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Abstract—An extensive body of recent work studies the wel-
fare guarantees of simple and prevalent combinatorial auction
formats, such as selling m items via simultaneous second price
auctions (SiSPAs) [1], [2], [3]. These guarantees hold even
when the auctions are repeatedly executed and the players
use no-regret learning algorithms to choose their actions.
Unfortunately, off-the-shelf no-regret learning algorithms for
these auctions are computationally inefficient as the number of
actions available to the players becomes exponential. We show
that this obstacle is inevitable: there are no polynomial-time
no-regret learning algorithms for SiSPAs, unless RP ⊇ NP, even
when the bidders are unit-demand. Our lower bound raises the
question of how good outcomes polynomially-bounded bidders
may discover in such auctions.

To answer this question, we propose a novel concept of
learning in auctions, termed “no-envy learning.” This notion
is founded upon Walrasian equilibrium, and we show that it
is both efficiently implementable and results in approximately
optimal welfare, even when the bidders have valuations from
the broad class of fractionally subadditive (XOS) valuations
(assuming demand oracle access to the valuations) or coverage
valuations (even without demand oracles). No-envy learning
outcomes are a relaxation of no-regret learning outcomes,
which maintain their approximate welfare optimality while
endowing them with computational tractability.

Our positive and negative results extend to several auction
formats that have been studied in the literature via the
smoothness paradigm. Our positive results for XOS valuations
are enabled by a novel Follow-The-Perturbed-Leader algorithm
for settings where the number of experts and states of nature
are both infinite, and the payoff function of the learner
is non-linear. We show that this algorithm has applications
outside of auction settings, establishing significant gains in a
recent application of no-regret learning in security games. Our
efficient learning result for coverage valuations is based on a
novel use of convex rounding schemes and a reduction to online
convex optimization.

Keywords-online learning, auctions, mechanism design, price
of anarchy, computational complexity

I. INTRODUCTION

A central theme in Algorithmic Mechanism Design is un-

derstanding the effectiveness and limitations of mechanisms

to induce economically efficient outcomes in a computa-

tionally efficient manner. A practically relevant and actively

studied setting for performing this type of investigation are

combinatorial auctions.

Supported by a Microsoft Research Faculty Fellowship, and NSF Award
CCF-0953960 (CAREER), CCF-1551875 and CCF-1617730. Work done
in part while the authors were visiting the Simons Institute for the Theory
of Computing.

The setting involves a seller with a set [m] of indivisible

items that he wishes to sell to a set [n] of buyers. Each buyer

i ∈ [n] is characterized by a monotone valuation function

vi : 2[m] → R+, mapping each bundle Si of items to the

buyer’s value vi(Si) for this bundle. This function is known

to the buyer, but is unknown to the seller and the other

buyers. The seller’s goal is to find a partition S1�S2� . . .�
Sn = [m] of the items together with prices p1, . . . , pn so

as to maximize the total welfare resulting from allocating

bundle Si to each buyer i and charging him pi. The total

buyer utility from such an allocation would be
∑

i(vi(Si)−
pi) and the seller’s revenue would be

∑
i pi, so the total

welfare from such an allocation would simply be
∑

i vi(Si).
Given the seller’s uncertainty about the buyer’s valuations,

she needs to interact with them to select a good allocation.

However, the buyers are strategic, aiming to optimize their

own utility, vi(Si) − pi. Hence, the seller needs to design

her allocation and price computation rules carefully so that

a good allocation is found despite the agents’ being strategic

in response to these rules. How much of the optimal welfare

can the seller guarantee?

A remarkable result in Economics is that optimal welfare

can be attained, as long as we have unbounded computa-

tional and communication resources, via the celebrated VCG

mechanism [4], [5], [6]. This mechanism asks bidders to

report their valuations, uses their reports to select an optimal

partition of the items, and computes payments in a way that

it is in the best interest of all bidders to truthfully report their

valuations; in particular, it is a dominant strategy truthful
mechanism, and because of its truthfulness it guarantees that

an optimal allocation is truly selected.

Despite its optimality and truthfulness, the VCG mecha-

nism is overly demanding in terms of both computation and

communication. Reporting the whole valuation function is

too expensive for the bidders to do for most interesting types

of valuations. Moreover, optimizing welfare exactly with

respect to the reported valuations is also difficult in many

cases. Unfortunately, if we are only able to do it approxi-

mately, the truthfulness of the VCG mechanism disappears,

and no welfare guarantees can be made. Even with computa-

tional concerns set aside, it is widely acknowledged that the

VCG mechanism is rarely used in practice [7]. Indeed, many

practical scenarios involve the allocation of items through

simple mechanisms which are often not centrally designed

and non-truthful. Take eBay, for example, where several
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different items are sold simultaneously and sequentially via

ascending price and other types of auctions. Or consider

sponsored search where several keywords are auctioned

simultaneously and sequentially using generalized second

price auctions. For most interesting families of valuations

such environments induce non truthful behavior, and are thus

difficult to study analytically.

