
Constrained Submodular Maximization: Beyond 1/e

Alina Ene

Department of Computer Science
Boston University

Boston, USA
Email: aene@bu.edu

Huy L. Nguyễn

College of Computer and Information Science
Northeastern University

Boston, USA
Email: hlnguyen@cs.princeton.edu

Abstract—In this work, we present a new algorithm for
maximizing a non-monotone submodular function subject to
a general constraint. Our algorithm finds an approximate
fractional solution for maximizing the multilinear extension of
the function over a down-closed polytope. The approximation
guarantee is 0.372 and it is the first improvement over the
1/e approximation achieved by the unified Continuous Greedy
algorithm [Feldman et al., FOCS 2011].

Keywords-submodular functions; maximization;

I. INTRODUCTION

A set function f : 2V → R is submodular if for every

A,B ⊆ V , we have f(A) + f(B) ≥ f(A∪B) + f(A∩B).
Submodular functions naturally arise in a variety of contexts,

both in theory and practice. From a theoretical perspective,

submodular functions provide a common abstraction of cut

functions of graphs and digraphs, Shannon entropy, weighted

coverage functions, and log-determinants. From a practical

perspective, submodular functions are used in a wide range of

application domains from machine learning to economics. In

machine learning, it is used for document summarization [15],

sensor placement [12], exemplar clustering [9], potential

functions for image segmentation [10], etc. In an economics

context, it can be used to model market expansion [6],

influence in social networks [11], etc. The core mathematical

problem underpinning many of these applications is the meta

problem of maximizing a submodular objective function

subject to some constraints, i.e., maxS∈S f(S) where S is

a down-closed family of sets1.

A common approach to this problem is a two-step framework

based on the multilinear extension F of f , a continuous

function that extends f to the domain [0, 1]V . The program

first (1) maximizes F (x) subject to x ∈ C where C is a

convex relaxation of S , and then (2) rounds x to an integral

solution in S. This paradigm has been very successful and

it has led to the current best approximation algorithms for a

wide variety of constraints including cardinality constraints,

knapsack constraints, matroid constraints, etc. The contention

resolution scheme framework of Chekuri et al. [5] gives

1A family of sets S is down-closed if for all A ⊂ B, if B ∈ S then
A ∈ S.

a generic way to perform step 2 of the program. Thus,

many recent works [7], [4] focus on improving step 1, as it

immediately leads to improved algorithms when combined

with the known rounding schemes. Feldman et al. [7]

give a beautiful generalization of the continuous greedy

algorithm [18], achieving an 1/e approximation for step

1 for any down-closed and solvable polytope2 C. While it is

known that the continuous greedy algorithm is optimal when

we restrict to monotone functions3, it is not known if the 1/e
approximation of the extension by [7] is optimal. Recently,

the work of Buchbinder et al. [1] shows that, for the special

case of a cardinality constraint, it is possible to beat 1/e.
However, this result still leaves open the possibility that an

1/e approximation is best possible for a harder constraint.

This possibility is consistent with our current knowledge:

the best known hardness for a cardinality constraint is 0.491

while the best known hardness for a matroid constraint is

0.478 [8], suggesting that the matroid constraint may be

strictly harder to approximate. In this paper, we rule out this

possibility and show that it is possible to go beyond the 1/e
barrier in the same generic setting as considered by [7].

Theorem 1. Let f be a non-negative, non-monotone, sub-
modular function f . Let F be the multilinear extension of
f . Let C be a down-closed and solvable polytope. There is
an efficient algorithm that constructs a solution x ∈ C such
that F (x) ≥ 0.372 · F (OPT), where OPT is an optimal
integral solution to the problem maxx∈C∩{0,1}V F (x).

In order to keep the analysis as simple as possible, we have

not tried to optimize the constant in the theorem above. We

believe a better constant can be obtained using the techniques

in this paper, and we hope that our work will lead to improved

approximation guarantees for the problem.

Using known rounding techniques, we obtain improved

approximation guarantees for several classes of constraints.

In particular, we obtain a 0.372 − o(1) approximation for

submodular maximization subject to a matroid constraint and

a 0.372−ε approximation for a constant number of knapsack

2A polytope C is solvable if there is an oracle for optimizing linear
functions over C, i.e., for solving maxc∈C〈v, c〉 for any vector v.

3A function f : 2V → R is monotone if f(A) ≤ f(B) for all A ⊆ B.

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.34

247

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.34

248

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.34

248

constraints, which improve over the 1/e− o(1) and 1/e− ε
approximations [7].

A. Our techniques

Our starting point is the unified continuous greedy al-

gorithm [7] achieving the approximation factor 1/e. The

algorithm grows a solution x over the time interval [0, 1],
improving F (x) in each time step by an amount propor-

tional to (1 − ‖x‖∞)F (OPT). As x increases over time,

the gain starts out large and decreases to 0 at the end

of the process. The change in x in each time step is

proportional4 to v = argmaxc∈C〈∇F (x) ◦ (1 − x), c〉.
Notice that we can improve the gain ((1− ‖x‖∞)F (OPT))
by slowing down the growth of ‖x‖∞. Thus in our al-

gorithm, we add a new constraint ‖c‖∞ ≤ α and have

v = argmaxc∈C,‖c‖∞≤α〈∇F (x) ◦ (1 − x), c〉. How does

this change affect the performance of the algorithm and in

particular, the quantity 〈∇F (x) ◦ (1− x),v〉? Intuitively, if

there is a second solution other than OPT with value close

to OPT, we can pick v to be a mixture of OPT and this

solution and have a new solution comparable to OPT but

with lower �∞ norm. Thus, if this is the case, we do not lose

very much in 〈∇F (x) ◦ (1 − x),v〉 while simultaneously

increasing the gain (1−‖x‖∞)F (OPT). On the other hand,

if there is no such solution, the crucial insight is that v must

be well correlated with OPT. Thus we can identify a good

fraction of OPT by searching for argmaxx≤v F (x). (Here

we crucially use the fact that C is a down-closed polytope.)

