤ ε.

Here and for the rest of the paper, all distances are relative;

in particular, for x ∈ [0, 1]
n

and p < q, we have ‖x‖p ≤
‖x‖q .

Theorem I.3 implied that it is hard to find an x such that

f (x) is approximately equal to x on every coordinate. The

first step in our proof is to strengthen this result to obtain

hardness of approximation with respect to 2-norm:

Theorem I.4 (Informal). It is PPAD-hard to find an x ∈
[0, 1]

n such that ‖f (x)− x‖2 ≤ ε.

Now, even finding an x such that f (x) is approximately

equal to x on most of the coordinates is already PPAD-hard.

Theorem I.3 was obtained by adapting a construction due

to Hirsch, Papadimitriou, and Vavasis [45]. The main idea

is to partition the [0, 1]
n

into 2n subcube, and consider

the grid formed by the subcube-centers; then embed a

path (in fact, many paths and cycles when reducing from

ENDOFALINE) along an arbitrary sequence of neighboring

grid-points/subcube-centers. The function is carefully de-

fined along the embedded path, guaranteeing both Lipschitz

continuity and that approximate endpoints occur only near

subcube-centers corresponding to ends of paths.

Here we observe that if we want a larger displacement

(in particular, constant relative 2-norm) we actually want

the consecutive vertices on the path to be as far as possible

from each other. We thus replace the neighboring grid-points

with their encoding by an error correcting code.

The first obstacle to using PCP-like techniques for prob-

lems in PPAD is their totality (i.e. a solution always exists).

For NP-hard problems, the PCP verifier expects the proof

to be encoded in some error correcting code. If the proof

is far from any codeword, the verifier detects that (with

high probability), and immediately rejects. For problems in

PPAD (more generally, in TFNP) this is always tricky

because it is not clear what does it mean “to reject”. Hirsch

et al.’s construction has the following useful property: for

the vast majority of x’s (in particular, all x’s far from the

embedding of the paths) the displacement f (x) − x is the

same default displacement. Thus, when an x is too far from

any codeword to faithfully decode it, we can simply apply

the default displacement.

We note that Theorem I.4 is already significant enough to

obtain new results for many-player games (see discussion in

Subsection I-B). Furthermore, its proof is relatively simple,

and in particular “PCP-free”. (See full version for details.)

The main challenge: locality.

Our ultimate goal is to construct a two-player game that

simulates the Brouwer function from Theorem I.4. This

is done via an imitation gadget: Alice’s mixed strategy

induces a point x(A) ∈ [0, 1]
n

; Bob’s strategy induces

x(B) ∈ [0, 1]
n

; Alice wants to minimize
∥∥x(A) − x(B)

∥∥
2
,

whereas Bob wants to minimize
∥∥f (

x(A)
)− x(B)

∥∥
2
. Alice

and Bob are both satisfied at a fixed point, where x(A) =
x(B) = f

(
x(A)

)
.

The main obstacle is that we want to incentivize Bob to

minimize
∥∥f (

x(A)
)− x(B)

∥∥
2

via local constraints (payoffs

- each depends on one pure strategy), while f
(
x(A)

)
has a

global dependency on Alice’s entire mixed strategy.

Our goal is thus to construct a hard Brouwer function that

can be locally computed. How local does the computation

need to be? In a game of size 2
√
n×2

√
n, each strategy can

faithfully store information about
√
n bits. Specifically, our

construction will be n1/2+o(1)-local.

We haven’t yet defined exactly what it means for our

construction to be “n1/2+o(1)-local”; the exact formulation

is quite cumbersome as the query access needs to be partly

adaptive, robust to noise, etc. Eventually we formalize the

“locality” of our Brouwer function via a statement about

multiplayer games. On a high level, however, our goal is

to show that for any j ∈ {1, . . . , n}, the j-th output fj (x)
can be approximately computed, with high probability, by

accessing x at only n1/2+o(1) coordinates.

