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Abstract—We propose definitions of substitutes and com-
plements for pieces of information ("signals") in the context
of a decision or optimization problem, with game-theoretic
and algorithmic applications. In a game-theoretic context,
substitutes capture diminishing marginal value of information
to a rational decision maker. There, we address the main open
problem in a fundamental strategic-information-revelation set-
ting, prediction markets. We show that substitutes charac-
terize "best-possible" equilibria with immediate information
aggregation, while complements characterize "worst-possible",
delayed aggregation. Game-theoretic applications also include
settings such as crowdsourcing contests and question-and-
answer forums. In an algorithmic context, where substitutes
capture diminishing marginal improvement of information to
an optimization problem, substitutes imply efficient approx-
imation algorithms for a very general class of (adaptive)
information acquisition problems.

In tandem with these broad applications, we examine
the structure and design of informational substitutes and
complements. They have equivalent, intuitive definitions from
disparate perspectives: submodularity, geometry, and informa-
tion theory. We also consider the design of scoring rules or
optimization problems so as to encourage substitutability or
complementarity, with positive and negative results. Taken as
a whole, the results give some evidence that, in parallel with
substitutable items, informational substitutes play a natural
conceptual and formal role in game theory and algorithms.

Keywords-value of information, decision problems, substi-
tutes, complements, prediction markets, information acquisi-
tion, submodularity

I. MOTIVATION

An agent living in an uncertain world wishes to make

some decision (whether to bring an umbrella on her com-

mute, how to design her company’s website, . . . ). She can

improve her expected utility by obtaining pieces of informa-

tion about the world prior to acting (a weatherman’s forecast

or a barometer reading, market research or automated A/B

testing, . . . ). This naturally leads her to assign value to

different pieces of information and combinations thereof.

The value of information arises as the expected improvement

it imparts to her optimization problem.

We would like to generally understand, predict, or design

algorithms to guide such agents in acquiring and using

information. Consider the analogous case where the agent

has value for items or goods, represented by a valuation

function over subsets of items. A set of items are substitutes

if, intuitively, each’s value decreases given more of the

others; they are complements if it increases. Here, we have

rich game-theoretic and algorithmic theories leveraging the

structure of substitutes and complements (S&C). For in-

stance, in many settings, foundational work shows that sub-

stitutability captures positive results for existence of market

equilibria, while complements capture negative results [1]–

[5]. When substitutes are captured by submodular valuation

functions [6], algorithmic results show how to efficiently

optimize (or approximately optimize) subject to constraints

imposed by the environment (e.g. [7]). For example, an

agent wishing to select from a set of costly items with a

budget constraint has a (1− 1
e )-approximation algorithm if

her valuation function is submodular [8].

Can we obtain similar structural and algorithmic results

for information? Here, a piece of information is modeled as a

signal or random variable that is correlated in some way with

the state of the world that the agent cares about (whether it

will rain, how profitable are different website designs, . . . ).

Intuitively, one might often expect information to satisfy

substitutable or complementary structure. For instance, a

barometer reading and an observation of whether the sky

is cloudy both yield valuable information about whether

it will rain to an umbrella-toting commuter; but these are

substitutable observations for our commuter in that each is

probably worth less once one has observed the other. On

the other hand, the dew point and the temperature tend to be

complementary observations for our commuter: Rain may be

only somewhat correlated with dew point and only somewhat

correlated with temperature, but is highly correlated with

cases where temperature and dew point are close (i.e. the

relative humidity is high).

Despite this appealing intuition, there are significant chal-

lenges to overcome in defining informational S&C. Pieces of

information, unlike items, may have complex probabilistic

structure and relationships. But on the other hand, this

structure alone cannot capture the value of that information,

which (again unlike items) seemingly must arise from the

context in which it is used. Next, even given a measure

of value, it is unclear how to formalize an intuition such

as “diminishing marginal value”. Finally, it remains to

demonstrate that the definitions are tractable and have game-

theoretic and/or algorithmic applications. These challenges
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seem to have prevented a successful theory of informational

S&C thus far.

A. This paper: summary and contributions

This paper has four components.