This problem turns out to be not very different from the

unconstrained setting and we can use a variant of the double

greedy algorithm of Buchbinder et al. [2] to find a good

solution.

The above description is an intuitive but simplified overview

of the algorithm. Nevertheless, each routine mentioned above

corresponds to a part of the algorithm described in Section IV.

The main technical difficulty is in formalizing the statement

“v must be well correlated with OPT” and the subsequent

identification of (a large part of) OPT. We describe how to

overcome these difficulties in Section V-B.

Comparison with the work of [1] for a cardinality
constraint. The idea of adding a new constraint ‖c‖∞ ≤ α
is inspired by a recent algorithm by [1] for the cardinality

constraint. In their setting, the goal is to maximize F (x)
subject to a constraint ‖x‖1 ≤ k. In the ith step, their

algorithm picks 2(k − i) elements with maximum marginal

gain and randomly adds one of them to the current solution.

This can be viewed as an analog of adding a constraint

‖c‖∞ ≤ k/(2k − 2i) when the time is in the range

[(i − 1)/k, i/k]. This more sophisticated use of varying

thresholds depending on the time is allowed in our framework

4We use x ◦ y to denote the vector whose i-th coordinate is xi · yi.

but in the simple solution presented here, we just use a fixed

threshold throughout.

When the marginal gain (〈∇F (x)◦(1−x),v〉 in our case) is

small, they also use a variant of the double greedy algorithm

to finish the solution. From the 2(k − i) elements that are

picked in the last iteration, their algorithm picks k−i elements

using a sophisticated variant of double Greedy, and add

them to the i elements it picked in the previous iterations.

Unfortunately this step crucially uses the structure of the

solution when the constraint is a cardinality constraint. From

the point of view of a continuous Greedy algorithm, this is

analogous to doubling a fractional solution and then selecting

half of the coordinates. It is not clear what the analog should

be in the general case. Instead, we compute a different

solution p = argmaxc∈C〈∇F (x)◦ (1−x), c〉 (dropping the

dampening constraint) and use standard double greedy to find

z = argmaxc≤p F (c). While v and p could potentially be

very different, we manage to connect 〈∇F (x) ◦ (1− x),v〉
and 〈∇F (x) ◦ (1 − x),p〉, which is enough to prove the

existence of z ≤ p with large F (z).

In summary, in this work, we introduce several novel insights

that lead to a much more general algorithm and analysis.

We believe that our algorithm and analysis are conceptually

much simpler and cleaner, and we hope that our techniques

will lead to further improvements for the problem.

B. Related work

Submodular maximization problems are well-studied and

it is hard to do justice to all previous literature on this

subject. Starting with the seminal work Nemhauser et

al. [16], the classical approaches to these problems are

largely combinatorial and based on greedy and local search

algorithms. Over the years, with increasing sophistication, this

direction has led to many tight results such as the algorithm

of [17] for a knapsack constraint, and the current best results

for constraints such as multiple matroid constraints [14].

In the last few years, another approach emerged [3] that

follows the popular paradigm in approximation algorithms

of optimizing a continuous relaxation and rounding the

resulting fractional solution. A key difficulty that separates

the submodular setting from the classical setting is that

even finding a fractional solution may be quite challenging,

and in particular it is NP-hard to solve the continuous

relaxation for maximizing submodular functions that is based

on the multilinear extension. Thus, a line of work has been

developed to approximately optimize this relaxation [3], [13],

[8], [7] culminating in the work [7], which we extend here.

II. PRELIMINARIES

Here we consider the problem of maximizing a submodular

function f subject to a downward closed convex constraint

x ∈ C.

248249249

We use the following notation. Let n = |V |. We write x ≤ y
if xi ≤ yi for all coordinates i ∈ [n]. Let x ◦ y denote the

vector whose i-th coordinate is xi ·yi. Let x∨y (resp. x∧y)
be the vector whose i-th coordinate is max{xi,yi} (resp.

min{xi,yi}). Let 1S ∈ {0, 1}V denote the indicator vector

of S ⊆ V , i.e., the vector that has a 1 in entry i if and only

if i ∈ S.

Let F : [0, 1]n → R+ denote the multilinear extension of f :

F (x) = E[f(R(x))] =
∑
S⊆V

f(S)
∏
i∈S

xi

∏
i∈V \S

(1− xi),

where R(x) is a random subset of V where each i ∈ V is

included independently at random with probability xi. We

use ∇F to denote the gradient of F and we use ∂F
∂xi

to

denote the i-th coordinate of the gradient of F .

The multilinear extension has the following well-known

properties, see for instance [18].

Claim 2. ∂F
∂xi

(x) = F (x ∨ 1{i})− F (x ∧ 1V \{i}).

Proof: Note that

F (x) = xi · F (x ∨ 1{i}) + (1− xi) · F (x ∧ 1V \{i}).

Thus if we take the partial derivative with respect to xi, we

obtain the claim.

Claim 3. If x ≤ y then ∇F (x) ≥ ∇F (y).

Proof: Fix a coordinate i. Since x ≤ y, submodularity

implies that

F (x∨1{i})−F (x∧1V \{i}) ≥ F (y∨1{i})−F (y∧1V \{i}).

By Claim 2, the left-hand side of the inequality above is
∂F
∂xi

(x) and the right-hand side is ∂F
∂xi

(y).

Claim 4. F is concave along any line of direction d ≥ 0.
That is, for any vector x, the function φ : R→ R such that
φ(t) = F (x+t·d) for every t ∈ R for which x+t·d ∈ [0, 1]V

is concave.
Proof sketch: By submodularity, we can verify that φ′′(t) ≤
0 and thus φ is concave. �

III. DOUBLE GREEDY ALGORITHM FOR A BOX

CONSTRAINT

In this section, we describe an algorithm for maximizing the

multilinear extension subject to a box constraint: given u
and v, find maxu≤x≤v F (x). The algorithm is similar to the

Double Greedy algorithm of [2] and it is given in Figure 1.

The proof of the following lemma is similar to the analysis

of the Double Greedy algorithm and it can be found in

Appendix A.