This is a good place to note that achieving any sense of

“local computation” in our setting is surprising, even if we

consider just the error correcting encoding for our Brouwer

function: in order to maintain constant relative distance, an

average bit of the output must depend on a constant fraction

of the input bits!

LOCALENDOFALINE

In order to introduce locality, we go back to the ENDOFA-

LINE problem. “Wishful thinking”: imagine that we could

replace the arbitrary predecessor and successor circuits in

ENDOFALINE with NC0 (constant depth and constant fan-

in) circuits SLOCAL, P LOCAL : {0, 1}n → {0, 1}n, so that each

output bit only depends on a constant number of input bits.

Imagine further that we had the guarantee that for each

input, the outputs of SLOCAL, P LOCAL differ from the input

on just a constant number of bits. Additionally, it would be

really nice if we had a succinct pointer that immediately told

us which bits are about to be replaced. (We later call this

succinct pointer the counter, because it also cycles through

its possible values in a fixed order.)
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Suppose all our wishes came true, and furthermore the

hard Brouwer function from Theorem I.4 used a linear error

correcting code. Then, we could use the encoding of the

counter, henceforth C (u), to read only the bits that are about

to be replaced, and the inputs that determine the new values

of those bits. Thus, using only local access to a tiny fraction

of the bits (|C (u)| + O (1)), we can construct a difference

vector u−SLOCAL (u) (which is 0 almost everywhere). As we

discussed above, the encodings E (u) , E (SLOCAL (u)) must

differ on a constant fraction of the bits - but because the code

is linear, we can also locally construct the difference vec-

tor E (u) − E (SLOCAL (u)) = E (u− (SLOCAL (u))). Given

E (u)− E (SLOCAL (u)), we can locally compute any bit of

E (SLOCAL (u)) by accessing only the corresponding bit of

E (u).
Back to reality: unfortunately we do not know of a

reduction to such a restricted variant of ENDOFALINE.

Surprisingly, we can almost do that. The problem LO-

CALENDOFALINE (formally defined in the full version)

satisfies all the guarantees defined above, is linear-time

reducible from ENDOFALINE, but has one caveat: it is only

defined on a strict subset V LOCAL of the discrete hypercube

(V LOCAL � {0, 1}n). Verifying that a vertex belongs to V
is quite easy - it can be done in AC0. Let us take a brief

break to acknowledge this new insight about the canonical

problem of PPAD:

Theorem I.5. The predecessor and successor circuits of
ENDOFALINE are, wlog, AC0 circuits.

The class AC0 is quite restricted, but the outputs of its

circuits are not local functions of the inputs. Now, we

want to represent u in a way that will make it possible

to locally determine whether u ∈ V LOCAL or not. To this

end we augment the linear error correcting encoding E (u)
with a probabilistically checkable proof (PCP) π (u) of the

statement (u ∈ V LOCAL).

Our holographic proof system

Some authors distinguish between PCPs and holographic

proofs4: a PCP verifier has unrestricted access to the in-

stance, and queries the proof locally; whereas the holo-

graphic proof verifier has restricted, local access to both the

proof and (an error correcting encoding of) the instance. In

this sense, what we actually want is a holographic proof.

We construct a holographic proof system with some very

unusual properties. We are able to achieve them thanks to

our modest locality desideratum: n1/2+o(1), as opposed to

the typical polylog (n) or O (1). We highlight here a few of

those properties; full version for details.

• (Local proof construction) The most surprising prop-

erty of our holographic proof system is that the proof

4In a nutshell, PCPs or holographic proofs are proofs that can be verified
“locally” (with high probability) by reading only a small (random) portion
of the proof; see e.g. [7, Chapter 18] for many more details.

π (u) can be constructed from local access to the

encoding E (u). In particular, note that we can locally

compute E (SLOCAL (u)) because E (·) is linear - but

π (·) is not. Once we obtain E (SLOCAL (u)), we can

use local proof construction to compute π (SLOCAL (u))
locally.