1. We propose a definition of informational substitutes

and complements (S&C). Beginning from the very general

notion of value of information in the context of any specific

decision or optimization problem, we define S&C in terms

of diminishing (increasing) marginal value for that problem.

This requires a definition of “marginal unit” of information.

We consider a hierarchy of three kinds of marginal infor-

mation: learning another signal, learning some deterministic

function of another signal, and learning some randomized

function (“garbling”) of another signal. These give rise to

lattice structures on the space of signals in a given context;

we formalize S&C by submodularity and supermoduarity
on these lattices. The three lattices are respectively very

coarse, moderately coarse, and fine; they correspond to

weak, moderate, and strong versions of the definitions.

2. We give game-theoretic applications of these definitions,

focusing primarily on information aggregation in markets.

When strategic agents have heterogeneous, valuable infor-

mation, we would like to understand when and how their

information is revealed and aggregated in an equilibrium of

strategic play. Prediction markets, which are toy models of

financial markets, are possibly the simplest setting capturing

the essence of this question. However, although the efficient

market hypothesis states that information is quickly aggre-

gated in financial markets [9], despite much research on this

question in economics (e.g. [10], [11]) and computer science

(e.g. [12]–[14]), very little was previously known about how

quickly information is aggregated in markets except in very

special cases.

We address the main open question regarding strategic

play in prediction markets: When and how is information

aggregated? We show that informational substitutes imply

that all equilibria are of the “best possible” form where infor-

mation is aggregated immediately, while complements imply

“worst possible” equilibria where aggregation is delayed

as long as possible. Furthermore, the respective converses

hold as well; e.g., if an information structure guarantees the

“best possible” equilibria, then it must satisfy substitutes.

Informational S&C thus seem as fundamental to equilibria of

(informational) markets as substitutable items are in markets

for goods.

We believe that informational S&C have the potential for

broad applicability in other game-theoretic settings involving

strategic information revelation, and toward this end, give

some additional example applications. We show that S&C

characterize analogous “rush/delay” equilibria in some mod-

els of machine-learning or crowdsourcing contests [15], [16]

and question-and-answer forums [17]. These results resolve

open questions raised by previous work.

3. We give algorithmic applications, focusing on the

complexity of approximately-optimal information acquisi-

tion. Namely, we define a very broad class of problems,

termed SIGNALSELECTION, in which a decision maker

wishes to acquire information prior to making a decision,

but has constraints on the acquisition process. For instance, a

company wishes to purchase heterogeneous, pricey data sets

subject to a budget constraint, or to place up to k sensors

in an environment. We show that substitutes imply efficient

approximation algorithms in many cases, including a budget

constraint; this extends to an adaptive version of the problem

as well. We also show that the problem is hard in general and

in the complements case, even when signals are independent

uniform bits. These results offer a unifying perspective on

a variety of similar “submodularity-based” solutions in the

literature [18]–[21].

4. We consider the structure and design of informational

S&C. The goal is to both identify substitutable structure and

design for it. We take some initial steps in these directions.

For instance, we provide natural geometric and information-

theoretic definitions of S&C and show they are equivalent

to the submodularity-based definitions.

We address two fundamental questions: Are there (non-

trivial) signals that are substitutes for every decision prob-

lem? Second, given a set of signals, can we always design

a decision problem for which they are substitutes? In the

game-theoretic settings above, this corresponds to design

of mechanisms for immediate aggregation, somewhat of a

holy grail for prediction markets. In algorithmic settings, it

has relevance for the design of submodular surrogates [22].

Unfortunately, we give quite general negative answers to

both questions. Surprisingly, more positive results arise for

complements. We give the geometric intuition behind these

results and point toward heuristics for substitutable design

in practice.

In summary, the contributions of this paper are twofold:

(a) in the definitions of informational S&C, along with

a body of evidence that they are natural, tractable, and

useful; and (b) in the applications, in which we resolve a

major open problem on strategic information revelation as

well as give a unifying and general framework for a broad

algorithmic problem. Our results on structure and design of

informational S&C points to potential for these very general

definitions and results to have concrete applications.