1: u(0) = u,v(0) = v
2: for i ∈ [n] do
3: ai ← F

(
u(i−1) ∨ 1{i}

)−F
(
u(i−1) ∧ 1V \{i}

)
4: bi ← F

(
v(i−1) ∧ 1V \{i}

)−F
(
v(i−1) ∨ 1{i}

)
5: a′i = max(ai, 0), b

′
i = max(bi, 0)

6: if a′i + b′i �= 0 then
7: u(i) ← u(i−1) +

a′
i

a′
i+b′i

· (vi − ui) · 1{i}
8: v(i) ← v(i−1) − b′i

a′
i+b′i

· (vi − ui) · 1{i}
9: else

(�) Update u
(i)
i and v

(i)
i to any common value

(�) We set u
(i)
i = v

(i)
i = v

(i−1)
i

10: u(i) ← u(i−1) + (vi − ui) · 1{i}
11: v(i) ← v(i−1)

12: end if
13: end for
14: return u(n)

Figure 1. Double Greedy algorithm for a box constraint {x : u ≤ x ≤ v}.

Lemma 5. Algorithm 0 finds a solution x to the problem
maxu≤x≤v F (x) such that

F (x) ≥ 1

2
· F (OPT) +

1

4
· F (u) +

1

4
· F (v),

where OPT is an optimal solution to the problem
maxu≤x≤v F (x).

Alternatively, we can reduce the problem with a box con-

straint to the unconstrained problem by defining a suitable

submodular function g(S) = F (u+ (v − u) ◦ 1S). We can

show that this reduction is correct using the same argument

given in the appendix.

IV. THE ALGORITHM

In this section, we describe our main algorithm for the

problem maxx∈C F (x). We first give a continuous version of

our algorithm; in order to efficiently implement the algorithm,

we discretize it using a standard approach, and we give the

details in Appendix A.

The algorithm picks the best out of two solutions. The first

solution is constructed by running the Continuous Greedy

algorithm with an additional dampening constraint5 as long

as the marginal gain remains high despite the dampening

constraint, and then finishing the solution via the standard

Continuous Greedy algorithm for the remaining time. The

second solution is constructed by running Double Greedy

exactly when the marginal gain becomes low because of

the dampening constraint, which must happen early if the

first solution is not good. Since we do not know precisely

5The dampening constraint imposes an �∞ constraint in line 5 of Figure 2

249250250

1: Initialize x∗ = 0
2: for θ ∈ [0, 1] do

(�) Dampened Continuous Greedy stage

3: Initialize x(0) = 0
4: for t ∈ [0, θ] do
5: v(t) = argmaxc∈C,‖c‖∞≤α〈∇F (x(t)) ◦

(1− x(t)), c〉
6: Update x(t) according to dx(t)

dt = v(t)◦(1−
x(t))

7: end for

(�) Standard Continuous Greedy stage

8: Initialize y(θ) = x(θ)

9: for t ∈ (θ, 1] do
10: v(t) = argmaxc∈C〈∇F (y(t)) ◦ (1 −

y(t)), c〉
11: Update y(t) according to dy(t)

dt = v(t)◦(1−
y(t))

12: end for

(�) Double Greedy stage

13: p = argmaxc∈C〈∇F (x(θ)) ◦ (1− x(θ)), c〉
14: Find z approximating argmaxc≤p F (c) using

the Double Greedy algorithm (see Figure 1)

(�) Update the best solution

15: if F (y(1)) > F (x∗) then
16: x∗ = y(1)

17: end if
18: if F (z) > F (x∗) then
19: x∗ = z
20: end if
21: end for
22: return x∗

Figure 2. Continuous algorithm for a general constraint

when the marginal gain becomes low, the algorithm tries all

possible values via the outer for loop on line 2.

V. THE ANALYSIS

In this section, we analyze the algorithm and show that it

achieves an approximation greater than 0.372. We remark

that the analysis in Subsection V-A is fairly standard, and

the crux of the analysis is in Subsection V-B.

In the following, we fix an iteration θ of the outer loop and

we analyze the solutions constructed in that iteration. In the

remainder of this section, all of the vectors x(·), y(·), etc.
refer to the vectors during iteration θ.

A. Analysis of the solution y(1)

In this section, we analyze the solution y(1) constructed in

any given iteration θ ∈ [0, 1].

Theorem 6. Let θ ∈ [0, 1] and let y(1) be the solution
constructed by the Algorithm in Figure 2 in iteration θ of
the outer loop. We have

F (y(1)) ≥ 1

e

(
eθF (x(θ)) + (1− θ)e(1−α)θF (OPT)

)
.

We devote the rest of this section to the proof of Theorem 6.

In the remainder of this section, all of the vectors x(·), y(·),
etc. refer to the vectors during iteration θ.

We start by upper bounding the �∞ norm of x(t) and y(t).

Lemma 7. Consider the following process. Let time run
from t = t0 ≥ 0 to t = t1 ≤ 1. Let u(t) be a vector updated
according to

du(t)

dt
= v(t) ◦ (1− u(t)),

where v(t) is a vector such that ‖v(t)‖∞ ≤ δ. Then
‖u(t)‖∞ ≤ 1+(‖u(t0)‖∞−1)e−δ(t−t0) for each t ∈ [t0, t1].

Proof: The i-th coordinate u
(t)
i of u(t) is updated

according to

du
(t)
i

dt
= v

(t)
i (1− u

(t)
i) ≤ δ(1− u

(t)
i).

By solving the differential inequality above, we obtain u
(t)
i ≤

1+C ·e−δt, where C is a constant. Using the initial condition

1 + C · e−δt0 = u
(t0)
i , we obtain C = (u

(t0)
i − 1)eδt0 and

thus u
(t)
i ≤ 1 + (u

(t0)
i − 1)e−δ(t−t0).

Corollary 8. For every t ∈ [0, θ], ‖x(t)‖∞ ≤ 1− e−αt.

Proof: The vector x(t) starts at 0 and it is updated

according to the update rule in line 6, where v(t) is a vector

of �∞ norm at most α. Thus it follows from Lemma 7 that

‖x(t)‖∞ ≤ 1− e−αt.