The prevalence of such simple decentralized auction envi-

ronments provides motivation for a quantitative analysis of

the quality of outcomes in simple non-truthful mechanisms.

A growing volume of research has taken up this challenge,

developing tools for studying the welfare guarantees of

non-truthful mechanisms; see e.g. [8], [1], [2], [9], [10],

[11], [3]. Using the approximation perspective, this literature

bounds the Price-of-Anarchy (PoA) of simple non-truthful

mechanisms, and has provided remarkable insights into their

economic efficiency.

To illustrate these results, let us consider Simultane-

ous Second Price Auctions, which we will abbreviate to

“SiSPAs” in the remainder of this paper. While we focus

our attention on these auctions, our results extend to the

most common other forms of auctions studied in the PoA

literature, as we display in the full version. As implied by

its name, a SiSPA asks every bidder to bid on each of the

items separately and allocates each item using a second price

auction based on the bids submitted solely for this item.

Facing a SiSPA, a bidder whose valuation is non-additive

is not able to express his complex preferences over bundles

of items. It is thus a priori not clear how he will bid, and

what the resulting welfare will be. One situation where a

prediction can be made is when the bidders have some

information about each other, either knowing each other’s

valuations, or knowing a distribution from which each

other’s valuations are drawn. In this case, we can study

the SiSPA’s Nash or Bayesian Nash equilibrium behavior,

computing the welfare in equilibrium. Remarkably, the work

on the PoA of mechanisms has shown that the equilibrium

welfare of SiSPAs (and of other types of simple auctions) is

guaranteed to be within a constant factor of optimum, even

when the bidders’ valuations are subadditive [3].1 When

bidders have no information about each other, the problem

becomes ill-posed, as it is impossible for the bidders to form

beliefs about each others bids and choose their bid optimally.

A way out of the conundrum comes from the realization

that simple mechanisms often occur repeatedly, involving

the same set of bidders; think sponsored search. In such a

setting it is natural to assume that bidders engage in learning

to compute their new bids as a function of their experience

so far. One of the most standard types of learning behavior

is no-regret learning. A bidder’s bids over T executions

of a SiSPA satisfy the no-regret learning guarantee if the

1A subadditive valuation v is one satisfying v(S ∪ T ) ≤ v(S) + v(T ),
for all S, T ⊆ [m].

bidder’s cumulative utility over the T executions is within

an additive o(T ) of the cumulative utility that the bidder

would have achieved from the best in hindsight vector of

bids b1, . . . , bm, if he were to place the same bid bj on

item j in all T executions of the SiSPA. Assuming that

bidders use no-regret learning to update their bids in repeated

executions of a SiSPA (or other types of simple auctions)

the afore-referenced work has shown that the average bidder

welfare across the T executions is within a constant factor

of the optimal welfare, even when the bidders’ valuations

are subadditive [3].

These guarantees are astounding, especially given known

intractability results for dominant strategy truthful mecha-

nisms, which hold even when the bidders have submodular

valuations [12], [13], [14]—a family of valuations that is

smaller than subadditive.2 However, moving to simple non-

truthful auctions does not come without a cost. Cai and

Papadimitriou [15] have recently established intractability

results for computing Bayesian-Nash equilibria in SiSPAs,

even for quite simple types of valuations, namely mixtures

of additive and unit-demand [15].3 At the same time, im-

plementing no-regret learning in combinatorial auctions is

quite tricky as the action space of the bidders explodes.

For example, in SiSPAs there is a continuum of possible

bid vectors that a bidder may submit and, even if we

tried to discretize this set, their number would generally be

exponential in the number of items in order to maintain a

good approximation from the discretization. Unfortunately,

every step of a no-regret algorithm would typically require

computation that is linear in the number of available actions,

thus exponential in the number of items in our setting.

An important open question in the literature has thus been

whether this obstacle can be overcome via specialized no-

regret algorithms that only need polynomial computation.

Our first result shows that this obstacle is insurmountable.

We show that in one of the most basic settings where no-

regret learning is non-trivial, it cannot be implemented in

polynomial-time unless RP ⊇ NP.