Taken all together, we believe these results give evidence

that informational S&C, in analogy with the successful

theories of substitutable goods, have a natural and useful

role to play in game theory, algorithms, and in connecting

the two.
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II. TECHNICAL SUMMARY

Here, we give a more formal summary of the contributions

of this paper. For brevity, we will give only the main or

representative results, as well as deferring much intuition or

discussion to the relevant sections.
1) Setting and definitions of S&C: We begin from a

general decision or optimization problem, given by a utility

function u(d, e) when decision d is taken (e.g. bring um-

brella) and e is the outcome of some random event E (e.g.
rain). E and A1, . . . , An are random events that are drawn

jointly from a prior distribution P . A1, . . . , An are referred

to as “base signals”, and observing them reveals possibly-

useful information about E (e.g. A1 is a barometer reading,

. . . ). One can also obtain other signals by combining these,

e.g. in general a signal may correspond to observing multiple

base signals or some partial information about a base signal

(this will be formalized shortly). For simplicity we assume

all Ai and E have a finite number of outcomes. We use p
for the prior distribution on E and e.g. pai

for the posterior

on E conditioned on Ai = ai.
An agent would like to select the decision maximizing

expected utility, over the randomness of E, given the infor-

mation she has. Define the “value” function Vu,P for this

decision problem and prior as follows: for any signal A,

Vu,P (A) = E
a∼A

[
max

d
E

e∼E
[u(d, e) | A = a]

]
.

This is the expected utility for first observing A, then

selecting the utility-maximizing action conditioned on the

observed realization a. When u and P are clear from context,

we drop them from the superscript. Note that the signal A
in the definition above can be e.g. the “null” signal denoted

⊥, a pair of base signals denoted Ai ∨ Aj for reasons that

will become clear soon, etc.

Notice that the marginal value of A versus just knowing

the prior is Vu,P (A)−Vu,P (⊥), and the marginal value of

signal B given that the agent already has access to A is

Vu,P (A ∨ B)− Vu,P (A).
The marginal unit of information: We would like to

define substitutes and complements in terms of the marginal
value of information. We have defined value above, but

this raises the question: What is a “marginal unit” of

information? In different contexts, different marginal units

are appropriate, so we define three notions ranging from

very “large” units, to more fine-grained, to very fine-grained.

These will respectively give rise to weak, moderate, and

strong versions of substitutability. (Note: all discussion ap-

plies equally to complements.) Strong substitutes will imply

moderate substitutes, which will imply weak substitutes.

This will correspond to the fact that if all of the “fine-

grained” units of information display diminishing marginal

value, then “larger” units must as well.

1) Observing an additional signal. In a game-theoretic

setting, an agent may control whether or not a source

of information (signal) is revealed. In an algorithmic

setting, an algorithm may need to decide either to

acquire additional signals or not. For both cases, the

natural unit of marginal information is an entire signal

(which is quite “large” or “coarse”).

2) Observing a deterministic function of a signal.
Here, notice that the information revealed by a deter-

ministic function is essentially determined by how it

combines different outcomes of the signal. An injective

function would completely reveal the original signal;

a function mapping all realizations to the same output

reveals nothing. Thus, this case captures an agent

possibly “pooling” outcomes of a signal together to re-

veal only partial information; or similarly, algorithms

optimizing over these discrete post-processings of a

signal. The unit of information is significantly more

fine-grained.

3) Observing a randomized function (“garbling”) of a
signal. Just as the previous case corresponded to deter-

ministic strategies of an agent, this case corresponds

to randomized strategies. Algorithmically, it captures

optimization over all “signals about signals”. Here, the

marginal unit of information can be extremely fine;

for instance, consider “output the original signal with

probability p, else something random” as p → 0 or

p→ 1.