Corollary 9. For every t ∈ [θ, 1], ‖y(t)‖∞ ≤ 1− e(1−α)θ−t.

Proof: The vector y(t) starts at y(θ) = x(θ) and it is

updated according to the update rule in line 11, where v(t) is

a vector of �∞ norm at most 1. Thus it follows from Lemma 7

and the upper bound on ‖x(θ)‖∞ given by Corollary 8 that

‖y(t)‖∞ ≤ 1 + (‖x(θ)‖∞ − 1)e−(t−θ) ≤ 1− e(1−α)θ−t.

We will also need the following lemma that was shown in

[7].

Lemma 10 ([7, Lemma III.5]). Let x ∈ [0, 1]n and let
S ⊆ V . We have

F (x ∨ 1S) ≥ (1− ‖x‖∞)f(S).

250251251

Proof of Theorem 6: Using the chain rule, for every t ∈
[θ, 1], we have

dF (y(t))

dt
=

〈
∇F (y(t)),

dy(t)

dt

〉
=

〈
∇F (y(t)),v(t) ◦ (1− y(t))

〉
=

〈
∇F (y(t)) ◦ (1− y(t)),v(t)

〉
≥

〈
∇F (y(t)) ◦ (1− y(t)),OPT

〉
≥ F (y(t) ∨OPT)− F (y(t))

≥ e(1−α)θ−t · F (OPT)− F (y(t)).

The last line above follows from Corollary 9 and Lemma 10.

By solving the differential inequality, we obtain

F (y(t)) ≥ 1

et

(
eθF (y(θ)) + (t− θ)e(1−α)θF (OPT)

)
,

and thus

F (y(1)) ≥ 1

e

(
eθF (y(θ)) + (1− θ)e(1−α)θF (OPT)

)
.

The theorem now follows, since y(θ) = x(θ). �

B. Analysis of the solution z

In this section, we analyze the solution z constructed using

the Double Greedy algorithm, and this is the crux of our

argument.

Theorem 11. Let θ ∈ [0, 1] and let z be the solution
constructed by the algorithm in Figure 2 in iteration θ of
the outer loop. If α ≥ 1/2, we have

F (z) ≥ 1

2(1− α)
(e−αθF (OPT)− F (x(θ))−

〈∇F (x(θ)) ◦ (1− x(θ)),v(θ)〉).

We first give some intuition for the approach. Consider the

solution x constructed by the dampened Continuous Greedy

algorithm. The rate of growth of F (x) is given by the inner

product 〈∇F (x) ◦ (1 − x),v〉 and thus the crux of the

analysis is to understand how this inner product evolves

over time. The inner product 〈∇F (x)◦ (1−x),v〉 is always

at least 〈∇F (x)◦ (1−x), αOPT〉 and intuitively we should

gain proportional to the difference between the two. If this

difference is very small, the key insight is that once we

drop the dampening constraint and compute the vector that

maximizes 〈∇F (x) ◦ (1− x), c〉 over all feasible vectors c,
we obtain a vector p that is well-correlated with OPT in

the sense that p ∧ OPT is a good solution. We formalize

this intuition in the remainder of this section.

In the remainder of this section, we analyze the solution

ẑ := (1− x(θ)) ◦ (p ∧OPT).

By submodularity, we have

F (ẑ)− F (0) ≥ F (ẑ+ x(θ))− F (x(θ)),

and thus it suffices to analyze F (ẑ+ x(θ)).

Note that x(θ) ≤ ẑ + x(θ) ≤ x(θ) + (1 − x(θ)) ◦ OPT =
x(θ) ∨OPT. Thus Claim 4 and Claim 3 give

F (x(θ) ∨OPT)− F (ẑ+ x(θ))

≤ 〈∇F (ẑ+ x(θ)), (1− x(θ)) ◦ ((1− p) ∧OPT)〉
≤ 〈∇F (x(θ)), (1− x(θ)) ◦ ((1− p) ∧OPT)〉
= 〈∇F (x(θ)) ◦ (1− x(θ)), (1− p) ∧OPT〉

In the first inequality, we have used the fact that (x(θ) ∨
OPT)−(ẑ+x(θ)) = (x(θ)+(1−x(θ))◦OPT)−(ẑ+x(θ)) =
(1− x(θ)) ◦ ((1− p) ∧OPT).

In order to upper bound 〈∇F (x(θ)) ◦ (1− x(θ)), (1− p) ∧
OPT〉, we consider the following vector.

v̂ := (1− α)((1− p) ∧OPT) + αp.

The intuition behind the choice of v̂ is to connect the fact

that the inner product 〈∇F (x(τ))◦(1−x(τ)),v〉 is not much

more than 〈∇F (x(τ)) ◦ (1 − x(τ)), αOPT〉 to the insight

that 〈∇F (x(τ)) ◦ (1− x(τ)), (1− p) ∧OPT〉 is small.

Since α ≥ 1/2, we have 1 − α ≤ α. Therefore, for each

i ∈ [n], we have

v̂i =

{
(1− α)(1− pi) + αpi ≤ α if i ∈ OPT

αpi ≤ α otherwise

Therefore ‖v̂‖∞ ≤ α. Additionally, v̂ ∈ C, since it is a

convex combination of two vectors in C (recall that C is

downward closed and convex). It follows from the definition

of v(θ) on line 5 that

〈∇F (x(θ)) ◦ (1− x(θ)),v(θ)〉
≥ 〈∇F (x(θ)) ◦ (1− x(θ)), v̂〉
= (1− α)〈∇F (x(θ)) ◦ (1− x(θ)), (1− p) ∧OPT)〉+
α〈∇F (x(θ)) ◦ (1− x(θ)),p〉
≥ (1− α)〈∇F (x(θ)) ◦ (1− x(θ)), (1− p) ∧OPT)〉+
α〈∇F (x(θ)) ◦ (1− x(θ)),OPT〉
≥ (1− α)〈∇F (x(θ)) ◦ (1− x(θ)), (1− p) ∧OPT)〉+
α(F (x(θ) ∨OPT)− F (x(θ)))

By rearranging the inequality above, we obtain

〈∇F (x(θ)) ◦ (1− x(θ)), (1− p) ∧OPT)〉
≤ 1

1− α
〈∇F (x(θ)) ◦ (1− x(θ)),v(θ)〉−

α

1− α

(
F (x(θ) ∨OPT)− F (x(θ))

)
.