Theorem 1. Suppose that a unit-demand bidder whose value
for each item i ∈ [m] is v bids in T executions of a SiSPA.
Unless RP ⊇ NP, there is no learning algorithm running in
time polynomial in m, v, and T and whose regret is any
polynomial in m, v, and 1

T . The computational hardness
holds even when the learner faces i.i.d. samples from a
fixed distribution of competing bids, and whether or not no-
overbidding is required of the bids produced by the learner.

Note that our theorem proves an intractability result even

if pseudo-polynomial dependence on the description of v is

permitted in the regret bound and the running time. The no-

2A submodular valuation v is one satisfying v(S ∪ T ) + v(S ∩ T ) ≤
v(S) + v(T ), for all S, T ⊆ [m].

3A unit-demand valuation v is one satisfying v(S) = maxi∈S v({i}),
for all S ⊆ [m].
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overbidding assumption mentioned in the statement of our

theorem represents a collection of conditions under which

no-regret learning in second-price auctions gives good wel-

fare guarantees [1], [3]. An example of such no-overbidding

condition is this: For each subset S ⊆ [m], the sum of bids

across items in S does not exceed the bidder’s value for

bundle S. Sometimes this condition is only required to hold

on average. It will be clear that our hardness easily applies

whether or not no-overbidding is imposed on the learner, so

we do not dwell on this issue more in this paper.

How can we show the in-existence of computationally ef-

ficient no-regret learning algorithms? A crucial (and general)

connection that we establish in this paper is that it suffices

to prove an inapproximability result for a corresponding

offline combinatorial optimization problem. More precisely,

we prove Theorem 1 by establishing an inapproximability

result for an offline optimization problem related to SiSPAs,

together with a “transfer theorem” that transfers inapprox-

imability from the offline problem to intractability for the

online problem. The transfer theorem is a generic statement

applicable to any online learning setting. In particular, we

show the following—see Section III for details:

1) In SiSPAs, finding the best response payoff against

a polynomial-size supported distribution of opponent bids

is strongly NP-hard to additively approximate for a unit-

demand bidder. Another way to say this is that one step

of a specific learning algorithm, namely Follow-The-Leader

(FTL), is inapproximable.

2) If it is intractable to additively approximate the optimum

of the average function of a given, efficiently samplable

distribution over functions in some set F , then there exists

no efficient no-regret online algorithm against sequences of

functions from F , unless RP ⊇ NP. This result is generic:

whenever one step of FTL is inapproximable, there is no

efficient no-regret learning algorithm. Independent work of

[16], provides a weaker reduction, which requires hardness

for explicit distributions, rather than efficiently samplable.

The intractability result of Theorem 1 shows that compu-

tationally bounded learners cannot reach no-regret outcomes

in SiSPAs. Our intractability results can be easily adapted to

Simultaneous First Price Auctions and, we expect, several

other commonly studied mechanisms for which PoA bounds

on the welfare guarantees of no-regret learning outcomes

are known. Complementing our results, recent work of

Braverman et al. [17] shows that, in a large class of auctions

where no-regret learning is efficiently implementable, no

better than the logarithmic approximation of [18] to the

optimal welfare is attainable.

The afore-described impossibility results raise the ques-

tion of what welfare we should expect of SiSPAs, or other

types of combinatorial auctions, when bidders are compu-

tationally bounded. We propose a way to overcome these

barriers by introducing a new type of learning dynamics,

which we call no-envy, and which is founded upon the

concept of Walrasian equilibrium. In all our results, no-

envy learning outcomes are a super-set of no-regret learn-

ing outcomes. We show that this super-set simultaneously

achieves two important properties: i) while being a broader

set, it still maintains the welfare guarantees of the set of

no-regret learning outcomes established via PoA analysis;

ii) there exist computationally efficient no-envy learning

algorithms; when these algorithms are used by the bidders,

their joint behavior converges (in a decentralized manner)

to the set of no-envy learning outcomes for a large class

of valuations (which includes submodular). Thus no-envy

learning provides a way to overcome the computational

intractability of no-regret learning in auctions with implicitly

given exponential action spaces. We describe our results in

the following section. We will focus our attention on SiSPAs

but the definition of no-envy learning naturally extends to

any mechanism and all our positive results extend to a large

class of smooth mechanisms (see full version).