In the full version of this paper, we show that each of

these notions corresponds to a lattice of signals generated

by A1, . . . , An. Informally, a lattice here is a set of possible

signals having a partial ordering � with A′ � A meaning

that A′ conveys less information than A. Lattices have a

join operation A ∨ B meaning “the signal that conveys the

outcome of both A and B” and a meet operation A ∧ B
meaning “the signal that conveys information common to

both A and B”.
The first case discussed above corresponds to the “subset”

lattice of subsets of {A1, . . . , An}, with join operation as set

union and meet as set intersection.
The second case corresponds to the “discrete” lattice

defined utilizing Aumann’s partition model [23], where

nature randomly selects a state of the world and each signal

is modeled as a partition of these possible states. Here

intuitively A′ � A if the signal A′ is a deterministic function

of the signal A; this is formalized via a lattice of partitions.
For the third case, we construct the “continuous” lattice

where, intuitively, A′ � A if A′ is a randomized function or

“garbling” of A. This is formalized by extending Aumann’s

model to allow partial information about any signal. (The

partial ordering here is very similar to Blackwell’s order-

ing [24].)
The definitions: Now that we have notions for marginal

units of information, we will use sub- and super-modularity

to capture diminishing and increasing marginal value. While

these definitions may be most familiar in terms of set func-
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tions f : 2{1,...,n} → R, they have precise generalizations to

lattice functions as well.

Definition II-.1. A function f from a lattice to the reals is

submodular if it exhibits diminishing marginal value: For all

A′, A,B on the lattice with A′ � A,

f(B ∨ A′)− f(A′) ≥ f(B ∨ A)− f(A).

It is supermodular if it exhibits increasing marginal value:

For all A′ � A and all B, the above inequality is reversed.

The sub- or super-modularity is strict if, whenever A and B
are incomparable on the lattice’s ordering, the inequality is

strict.

Definition II-.2. In the context of a decision problem u
and prior P , the signals on a corresponding lattice L are

substitutes if Vu,P is submodular on L. The signals are

complements if Vu,P is supermodular on L. Substitutes or

complements are weak / moderate / strong if L is respec-

tively the subset / discrete / continuous lattice. They are strict
substitutes (complements) if Vu,P is strictly submodular

(supermodular) on L.
The most basic example of substitutes are a pair of signals

that are perfectly correlated, i.e. take on the same outcome

with probability one. In this case, for any decision problem,

these signals will be substitutes, as neither can possibly give

additional information given the other. Hence, we might call

them “universal” substitutes, although trivial ones.

The most basic example of complements might be a pair

of independent uniform bits, when the event E of interest

is the XOR of the bits. In this case, either bit alone gives

no information about E, while both together completely

determine E.

In many contexts, signals will neither be substitutes nor

complements. This matches our experience with valuations

for goods: although substitutes are a broad class, many (in

fact most) valuation functions are neither submodular nor

supermodular. One example is to simply “pair” the two

examples above. Let signals A1 and A2 each consist of a

pair of independent uniform bits; the first bits of each are

perfectly correlated and always the same, while the second

are completely independent. The event E also consists of a

pair of bits, the first equal to the first bits of A1 and A2 and

the second equal to the XOR of their second bits.

We will later provide some tools for applying these

definitions along with geometric intuition and results on

classes of S&C.

2) Game-theoretic applications:
Overview of prediction markets: A prediction market

is a very basic model of strategic information revelation

and aggregation. There are models of prediction markets

in which participants buy and sell shares of securities,

as in financial markets [25], [26]. These are strategically

equivalent to the model we will adopt, based on proper

scoring rules, and our results automatically apply to these

as well.

A scoring rule is a utility function S(q, e) where q is a

probability distribution over E. It is (strictly) proper if, when

E ∼ q, choosing q̂ = q (uniquely) maximizes the expected

score Ee∼q S(q̂, e). One strictly proper example is the log
scoring rule S(q, e) = log q(e) where q(e) is the probability

assigned to E = e.
In a prediction market, an event E, strictly proper scor-

ing rule S, and initial prediction p(0) are chosen by the

market designer. We suppose that E and some base signals

A1, . . . , An are drawn jointly by nature from a common

prior P . There are m traders, each observing some signal

on the continuous lattice, who take turns participating in a

fixed order. At each time t = 1, . . . , T , participant it updates
the prediction from p(t−1) to p(t). After T , a realization of

an event E = e is observed, and for each update i made

at some time t, i is paid S(p(t), e) − S(p(t−1), e). Notice

that the entire payment of the mechanism telescopes into

S(p(T ), e)− S(p(0), e).
The prediction market is an extensive-form Bayesian

game. In a Bayes-Nash equilibrium (BNE), each partici-

pant’s strategy maximizes expected utility given the oth-

ers’ strategies and her own signal realization. A natural

refinement is perfect Bayesian equilibrium (PBE), loosely

a subgame-perfect version of BNE.