251252252

By combining all of the inequalities, we obtain

F (ẑ) ≥ F (ẑ+ x(θ))− F (x(θ))

≥ F (x(θ) ∨OPT)− F (x(θ))−
〈∇F (x(θ)) ◦ (1− x(θ)), (1− p) ∧OPT)〉
≥ 1

1− α

(
F (x(θ) ∨OPT)− F (x(θ))−

〈∇F (x(θ)) ◦ (1− x(θ)),v(θ)〉
)

≥ 1

1− α

(
e−αθF (OPT)− F (x(θ))−

〈∇F (x(θ)) ◦ (1− x(θ)),v(θ)〉
)

In the last inequality, we have used Corollary 8 and

Lemma 10 to lower bound F (x(θ)∨OPT) by e−αθF (OPT).

Since ẑ is a candidate solution for the Double Greedy step

on line 14, it follows from Lemma 5 that F (z) ≥ 1
2F (ẑ),

and the theorem follows.

C. Combining the two solutions

As we have shown above, in every iteration θ of the algorithm,

we obtain two solutions y(1) and z satisfying:

F (y(1)) ≥ 1

e

(
(1− θ)e(1−α)θF (OPT) + eθF (x(θ))

)
F (z) ≥ 1

2(1− α)

(
e−αθF (OPT)− F (x(θ))−

〈∇F (x(θ)) ◦ (1− x(θ)),v(θ)〉
)

In the following, we show that there is an iteration θ for which

max{F (y(1)), F (z)} > C ·F (OPT), where C is a constant

that we will set later. We will proceed by contradiction and

assume that max{F (y(1)), F (z)} ≤ C · F (OPT) for all θ.

Note that the coefficient of F (x(θ)) is positive in the first

inequality above and it is negative in the second inequality,

and there is a trade-off between the two solutions. We can

get a handle on this trade-off as follows. To simplify matters,

we take a convex combination of the two inequalities and

eliminate F (x(θ)). Thus we get that, for all θ ∈ [0, 1],

1
1

2(1−α) + eθ−1

((2− θ)e(1−α)θ−1

2(1− α)
F (OPT)−

eθ−1

2(1− α)
〈∇F (x(θ)) ◦ (1− x(θ)),v(θ)〉

)
≤ C · F (OPT)

Thus, for all θ ∈ [0, 1],

〈∇F (x(θ)) ◦ (1− x(θ)),v(θ)〉
≥

(
(2− θ)e−αθ − (e1−θ + 2(1− α))C

)
F (OPT).

Now note that

F (x(θ))

=

∫ θ

0

〈∇F (x(t)) ◦ (1− x(t)),v(t)〉)dt

≥
∫ θ

0

(
(2− t)e−αt − (e1−t + 2(1− α))C

)
F (OPT)dt

=

(
e−αt(α(t− 2) + 1)

α2
− (−e1−t + 2(1− α)t)C

) ∣∣∣∣∣
θ

t=0

· F (OPT)

=

(
e−αθ(α(θ − 2) + 1) + 2α− 1

α2
−

(−e1−θ + 2(1− α)θ + e)C

)
F (OPT)

Therefore

F (y(1)) ≥
(
(1− θ)e(1−α)θ−1

+
e(1−α)θ−1(α(θ − 2) + 1) + eθ−1(2α− 1)

α2

− (−1 + 2(1− α)θeθ−1 + eθ)C

)
F (OPT)

In order to obtain a contradiction, we need that the coefficient

of F (OPT) in the inequality above is at least C for some

θ ∈ [0, 1] and some α ∈ [1/2, 1]. Equivalently,

(1− θ)e(1−α)θ−1

+
e(1−α)θ−1(α(θ − 2) + 1) + eθ−1(2α− 1)

α2

− (2(1− α)θeθ−1 + eθ)C ≥ 0.

By rearranging, we have

C ≤ 1

2(1− α)θeθ−1 + eθ

(
(1− θ)e(1−α)θ−1+

e(1−α)θ−1(α(θ − 2) + 1) + eθ−1(2α− 1)

α2

)
.

Thus, in order to obtain the best approximation C, we need

to maximize the right hand side of the inequality above over

θ ∈ [0, 1] and α ∈ [1/2, 1]. Setting α = 1/2 and θ = 0.18
gives C > 0.372.

ACKNOWLEDGMENT

This work was done in part while A.E. was with the Computer

Science department at the University of Warwick and a visitor

at the Toyota Technological Institute at Chicago, and H.N.

was with the Toyota Technological Institute at Chicago.

252253253

REFERENCES

[1] Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy
Schwartz. Submodular maximization with cardinality con-
straints. In Proc. 25th SODA, pages 1433–1452, 2014.

[2] Niv Buchbinder, Moran Feldman, Joseph (Seffi) Naor, and
Roy Schwartz. A tight linear time (1/2)-approximation for
unconstrained submodular maximization. In Proc. 53nd FOCS,
2012.

[3] Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan
Vondrák. Maximizing a submodular set function subject to a
matroid constraint. SIAM J. Comput., 40(6):1740–1766, 2011.

[4] Chandra Chekuri, T. S. Jayram, and Jan Vondrák. On
multiplicative weight updates for concave and submodular
function maximization. In Proc. 6th ITCS, pages 201–210,
2015.

[5] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Submod-
ular function maximization via the multilinear relaxation and
contention resolution schemes. SIAM J. Comput., 43(6):1831–
1879, 2014.

[6] Shaddin Dughmi, Tim Roughgarden, and Mukund Sundarara-
jan. Revenue submodularity. Theory of Computing, 8(1):95–
119, 2012.