• (Very low random-bit complexity) Our verifier is only

allowed to use (1/2 + o (1)) log2 n random bits - this

is much lower even than the log2 n bits necessary to

choose one entry at random. In related works, similar

random-bit complexity was achieved by bundling the

entries together via “birthday repetition”. To some

extent, something similar happens here, but our locality

is already n1/2+o(1) so no bundling (or repetition)

is necessary. To achieve nearly optimal random-bit

complexity, we use λ-biased sets over large finite fields

together with the Sampling Lemma of Ben-Sasson et

al. [21].

• (Tolerant verifier) Typically, a verifier must reject

(with high probability) whenever the input is far from

valid, but it is allowed to reject even if the input is off

by only one bit. Our verifier, however, is required to

accept (with high probability) inputs that are close to

valid proofs. (This is related to the notion of “tolerant

testing”, which was defined in [58] and discussed in

[42] for locally testable codes.)

• (Local decoding) We make explicit use of the property

that our holographic proof system is also a locally

decodable code. While the relations between PCPs and

locally testable codes have been heavily explored (see

e.g. Goldreich’s survey [41]), the connection to locally

decodable codes is not as immediate. Nevertheless,

related ideas of Locally Decode/Reject Codes [56] and

decodable PCP [38] have been used before in order to

facilitate composition of tests (our holographic proof

system, in contrast, is essentially composition-free).

Fortunately, as noted by [38] many constructions of

PCPs are already implicitly locally decodable.

• (Robust everything) Ben-Sasson et al. [20] introduce a

notion of robust soundness, where on an invalid proof,

the string read by the verifier must be far from any

acceptable string. (Originally the requirement is far in

expectation, but we want far with high probability.)

Another way of looking at the same requirement, is

that even if a malicious prover adaptively changes a

small fraction of the bits queried by the verifier, the

test is still sound. In this sense, we require that all our

guarantees, not just soundness, continue to hold (with

high probability) even if a malicious entity adaptively

changes a small fraction of the bits queried by the

verifier.

How is local proof construction possible? At a high level,

our holographic proof system expects an encoding of u as a
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low-degree t-variate polynomial, and a few more low-degree

t-variate polynomials, that encode the proof of u ∈ V LOCAL.

(This is essentially the standard “arithmetization”, dating

back at least to [11], [63], although our construction is

most directly inspired by [59], [65].) In our actual proof,

t is a small super-constant, e.g. t �
√
log n; but for our

exposition here, let us consider t = 2, i.e. we have bivariate

polynomials.

The most interesting part of the proof verification is

testing that a certain low-degree polynomial Ψ: G2 → G, for

some finite field G of size |G| = Θ
(
n1/2+o(1)

)
, is identically

zero over all of F2, for some subset F � G of cardinality

|F| = |G| /polylog (n). This can be done by expecting the

prover to provide the following low-degree polynomials:

Ψ′ (x, y) �
∑
fi∈F

Ψ(x, fi) y
i

Ψ′′ (x, y) �
∑
fj∈F

Ψ′ (fj , y)xj .

Then, Ψ′′ (x, y) =
∑

fi,fj∈F Ψ(fj , fi)x
jyi is the zero

polynomial if and only if Ψ is indeed identically zero over

all of F2. Ψ(x, y) can be computed by accessing E (u)
on just a constant number of entries. Thus, computing

Ψ′ (x, y) requires Ψ(x, fi) for all fi ∈ F , so a total of

Θ
(
n1/2+o(1)

)
queries to E (u). However, computing even

one entry of Ψ′′ (·) requires Ω (n) queries to E (u). The

crucial observation is that we don’t actually need the prover

to provide Ψ′′. Instead, it suffices that the prover provide

Ψ′, and the verifier checks that
∑

fj∈F Ψ′ (fj , y)xj = 0 for

sufficiently many (x, y).