If each participant arrives only once, then properness

of the scoring rule would imply that at each opportunity,

participants are truthful: they reveal their posterior beliefs

conditioned on the signal and reports in the market thus far.

Then, the relatively weak condition of distinguishability –

roughly, that others’ signals can be uniquely inferred from

their truthful predictions [14], [27] – implies information

aggregation.

The question is what happens when participants have

multiple opportunities. This question is extremely relevant

to the study of general markets, where this is a simplified

model. But it is also relevant for more general strategic

contexts as well, as strategic information withholding and

revelation is a very general phenomenon. We later give other

game-theoretic examples.

The best possible scenario for aggregation is an all-rush
equilibrium: When participants are numbered sequentially in

order of their first opportunity, then each participant i reports
truthfully, fully revealing her information, before i + 1’s
first opportunity. The worst possible scenario is an all-delay
equilibrium: When participants are numbered sequentially in

order of their final opportunity, participant i does not reveal

any information until after i− 1’s final opportunity.

Challenges and prior work: Prior work [12] observes

that the key challenge can be boiled down to the “Alice-

Bob-Alice” market where Alice participates at times 1 and

3 while Bob participates at t = 2. Bob only participates

once, hence is truthful by the observation above. Similarly,
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Alice is truthful at t = 3. The only question left is how

Alice reports at t = 1.
Despite the problem being narrowed to this extent almost

10 years ago [12], it still seems quite difficult to address

a priori. It would be ideal if Alice predicts truthfully;

but she might withhold information, release some garbling

of her signal, or even attempt to mislead or “bluff” Bob

into making a mistake that she can profitably correct. It is

unclear how to characterize her behavior with any generality

considering the large array of possible scoring rules and

information structures.

So far, only two special cases have been successfully

resolved. [12] considered the log scoring rule and condi-
tionally independent signals, i.e. for all e, p(a1, . . . , an |
e) = p(a1 | e) · · · p(an | e). The authors showed that, in this

case, in the Alice-Bob-Alice game, Alice reports truthfully at

t = 1; they extended this to show that any perfect Bayesian

equilibrium, with any number of participants, is always all-

rush with conditionally independent signals. Subsequently,

[13] considered the log scoring rule with (unconditionally)
independent signals, i.e. p(a1, . . . , an) = p(a1) · · · p(an).
The authors showed in this case that Alice does not report

truthfully in the first round, hence in general markets,

equilibria cannot be all-rush.

[14] again considered the log rule and independent

signals, showing that Alice does not report anything at t = 1
and extending this to prove that any PBE is all-delay.

Unfortunately, it was not clear how one would generalize

either the intuition or the technical approach of these works,

which relied on special properties of the log scoring rule

related to Shannon’s entropy. For instance, another popular

scoring rule is the quadratic rule, S(p, e) = 2p − ‖p‖22.
Might Alice report truthfully for this rule when signals are

conditionally independent? Unfortunately, the answer is no

even for the popular quadratic (“Brier”) scoring rule, as we

show in the full version. So conditional independence is

not the right general condition, and without that, it is very

unclear what such a condition could be. Meanwhile, for the

quadratic scoring rule, independent signals do induce all-

delay equilibria (it is a corollary of a more general sufficient

condition for complementarity, in the full version). It seems

very intimidating to try to infer from examples such as

these (even were they known prior to this work) any general

formal, mathematical principle.

Our results: We show that informational substitutes

and complements characterize, respectively, all-rush and all-

delay equilibria in prediction markets.