A. No-Envy Dynamics: Computation and Welfare

No-envy dynamics is a twist to no-regret dynamics. Re-

call that in no-regret dynamics the requirement is that the

cumulative utility of the bidder after T rounds be within an

additive o(T ) error of the optimum utility he would have

achieved had he played the best fixed bid in hindsight. In

no-envy dynamics, we require that the bidder’s cumulative

utility be within an additive o(T ) of the optimum utility

that he would have achieved if he was allocated the best

in hindsight fixed bundle of items in all rounds and paid

the price of this bundle in each round. The guarantee is

inspired by Walrasian equilibrium: In auctions, the prices

that a bidder faces on each bundle of items is determined

by the bids of the other bidders. Viewed as a price-taker,

the bidder would want to achieve utility at least as large

as the one he would have achieved if he purchased his

favorite bundle at its price. No-envy dynamics require that

the average utility of the bidder across T rounds is within

o(1) of what he would have achieved by purchasing the

optimal bundle at its average price in hindsight.

Inspired by Walrasian equilibrium, no-envy learning de-

fines a natural benchmark against which to evaluate an

online sequence of bids. It is easy to see that in SiSPAs

the no-regret learning requirement is stronger than the no-

envy learning requirement. Indeed, the no-envy requirement

is implied by the no-regret requirement against a subset of all

possible bid vectors, namely those in {0,+∞}m. So no-envy

learning is more permissive than no-regret learning, allowing

for a broader set of outcomes. This not true necessarily for

other auction formats, but it holds for the types of valuation

functions and auctions studied in this paper. In particular, in

all our no-envy learning upper bounds the set of outcomes

reachable via no-envy dynamics is always a superset of the

outcomes reachable via no-regret dynamics. This is true even

if the no-envy dynamics are constrained to not overbid.
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While no-regret learning outcomes are intractable, we

show that this broader set of outcomes is tractable. At the

same time, we show that this broader set of outcomes main-

tains approximate welfare optimality. So we have increased

the set of possible outcomes, but maintained their economic

efficiency and endowed them with computational efficiency.

We proceed to describe our results for the computational

and economic efficiency of no-envy learning. First, observe

that even though the no-envy learning guarantee is a relax-

ation of the no-regret learning guarantee, the problem of

implementing no-envy learning sequences remains similarly

challenging. Take SiSPAs, for example. As we have noted

no-envy learning is tantamount to requiring the bidder to not

have regret against all bid vectors in {0,+∞}m. This set is

exponential in the number of items m, so it is unclear how to

run an off-the-shelf no-regret learner efficiently. We are still

suffering from the combinatorial explosion in the number of

actions, which lead to our lower bound of Theorem 1. Yet

the curse of dimensionality is now much more benign. Our

upper bounds, discussed next, establish that we can harness

big computational savings when we move from competing

against any bid vector to competing against bid vectors in

{0,+∞}m. Except to do this we still need to develop new

general-purpose, no-regret algorithms for online learning

settings where the number of experts is exponentially large

and the cost/utility functions are arbitrary.

1) Efficient No-Envy Learning: We show that no-envy

learning can be efficiently attained for bidders with fraction-

ally subadditive (XOS) valuations. A valuation v(·) belongs

to this family if for some collection of vectors V = (v�)�,
where each v� ∈ R

m
+ , it satisfies:

v(S) = maxv�∈V
∑

j∈S v�j , ∀S ⊆ [m]. (1)

Note that the XOS class is larger than that of submodular

valuations. In many applications, the set V describing an

XOS valuation may be large. Thus instead of inputting this

set explicitly into our algorithms, we will assume that we

are given an oracle, which given S returns the vector v� ∈ V
such that v(S) =

∑
j∈S v�j . Such an oracle is known as an

XOS oracle [19], [20]. We will also sometimes assume, as

it is customary in Walrasian equilibrium, that we are given

access to a demand oracle, which given a price vector p ∈
R

m
+ returns the bundle S maximizing v(S)−∑

j∈S pj . We

show the following.

Theorem 2. Consider a bidder with an XOS valuation v(·)
participating in a sequence of SiSPAs. Assuming access
to a demand and an XOS oracle for v(·),4 there exists a
polynomial-time algorithm for computing the bidder’s bid
vector bt at every time step t such that after T iterations

4For submodular valuations this is equivalent to assuming access only
to demand oracles, as XOS oracles can be simulated in polynomial time
assuming demand oracles [21]

the bidder’s average expected utility is at least:

max
S

⎛
⎝v(S)−

∑
j∈S

θ̂Tj

⎞
⎠−O

(
m2(D +H)√

T

)
, (2)

where θ̂Tj is the average cost of item j in the T executions of
the SiSPA as defined by the bids of the competing bidders, D
is an upper bound on the competing bid for any item and H
is an upper bound on maxS v(S). The learning algorithm
with the above guarantee also satisfies the no overbidding
condition that the sum of bids for any set of items is never
larger than the bidder’s value for that set. Moreover, the
guarantee holds with no assumption about the behavior of
competing bidders.