Putting it all together via polymatrix games

The above arguments suffice to construct a hard Brouwer

function (in the sense of Theorem I.4) that can be computed

“n1/2+o(1)-locally”. We formalize this statement in terms of

approximate Nash equilibria in a polymatrix game.

Definition I.6 (Polymatrix games). In a polymatrix game,

each pair of players simultaneously plays a separate two-

player subgame. Every player has to play the same strategy

in every two-player subgame, and her utility is the sum of

her subgame utilities. The game is given in the form of the

payoff matrix for each two-player subgame.

We construct a bipartite polymatrix game between

n1/2+o(1) players with 2n
1/2+o(1)

actions each. By “bi-

partite”, we mean that each player on Alice’s side only

interacts with players on Bob’s side and vice versa. The

important term here is “polymatrix”: it means that when

we compute the payoffs in each subgame, they can only

depend on the n1/2+o(1) coordinates described by the two

players’ strategies. It is in this sense that we guarantee “local

computation”.

The mixed strategy profile A of all the players on Alice’s

side of the bipartite game induces a vector x(A) ∈ [0, 1]
m

,

for some m = n1+o(1). The mixed strategy profile B of all

the players on Bob’s side induces a vector x(B) ∈ [0, 1]
m

.

Our main technical result is:

Proposition I.7 (Informal). If all but an ε-fraction of the
players play ε-optimally, then

∥∥x(A) − x(B)
∥∥2

2
= O (ε) and∥∥f (

x(A)
)− x(B)

∥∥2

2
= O (ε) .

Each player on Alice’s side corresponds to one of the

PCP verifier’s random string. Her strategy corresponds to

an assignment to the bits queried by the verifier given this

random string. On Bob’s side, we consider a partition of

{1, . . . ,m} into n1/2+o(1) tuples of n1/2+o(1) indices each.

Each player on Bob’s side assigns values to one such tuple.

On each two-player subgame, the player on Alice’s side

is incentivized to imitate the assignment of the player on

Bob’s side on the few coordinates where they intersect.

The player on Bob’s side, uses Alice’s strategy to locally

compute fj
(
x(A)

)
on a few j’s in his

(
n1/2+o(1)

)
-tuple of

coordinates. This computation may be inaccurate, but we

can guarantee that for most coordinates it is approximately

correct most of the time.

From polymatrix to bimatrix

The final reduction from the polymatrix game to two-

player game follows more or less from known techniques

for hardness of Nash equilibria [4], [32], [15]. We let each

of Alice and Bob control one side of the bipartite polymatrix

game. In particular, each strategy in the two-player game

corresponds to picking a player of the polymatrix game, and

a strategy for that player. We add a gadget due to Althofer

[4] to guarantee that Alice and Bob mix approximately

uniformly across all their players. See full version for details.

B. Results for multiplayer relaxations of Nash equilibrium

Our hardness for norm-2 approximate Brouwer fixed

point (Theorem I.4) has some important consequences for

multiplayer games. All our results in this regime (as well as

much of the existing literature) are inspired by a paper of

Babichenko [13] and a blog post of Shmaya [64].

For multiplayer games, there are several interesting ques-

tions one can ask. First, note that the normal form represen-

tation of the game is exponential in the number of players, so

it is difficult to talk about computational complexity. To al-

leviate this, different restricted classes of multiplayer games

have been studied. We have already seen polymatrix games
(Definition I.6), which have a succinct description in terms

of the normal forms of the
(
n
2

)
bimatrix subgames. Another

interesting class is graphical games where we are given

a (low-degree) graph over the players, and each player’s

utility is only affected by the actions of its neighbors. The

graph of the game constructed in Proposition I.7 has a high

degree, but it is important that it is bipartite, as are all

the games described below. Most generally, we can talk

about the class of succinct games, which are described via
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a circuit that computes any entry of the payoff tensors (this

includes polymatrix and graphical games). Finally, there has

been recent significant progress on the query complexity of

finding approximate Nash equilibria in arbitrary n-player

games where the payoff tensors are given via a black-box

oracle [14], [43], [13], [28].