Theorem II-.1. With respect to the market’s proper scoring
rule S:

1) If signals are strong, strict substitutes, then for every
set of participants and order of participation, every

Bayes-Nash equilibrium is all-rush.
2) If signals are not strong substitutes, then there is a set

of participants and order where no perfect Bayesian
equilibrium is all-rush.

3) If signals are strong, strict complements, then for every
set of participants and order, every perfect Bayesian
equilibrium is all-delay.

4) If signals are not strong complements, then there
is a set of participants and order where no perfect
Bayesian equilibrium is all-delay.

Sketch of ideas: A scoring rule S is a kind of decision

problem where S(p, e) is the utility for prediction p and

outcome e of nature. Given S and an information structure,

one has the associated value function V , with V(A) the

expected score for reporting truthfully after observing signal

A.

Now consider for intuition the Alice-Bob-Alice market

where Alice has signal A and Bob has signal B. For

example, if the initial market prediction p(0) = p, the prior

on E, and Alice reports truthfully, then her expected net

reward from this participation is

E
a,e

S(pa, e)− E
e
S(p, e) = V(A)− V(⊥).

(Here, ⊥ refers to a null, uninformative signal.) This is

a general phenomenon: In a prediction market, a report’s
expected profit is the marginal value of its information. An

important supporting insight is that, in equilibrium, no par-

ticipant is deceived or “bluffed” by any other: Each knows

the distribution of signals and the equilibrium strategies. This

implies that Alice cannot really mislead Bob in equilibrium,

but only withhold information from him. (Of course, an

equilibrium must be robust to Alice’s deceptions.)

We describe the intuition for perfect Bayesian equilibrium

although, in the case of substitutes, we can also obtain

the stronger Bayes-Nash result. In PBE, Bob will always

report truthfully according to his beliefs at time t = 2 even

if Alice deviates from equilibrium, and Alice will always

report truthfully at time t = 3. This implies that the final

market prediction is always pab, the posterior conditioned

on A = a,B = b when Alice and Bob receive these

signals. Hence one can almost view the market as a constant-

expected-sum game, where the total profit up for grabs is

V(A ∨ B)− V(⊥).
Now let Alice report according to any strategy at t = 1;

this corresponds to revealing some A′ � A on the strong

signal lattice. (Because Alice can reveal any less-informative

signal than A via a randomized strategy.) Here, in equilib-

rium, Bob’s utility will be V(B ∨ A′)− V(A′). Due to the

constant-sum property described above, Alice wants to be

choosing the A′ � A that minimizes Bob’s utility. Now the

substitutes condition is precisely that the minimizing choice

is A′ = A; that is, Alice reports truthfully at t = 1. The

complements condition is that A′ = ⊥, i.e. Alice reveals

nothing at t = 1.
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This line of reasoning doesn’t yet prove the forward

directions of the theorem (1 and 3), because we want to

show that no other type of equilibria exist beyond the

rush (delay) ones. However, we can use it to construct

deviation strategies against non-rush (non-delay) strategy

profiles. The complements case is intuitively more difficult

or less robust here: With substitutes, it is easy to deviate to

reporting truthfully early, but with complements, deviating to

reporting later depends on how others react to the deviation

strategy. The reverse directions (2 and 4) are relatively

straightforward.

The results of [14], [27] are implied by showing that their

signal structures are substitutes/complements. This is done

in the full version of the paper.

One note is that the fact that participants can employ ran-

domized strategies corresponds directly to the need for the

strong definitions of S&C here. If restricting to deterministic

strategies, the proof would go through for moderate S&C; if

restricting to the binary decision of reveal or not at each step,

it would go through with weak S&C. And the difference

has real bite: If we have only e.g. weak substitutes, we can

easily construct counterexamples to rush equilibria where

participants “partially” reveal the substitutable pieces of their

information while withholding the complementary pieces.

Other game-theoretic results: In the full version of the

paper, we show analogous results for more general or related

settings involving strategic revelation and aggregation of

information. In particular, we consider the crowdsourcing

and machine-learning contest model of [15], [16] and the

question-and-answer forums model of [17]. In both cases we

can give new results and our other results have implications

for identifying and designing good mechanisms in those

settings.