[7] Moran Feldman, Joseph Naor, and Roy Schwartz. A unified
continuous greedy algorithm for submodular maximization.
In Proc. 52nd FOCS, pages 570–579, 2011.

[8] Shayan Oveis Gharan and Jan Vondrák. Submodular maxi-
mization by simulated annealing. In Proc. 22nd SODA, pages
1098–1117. SIAM, 2011.

[9] Ryan Gomes and Andreas Krause. Budgeted nonparametric
learning from data streams. In Proc. 27th ICML, pages 391–
398, 2010.

[10] Stefanie Jegelka and Jeff A. Bilmes. Submodularity beyond
submodular energies: Coupling edges in graph cuts. In
The 24th IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2011, Colorado Springs, CO, USA, 20-25
June 2011, pages 1897–1904, 2011.

[11] David Kempe, Jon M. Kleinberg, and Éva Tardos. Maximizing
the spread of influence through a social network. In Proc. 9th
KDD, pages 137–146, 2003.

[12] Andreas Krause, Ajit Paul Singh, and Carlos Guestrin. Near-
optimal sensor placements in gaussian processes: Theory,
efficient algorithms and empirical studies. Journal of Machine
Learning Research, 9:235–284, 2008.

[13] Jon Lee, Vahab S Mirrokni, Viswanath Nagarajan, and Maxim
Sviridenko. Non-monotone submodular maximization under
matroid and knapsack constraints. In Proc. 41st STOC, pages
323–332. ACM, 2009.

[14] Jon Lee, Maxim Sviridenko, and Jan Vondrák. Submodular
maximization over multiple matroids via generalized exchange
properties. Mathematics of Operations Research, 35(4):795–
806, 2010.

[15] Hui Lin and Jeff A. Bilmes. Multi-document summarization
via budgeted maximization of submodular functions. In Human
Language Technologies: Conference of the North American
Chapter of the Association of Computational Linguistics,
Proceedings, June 2-4, 2010, Los Angeles, California, USA,
pages 912–920, 2010.

[16] G L Nemhauser and L A Wolsey. Best algorithms for
approximating the maximum of a submodular set function.
Mathematics of Operations Research, 3(3):177–188, 1978.

[17] Maxim Sviridenko. A note on maximizing a submodular set
function subject to a knapsack constraint. Operations Research
Letters, 32(1):41–43, 2004.

[18] Jan Vondrák. Optimal approximation for the submodular
welfare problem in the value oracle model. In Proc. 40th
STOC, pages 67–74. ACM, 2008.

APPENDIX

In this section, we analyze Algorithm 0 given in Section III.

We start by showing that the problem maxu≤x≤v F (x) has

an optimal solution OPT with the following property.

Lemma 12. There is an optimal solution OPT to the prob-
lem maxu≤x≤v F (x) such that for all i, either OPTi = ui

or OPTi = vi.

Proof: Let OPT = argmaxu≤x≤v F (x) be an arbitrary

optimal solution. Note that we can write each OPTi as a

convex combination of ui and vi: OPTi = γiui+(1−γi)vi,

where γi = (OPTi − ui)/(vi − ui) if ui �= vi and γi = 1
otherwise. Let oi be a random variable that is equal to ui with

probability γi and is equal to vi with probability 1− γi. Let
o be the vector whose coordinates are oi’s. By the definition

of the multilinear extension, we have F (OPT) = Eo[F (o)].
Thus, there exists a realization o = ô such that F (ô) ≥
F (OPT). Thus there is an optimal solution such that for all

i, its ith coordinate is either ui or vi.

We will also use the following observation that follows from

the definition of the multilinear extension.

Claim 13. Let x ∈ [0, 1]n and δ ∈ [−xi, 1− xi]. We have

F (x+ δ ·1{i})−F (x) = δ · (F (x∨1{i})−F (x∧1V \{i})).

Proof: Note that, for each y ∈ [0, 1]n and each j ∈ [n],

F (y) = yj · F (y ∨ 1{j}) + (1− yj) · F (y ∧ 1V \{j}).

Therefore

F (x+ δ · 1{i}) = (xi + δ) · F (x ∨ 1{i})+
(1− xi − δ) · F (x ∧ 1V \{i}),

F (x) = xi · F (x ∨ 1{i}) + (1− xi) · F (x ∧ 1V \{i}),

and the claim follows.

Proof of Lemma 5: Let OPT = argmaxu≤x≤v F (x). By

Lemma 12, we may assume that for each i, either OPTi =

253254254

ui or OPTi = vi. Let OPT(i) = (OPT ∨ u(i)) ∧ v(i).

Note that u(i) ≤ OPT(i) ≤ v(i) and therefore ∇F (u(i)) ≥
∇F (OPT(i)) ≥ ∇F (v(i)) by Fact 3.

We will show that

F (OPT(i−1))− F (OPT(i)) ≤
1

2

(
F (u(i))− F (u(i−1)) + F (v(i))− F (v(i−1))

)
. (1)

Note that (1) immediately implies the lemma. We prove (1)

in the following.

Suppose that a′i + b′i �= 0. By Claim 13,

F (u(i))− F (u(i−1))

=
a′i

a′i + b′i
(vi − ui)·(

F (u(i−1) ∨ 1{i})− F (u(i−1) ∧ 1V \{i})
)

=
(a′i)

2(vi − ui)

a′i + b′i
and

F (v(i))− F (v(i−1))

=
b′i

a′i + b′i
(vi − ui)·(

−F (v(i−1) ∨ 1{i}) + F (v(i−1) ∧ 1V \{i})
)

=
(b′i)

2(vi − ui)

a′i + b′i
.

Now recall that we have either OPTi = ui or OPTi = vi.