There are also a few different notions of approximation

of Nash equilibrium. The strictest notion, ε-Well-Supported
Nash Equilibrium, requires that for every action in the

support of every player, the expected utility, given other

players’ mixed strategies, is within (additive) ε of the optimal

strategy for that player. For this notion, Babichenko [13]

showed a 2Ω(n) lower bound on query complexity for any

(possibly randomized) algorithm. In followup work, [60]

showed PPAD-completeness for succinct games, and soon

after [62] extended this PPAD-completeness to games that

are both polymatrix degree-3-graphical.

The most central model in the literature, ε-Approximate
Nash Equilibrium, requires that every player’s expected

utility from her mixed strategy is within ε of the optimum

she can achieve (given other players’ strategies). I.e., any

player is allowed to assign a small probability to poor

strategies, as long as in expectation she does well. The

last PPAD-completeness result extends immediately to this

model (the two notions of approximation are equivalent, up

to constant factors, for constant degree graphical games). For

query complexity, Hart and Nisan [43] and Babichenko [13]

asked whether the latter’s exponential lower bound can be

extended to ε-Approximate Nash Equilibrium. Very recently

Chen et al. [28] solved it almost entirely, showing a lower

bound of 2Ω(n/ logn); and they asked whether the Θ(log n)
gap in the exponent can be resolved. Here, we obtain a

tight 2Ω(n) lower bound on the query complexity, as well

as stronger inapproximability guarantees.

Finally, the most lenient notion is that of (ε, δ)-WeakNash:

it only requires that a (1− δ)-fraction of the players play ε-
optimally (“Can almost everybody be almost happy?”). This

notion was recently defined in [15] who conjectured that

it is also PPAD-complete for polymatrix, graphical games.

Their conjecture remains an interesting open problem (see

Subsection I-C). Here, as a consequence of Theorem I.4, we

prove that (ε, δ)-WeakNash is PPAD-complete for the more

general class of succinct games.

Corollary I.8. There exist constants ε, δ > 0, such that
finding an (ε, δ)-WeakNash is PPAD-hard for succinct mul-
tiplayer games where each player has two actions.

Furthermore, as we hinted earlier, our proof also extends

to giving truly exponential lower bounds on the query

complexity:

Corollary I.9. There exist constants ε, δ > 0, such that
any (potentially randomized) algorithm for finding an (ε, δ)-
WeakNash for multiplayer games where each player has

two actions requires 2Ω(n) queries to the players’ payoffs
tensors.

C. The PCP Conjecture for PPAD

Rather than posing new open problems, let us restate the

following conjecture due to [15]:

Conjecture I.10 (PCP for PPAD; [15]). There exist con-
stants ε, δ > 0 such that finding an (ε, δ)-WeakNash in a
bipartite, degree three polymatrix game with two actions
per player is PPAD-complete.

The main original motivation was an approach to prove

our main theorem given this conjecture. As pointed out by

[15], it turns out that resolving this conjecture would also

have interesting consequences for relative approximations

of two-player Nash equilibrium, as well as applications to

inapproximability of market equilibrium.

More importantly, this question is interesting in its own

right: how far can we extend the ideas from the PCP Theo-

rem (for NP) to the wold of PPAD? The PCP [r (n) , q (n)]
characterization [8] is mainly concerned with two param-

eters: r (n), the number of random bits, and q (n), the

number of bits read from the proof. A major tool in all

proofs of the PCP Theorem is verifier composition: in the

work of Polishchuk and Spielman [59], [65], for example,

it is first shown that NP ⊆ PCP
[
O (log n) , n1/2+o(1)

]
,

and then via composition it is eventually obtained that

NP = PCP [O (log n) , O (1)]. In some informal sense, one

may think of our main technical result as something anal-

ogous5 to PPAD ⊆ PCP
[
(1/2 + o (1)) log2 n, n

1/2+o(1)
]
.