3) Algorithmic results: In the SIGNALSELECTION prob-

lem, more formally defined in the full version, we are given

a utility function u and prior P on an event E and signals

A1, . . . , An. We are also given a system of constraints

such as a cardinality constraint (at most k signals may be

selected) or a budget (“knapsack”) constraint, where each

signal has a price tag. The task is to output some feasible

subset of signals to obtain subject to these constraints, so

as to maximize the expected utility for making the decision

given that information. To focus on the complexity of the

information acquisition problem, we assume oracles for

optimizing the utility function and interacting with the prior

(which may have exponential size). This focus differs from

a variety of related results (see e.g. [28]) for special cases,

that address complexity of both problems at once.

The main positive result is that weak informational sub-

stitutes imply efficient (1 − 1/e − o(1)) approximations to

this problem for cardinality, budget, and matroid constraints.

The key idea is that the value function V is always monotone

(because more information never hurts utility) and, under

weak substitutes, is submodular on subsets of {1, . . . , n}.

This allows us to apply algorithms for monotone submodular

maximization [7], [8], [29].
On the other hand, we give a very strong reduction in

the opposite direction: The maximization of any monotone

f : 2{1,...,n} → R reduces to a special case of SIGNALS-

ELECTION where all signals are independent, uniform bits

and the decision problem is trivial to optimize. To build

this reduction, we first apply a deep characterization from

theory of proper scoring rules [30]–[32], which allows us to

transparently construct a decision problem (in this case, a

scoring rule) from a convex function G : [0, 1]n → R. We

then construct a convex G having the properties we need

on the hypercube inductively. This result implies hardness,

via known [33] or straightforward examples, even in this

trivial setting of independent bits and a trivial-to-optimize

decision problem: An exponential number of oracle queries

are required to improve upon 1 − 1/e for substitutes or to

get any approximation better than zero in general or even

in the case of complements. Please see the full version for

formal statements and proofs.
Under a strengthening of the substitutes condition, the

positive results also extend (at least for cardinality con-

straints) to the adaptive setting where the decisionmaker

selects a signal, observes its realization, then selects another,

and so on. An extremely similar result already appears in

[21], [34] under different terminology and slightly different

model. The contribution of our results here is not just in

formalizing this model or the generic positive and negative

results, but also in drawing connections to the general and

formal notion of informational substitutes, which (we have

shown) also have broad implications in game theory. One

upshot for algorithm designers is that our results described

next may have consequences for identifying substitutable

structure or even designing for it.
4) Structure and design: So far, we have seen that infor-

mational S&C are in a sense “unavoidable” both when study-

ing equilibria in strategic information-revelation settings and

when studying the complexity of information acquisition.

Given this, their usefulness is greatly enhanced by improved

understanding of the innate structure, applicability, and

tractability of the definitions. Here, we describe our general

convexity-based approach to these problems and some of

our results, focusing on the following questions:

• What information structures are nontrivial, universal
substitutes: informational substitutes for every decision

problem?

• Given an information structure, is it always possible

to design a decision problem for which signals are

“somewhat strict” substitutes? Here, somewhat strict
means that the signals are substitutes and sometimes

have strictly positive marginal value.

Notice that universal substitutes would be a counterexample

for being able to always design for complementarity, and

vice versa. Perhaps surprisingly, we get somewhat different
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results for these two cases. However, we will give an intu-

itive geometric reason for why S&C fundamentally differ.

Theorem II-.2.
1) Given any information structure, it is always possible

to design a decision problem so that signals are
somewhat strict moderate complements. Hence, all
universal moderate substitutes are trivial. (Universal
weak substitutes exist, but are “somewhat trivial”.)

2) There exist nontrivial universal strong complements;
an example is XORs of noisy independent bits. Hence,
there exist information structures for which it is im-
possible to design a decision problem so that signals
are somewhat strict weak substitutes.