If OPTi = ui, we have

F (OPT(i−1))− F (OPT(i))

=
a′i

a′i + b′i
(vi − ui)·(

−F (OPT(i−1) ∨ 1{i}) + F (OPT(i−1) ∧ 1(V \{i}))
)

= − a′i
a′i + b′i

(vi − ui)
∂F

∂xi
(OPT(i−1))

≤ − a′i
a′i + b′i

(vi − ui)
∂F

∂xi
(v(i−1))

=
a′ibi(vi − ui)

a′i + b′i

≤ a′ib
′
i(vi − ui)

a′i + b′i
On the first two lines, we have used Claim 13 and Fact 2. On

the third line, we have used the fact that ∇F (OPT(i−1)) ≥
∇F (v(i−1)). On the fourth and fifth lines, we have used the

definition of bi and b′i.

If OPTi = vi, we use an analogous argument.

F (OPT(i−1))− F (OPT(i))

=
b′i

a′i + b′i
(vi − ui)·

(F (OPT(i−1) ∨ 1{i})− F (OPT(i−1) ∧ 1V \{i}))

=
b′i

a′i + b′i
(vi − ui)

∂F

∂xi
(OPT(i−1))

≤ b′i
a′i + b′i

(vi − ui)
∂F

∂xi
(u(i−1))

≤ a′ib
′
i(vi − ui)

a′i + b′i

Since 2a′ib
′
i ≤ (a′i)

2 + (b′i)
2, the inequality (1) follows.

Finally, suppose that a′i + b′i = 0. Notice that ai ≥ −bi by

submodularity so this case can only happen if ai = bi = 0.
In this case, we can set the ith coordinate of u and v to

an arbitrary common value and by the same argument as

above, we have F (u(i)) = F (u(i−1)), F (v(i)) = F (v(i−1)),
and F (OPT(i)) = F (OPT(i−1)). Therefore (1) is trivially

satisfied. �
In Figure 3, we give a discretized version of the algorithm

in Figure 2. In the remainder of this section, we show how

to modify the analysis from Section V.

We discretize the time interval [0, 1] into segments of size

δ = n−4.

Analysis of the solution y(1).: We modify the analysis from

Subsection V-A as follows. (Note that the rest of the analysis

remains unchanged.)

Consider an iteration θ of the outer for loop of the algorithm

in Figure 3. In the remainder of this section, all of the vectors

x(·), y(·), etc. refer to the vectors during iteration θ. All of

the time steps are implicitly assumed to be the discrete time

steps {0, δ, 2δ, 3δ, . . . , 1}.
First we prove bounds on ‖x(t)‖∞ and ‖y(t)‖∞ with a

similar argument to Lemma 7. Consider a fixed i ∈ [n]. Since

v
(t)
i ≤ α for all t < θ, we have 1−x(t+δ)

i ≥ (1−δα)(1−x(t)
i)

for all t < θ. Thus,

1− x
(t)
i ≥ (1− δα)t/δ.

Similarly, for all t ∈ [θ, 1] and t a multiple of δ,

1− y
(t)
i ≥ (1− δα)θ/δ(1− δ)(t−θ)/δ.

Next we prove a lower bound on F (y(1)) with a similar

argument to Theorem 6.

Lemma 14. Consider u,v satisfying |ui − vi| ≤ δ. Then

F (v)− F (u) ≤ δn2M,

where M = maxi∈[n] f({i}).

Proof: First consider the case u,v agree on all but

coordinate i0. Let R(x) be the random set where each

element i is independently included with probability xi. This

254255255

1: Initialize x∗ = 0
2: δ = n−4

3: for θ ∈ {0, δ, 2δ, 3δ, . . . , 1} do
(�) Dampened Continuous Greedy stage

4: Initialize x(0) = 0
5: t = 0
6: while t < θ do
7: v(t) = argmaxc∈C,‖c‖∞≤α〈∇F (x(t)) ◦

(1− x(t)), c〉
8: x(t+δ) = x(t) + δv(t) ◦ (1− x(t))
9: t = t+ δ

10: end while

(�) Standard Continuous Greedy stage

11: Initialize y(θ) = x(θ)

12: while t < 1 do
13: v(t) = argmaxc∈C〈∇F (y(t)) ◦ (1 −

y(t)), c〉
14: y(t+δ) = y(t) + δv(t) ◦ (1− y(t))
15: t = t+ δ
16: end while

(�) Double Greedy stage

17: p = argmaxc∈C〈∇F (x(θ)) ◦ (1− x(θ)), c〉
18: Find z approximating argmaxc≤p F (c) using

the Double Greedy algorithm (Figure 1)

(�) Update the best solution

19: if F (y(1)) > F (x∗) then x∗ = y(1)

20: end if
21: if F (z) > F (x∗) then x∗ = z
22: end if
23: end for
24: return x∗

Figure 3. Discretized algorithm for a general constraint

process can be thought of as picking a random ri ∈ [0, 1]
and including i if ri ≤ xi. One can generate (coupled) R(u)
and R(v) by sharing the same ri’s. Notice that R(u) and

R(v) agree on all coordinates other than i0 and they disagree

on coordinate i0 with probability at most δ. Thus we have

E[f(R(u))− f(R(v))] ≤ δE[f(R(u)) | R(u) �= R(v)]

≤ δmax
S⊆V

f(S) ≤ δnM.

Next, let ui be the vector whose first i coordinates agree

with u and the last n− i coordinates agree with v. We have

F (v)− F (u) =
n−1∑
i=0

(F (ui)− F (ui+1)) ≤ δn2M,

where the inequality comes from the above special case.

Corollary 15. Consider u and v satisfying u ≤ v and
vi ≤ ui + δ. Then

∂F

∂xi
(u)− ∂F

∂xi
(v) ≤ 2δn2M.

Proof: By Claim 2,

∂F

∂xi
(u)− ∂F

∂xi
(v) = F (u ∨ 1{i})− F (v ∨ 1{i})−

F (u ∧ 1V \{i}) + F (v ∧ 1V \{i}) ≤ 2δn2M.