Furthermore, our techniques build on many existing ideas

from the PCP literature [12], [59], [65], [21], [20] that have

been used to show similar statements for NP. It is thus

natural to ask: is there a sense in which our “verifier” can

be composed? can such composition eventually resolve the

PCP Conjecture for PPAD?

More generally, some of the tools we use here, even

as simple as error correcting codes, have been the basic

building blocks in hardness of approximation for decades,

yet to the best of our knowledge have not been used before

for any problem in PPAD. We hope to see other applications

of similar ideas in this regime6.

D. Additional related work

Aside from [15], previous attempts to show lower bounds

for approximate Nash in two player games have mostly

focused on limited models of computation [35] and lower

bounding the support required for obtaining approximate

equilibria [4], [39], [6], [5] (in contrast, [54]’s algorithm runs

5We stress that our analogy is very loose. For example, we are not aware
of any formal extension of PCP to function problems, and it is well known
that NP ⊆ PCP

[
(1/2 + o (1)) log2 n, n

1/2+o(1)
]
.

6In fact, in the few months since our paper first appeared, our tech-
niques already found applications for lower bounds on the communication
complexity of Nash equilibrium [16].
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in quasi-polynomial time because there exist approximate

equilibria with support size at most O
(

logn
ε2

)
).

Birthday repetition and related quasi-polynomial lower
bounds: Hazan and Krauthgamer [44] showed that finding

an ε-Approximate Nash Equilibrium with ε-optimal welfare

is as hard as the PLANTED-CLIQUE problem; Austrin et al.

[9] later showed that the optimal-welfare constraint can be

replaced by other decision problems. Braverman et al. [25]

recently showed that the hardness PLANTED-CLIQUE can

be replaced by the Exponential Time Hypothesis, the NP-

analog of the ETH for PPAD we use here. The work of

Braverman et al, together with an earlier paper by Aaronson

et al. [1] inspired a line of works on quasi-polynomial

hardness results via the technique of “birthday repetition”

[15], [24], [61], [22]. In particular [15] investigated whether

birthday repetition can give quasi-polynomial hardness for

finding any ε-Approximate Nash Equilibrium (our main

theorem). As we discussed in Subsection I-C the main

obstacle is that we don’t have a PPAD-analogue for the

PCP Theorem.

Multiplicative hardness of approximation: Daskalakis

[31] and our recent work [60] show that finding an ε-
relative Well-Supported Nash Equilibrium in two-player

games is PPAD-hard. The case of ε-relative Approximate

Nash Equilibrium is still open: our main theorem implies

that it requires at least quasi-polynomial time, but it is not

known whether it is PPAD-hard, or even if it requires a large

support (see also discussion in [15]).

Approximation algorithms: The state of the art for

games with arbitrary payoffs is ≈ 0.339 for two-player

games due to Tsaknakis and Spirakis [67] and 0.5 + ε for

polymatrix games due to Deligkas et al. [37]. For two-

player games, PTAS have been given for the special cases

of constant rank games by Kannan and Theobald [48],

small-probability games by Daskalakis and Papadimitriou

[35], positive semi-definite games by Alon et al. [3], and

sparse games by Barman [17]. For games with many players

and a constant number of strategies, PTAS were given

for the special cases of anonymous games by Daskalakis

and Papadimitriou [36] and polymatrix games on a tree

by Barman et al. [18]. Finally, let us return to the more

general class of succinct n-player games, and mention an

approximation algorithm due to Goldberg and Roth [40];

their algorithm runs in exponential time, but uses only a

polynomial number of oracle queries.

Communication complexity: The hard instance of

Brouwer we construct here (Theorem I.4) has already been

useful in followup work [16], for proving lower bounds

on the communication complexity of approximate Nash

equilibrium in N ×N two-player games, as well as binary-

action n-player games.
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