Here, somewhat trivial structures have a very special form

that we can describe. Roughly, with some probability, we

have a fully trivial case where all signals are completely

redundant, i.e. after observing any one signal, the others

provide no information. In other words, the structure must

be a mixture distribution between this fully-trivial case and

a potentially nontrivial one. (It also has other properties of

interest, for instance, the realizations of the fully-trivial case

are more “informative” than those of the nontrivial case.)

To show these kinds of results, we turn back to the prob-

lems of prediction with proper scoring rules (a special case

of decision problems). It turns out that some straightforward

observations about general decision problems and classic

results on proper scoring rules [30]–[32] yield the following

useful fact: For every decision problem u there is a convex
function G : ΔE → R, and for every such G there is a u,
with V(A) = Ea G(pa). In other words, to study substitutes

and complements, it is in a sense enough to study convex

functions on probability spaces. A key point is that this fact

is constructive in both directions, so for instance, for our

negative algorithmic results, we were able to build a convex

G with the properties we needed, then use it to construct a

decision problem.

Given this approach, the intuition behind the above theo-

rem can be entirely captured geometrically by properties of

convex functions, and this is done in Figure 1.

Alternate definitions: Before closing, we highlight

some additional tools for understanding informational S&C

that appear in the full version. The first is to consider a

generalized entropy function h and define substitutes for that

entropy measure in terms of diminishing bits of information
revealed by a signal. We show that each h corresponds to a

decision problem u such that substitutes for h are substitutes

for u. Shannon entropy corresponds to the problem of

making a prediction when scored with the log scoring rule.

Similarly, the second is to consider a measure of distance

between a prior belief and a posterior due to a Bayesian

update; for this measure, signals are substitutes if they

exhibit diminishing distance between prior and posterior

beliefs. When the distance measure is a Bregman divergence,
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(a) Curvature increases complementarity. Here A1, A2 are i.i.d.
noisy bits and E = A1⊕A2, the XOR. Because G is convex, it is
more extreme at more extreme beliefs, which tend to correspond
to having multiple signals. Here the marginal value of a second
signal is much higher than that of a first; complementarity.
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(b) Flattening G cannot remove complementarity. For these
signals (the same as in (a)), the Bayesian update on the second
signal is always larger than on the first. Intuitively, even for flat G,
this structure will always exhibit complementarity. These signals
are universal complements.
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(c) Curvature destroys substitutability. Here E is a uniform bit
conditioned on which each Ai = E independently with large
probability. These are often substitutes, but by introducing high
curvature at an extreme point, we create a problem where useful
decisions can only be made with access to multiple signals. The
first signal has no marginal value over the prior, while the second
signal has some marginal value, so they are now complements. In
general, this argument shows that universal substitutes must involve
a “triviality” ruling out this construction.

Figure 1: Universal substitutes and complements. In each

plot, there are two binary signals A1, A2 and a binary event

E. The x-axis is the probability of E. G is the expected

utility function for some decision problem (different in each

plot). The circles correspond to the value of no signals

(black), one signal (blue), and two signals (red). The blue

braces measure the distance from the prior to posteriors on

one signal; red measure additional distance to the posterior

on two.
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we show that it corresponds to a decision problem u such

that the substitutes coincide. In particular, KL-divergence
(relative entropy) corresponds to predicting against the log
scoring rule.

III. SUMMARY

The main contributions of this paper are to (1) propose

a definition of informational substitutes and complements;

(2) apply it to resolve an open problem in a basic game-

theoretic setting, as well as obtain other game-theoretic

and (3) algorithmic results; (4) give tools and results for

understanding, identifying, and designing for informational

S&C.

Concretely, we resolve several broad open problems in

prediction markets: we show when information is immedi-

ately aggregated, when it is aggregated as late as possible,

and whether it is possible to design markets for these cases (a

problem that previously seemed out of reach). To do so, we

developed very general definitions of informational S&C and

gave tools for making them tractable along with geometric

intuition. These definitions were shown to have applications

in very general algorithm-design problems as well as other

game-theoretic settings, addressing questions raised by prior

work. This evidence suggests that informational S&C has

a natural and useful role to play in both strategic and

algorithmic settings, as well as in connecting the two.
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