For any given t ∈ [θ, 1− δ], we have

F (y(t+δ))− F (y(t))

=

∫ 1

0

〈∇F ((1− z)y(t) + zy(t+δ)),y(t+δ) − y(t)〉dz
= 〈∇F (y(t)),y(t+δ) − y(t)〉+∫ 1

0

〈
∇F ((1− z)y(t) + zy(t+δ))−∇F (y(t)),

y(t+δ) − y(t)
〉
dz

≥ 〈∇F (y(t)),y(t+δ) − y(t)〉−∫ 1

0

‖∇F ((1− z)y(t) + zy(t+δ))−∇F (y(t))‖∞·
‖y(t+δ) − y(t)‖1dz
≥ 〈∇F (y(t)),y(t+δ) − y(t)〉 − δ2n3M

= 〈∇F (y(t)), δv(t) ◦ (1− y(t))〉 − δ2n3M

= 〈∇F (y(t)) ◦ (1− y(t)), δv(t)〉 − δ2n3M

≥ 〈∇F (y(t)) ◦ (1− y(t)), δOPT〉 − δ2n3M

≥ δ(F (y(t) ∨OPT)− F (y(t)))− δ2n3M

≥ δ(1− δα)θ/δ(1− δ)(t−θ)/δ · F (OPT)− δ · F (y(t))−
δ2n3M (By Lemma 10)

Therefore we have the following recurrence for F (y(t)):

F (y(t+δ)) ≥ (1− δ)F (y(t))+

δ(1− δα)θ/δ(1− δ)(t−θ)/δF (OPT)− δ2n3M

By expanding the recurrence, we obtain

F (y(t)) ≥ (1− δ)(t−θ)/δ
(
(t− θ)(1− δα)θ/δ · F (OPT)+

F (x(θ))
)
− tδn3M.

By substituting t = 1 and δ = n−4 and by using the

inequalities e−x/(1−x) ≤ 1−x ≤ e−x for all 0 < x < 1, we

obtain

F (y(1)) ≥e−1+θ
(
(1− θ)e−αθF (OPT) + F (x(θ))

)
−

O(n−1)F (OPT)

255256256

=
1

e

(
(1− θ)e(1−α)θF (OPT) + eθF (x(θ))

)
−

O(n−1)F (OPT).

Combining the two solutions y(1) and z.: We extend the

argument in Subsection V-C as follows. As we have shown

above, in every iteration θ that is a multiple of δ, we obtain

two solutions y(1) and z satisfying:

F (y(1)) ≥1

e

(
(1− θ)e(1−α)θF (OPT) + eθF (x(θ))

)
−

O(n−1)F (OPT)

F (z) ≥ 1

2(1− α)

(
e−αθF (OPT)− F (x(θ))−

〈∇F (x(θ)) ◦ (1− x(θ)),v(θ)〉
)

As before, we show that there is an iteration θ for which

max{F (y(1)), F (z)} > C ·F (OPT), where C is a constant

that we will set later. We will proceed by contradiction and

assume that max{F (y(1)), F (z)} ≤ C · F (OPT) for all θ.

We take a convex combination of the two inequalities and

eliminate F (x(θ)). Thus we get that, for all θ,

1
1

2(1−α) + eθ−1

((2− θ)e(1−α)θ−1

2(1− α)
F (OPT)−

eθ−1

2(1− α)
〈∇F (x(θ)) ◦ (1− x(θ)),v(θ)〉

)
≤ C ′ · F (OPT)

where C ′ = C +O(n−1). Thus, for all θ ∈ [0, 1],

〈∇F (x(θ)) ◦ (1− x(θ)),v(θ)〉) ≥(
(2− θ)e−αθ − (e1−θ + 2(1− α))C ′

)
F (OPT)

For any given t ∈ [0, θ), we have

F (x(t+δ))− F (x(t))

=

∫ 1

0

〈∇F ((1− z)x(t) + zx(t+δ)),x(t+δ) − x(t)〉dz
= 〈∇F (x(t)),x(t+δ) − x(t)〉+∫ 1

0

〈
∇F ((1− z)x(t) + zx(t+δ))−∇F (x(t)),

x(t+δ) − x(t)
〉
dz

≥ 〈∇F (x(t)),x(t+δ) − x(t)〉−∫ 1

0

‖∇F ((1− z)x(t) + zx(t+δ))−∇F (x(t))‖∞·
‖x(t+δ) − x(t)‖1dz
≥ 〈∇F (x(t)),x(t+δ) − x(t)〉 − δ2n3M

= 〈∇F (x(t)), δv(t) ◦ (1− x(t))〉 − δ2n3M

= δ〈∇F (x(t)) ◦ (1− x(t)), δv(t)〉 − δ2n3M

≥ δ
(
(2− t)e−αt − (e1−t + 2(1− α))C ′

)
F (OPT)−

δ2n3M

By expanding the recurrence, we obtain

F (x(t+δ)) ≥
t/δ∑
i=0

(
δ
(
(2− t+ iδ)e−α(t−iδ) − (e1−t+iδ+

2(1− α))C ′
)
F (OPT)− δ2n3M

)
(2)

By computation, we have

t/δ∑
i=0

δ(2− t+ iδ)e−α(t−iδ)

= δe−αt

(
(2− t− δ)

eαδ(t/δ+1) − 1

eαδ − 1
+

δ
(t/δ + 1)eαδ(t/δ+2) − (t/δ + 2)eαδ(t/δ+1) + 1

(eαδ − 1)2

)

≥ e−αt

(
(2− t)(eαt − 1)

α
+

tαeαt − eαt + 1

α2

)
−O(δ)

=
(t− 2)αe−αt + 2α− 1 + e−αt

α2
−O(δ)

We also have

t/δ∑
i=0

δ(e1−t+iδ + 2(1− α))C ′

=

(
δe1−t e

t+δ − 1

eδ − 1
+ 2(1− α)(t+ δ)

)
C ′

≤ (
e− e1−t + 2(1− α)(t+ δ)

)
C ′ +O(δ)

Substituting into Equation 2, we have

F (x(t+δ)) ≥
(
(t− 2)αe−αt + 2α− 1 + e−αt

α2
− (e−

e1−t + 2(1− α)t)C ′ −O(δn3)

)
F (OPT)

Notice that the RHS is exactly the same as in the continuous

argument except for an additive error O(δn3)F (OPT). By

carrying this error through, we can finish the proof exactly

the same as before.

256257257