The proof of Theorem 2 is carried out in three steps, of

which the first and last are specific to SiSPAs, while the

second provides a general-purpose Follow-The-Perturbed-

Leader (FTPL) algorithm in online learning settings where

the number of experts is exponentially large and the

cost/utility functions are arbitrary:
1) The first ingredient is simple, using the XOS oracle to

reduce no-envy learning in SiSPAs to no-regret learning in a

related “online buyer’s problem,” where the learner’s actions

are not bid vectors but instead what bundle to purchase be-

fore seeing the prices; see Definition 6. Theorem 6 provides

the reduction from no-envy learning to this problem.

2) The second step proposes a FTPL algorithm for general

online learning problems where the learner chooses some

action at ∈ A and the environment chooses some state

θt ∈ Θ, from possibly infinite, unstructured sets A and
Θ, and where the learner’s reward is tied to these choices

through some function u(at, θt) that need not be linear.

Since A need not have finite-dimensional representation

and u need not be linear, we cannot efficiently perturb

(either explicitly or implicitly) the cumulative rewards of the

elements in A as required in each step of FTPL [22]; see [23]

and its references for an overview of such approaches.

Instead of perturbing the cumulative rewards of actions in A
directly, our proposal is to do this indirectly by augmenting

the history θ1, . . . , θt−1 that the learner has experienced so

far with some randomly chosen fake history, and run Follow-

The-Leader (FTL) after this augmentation. While it is not

a priori clear whether our perturbation approach is a useful

one, it is clear that our proposed algorithm only needs an

offline optimization oracle to be implemented, as each step

is an FTL step after the fake history is added. When applying

this algorithm to the online buyer’s problem from Step 1, the

required offline optimization oracle will conveniently end up

being simply a demand oracle.
Our proposed general purpose learner is presented in

Section V. The way our learner accesses function u is via an

optimization oracle, which given a finite multiset of elements

from Θ outputs an action in A that is optimal against the

uniform distribution over the multiset. See Definition 7.
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In Theorem 8, we bound the regret experienced by our

algorithm in terms of u’s stability. Roughly speaking, the

goal of our randomized augmentations of the history in each

step of our learning algorithm is to smear the output of the

optimization oracle applied to the augmented sequence over

A, allowing us to couple the choices of Be-The-Perturbed-

Leader and Follow-The-Perturbed-Leader for that sequence.

3) To apply our general purpose algorithm from Theorem 8

to the online buyer’s problem for SiSPAs from Step 1, we

need to bound the stability of the bidder’s utility function

subject to a good choice of a history augmentation sampler.

It turns out there is a simple sampler for us to use here,

where only one price vector is added to the history, whose

prices are independently distributed according to an expo-

nential distribution with mean O(
√
T ) and variance O(T ).

4) While our motivation comes from mechanism design,

our FTPL algorithm from Step 2 is general purpose, and

we believe it will find applications in other settings. For

instance, in the full version we show that it provides quanti-

tative improvements on the regret bounds of a recent paper

of Balcan et al. [24] for security games.

In the absence of demand oracles, we provide positive

results for the subclass of XOS called coverage valuations.

To explain these valuations, consider a bidder with k needs,

1, . . . , k, associated with values a1, . . . , ak. There are m
available items, each covering a subset of these needs. We

can view each item as a set βi ⊆ [k] of the needs it satisfies.

The value that the bidder derives from a set S ⊆ [m] of the

items is the total value from the needs that are covered:

v(S) =
∑

�∈∪jβj
a�. (3)

Theorem 3. Consider a bidder with an explicitly given cov-
erage valuation v(·) participating in a sequence of SiSPAs.
There exists a polynomial-time algorithm for computing the
bidder’s bid vector bt at every time step t such that after T
iterations the bidder’s average expected utility is at least:

max
S

⎛
⎝(1− 1

e

)
v(S)−

∑
j∈S

θ̂Tj

⎞
⎠− 3m

H +
√
D√

T
, (4)

where θ̂Tj , H and D are as in Theorem 2, and the algorithm
satisfies the same no overbidding condition stated in that
theorem. There is no assumption about the behavior of the
competing bidders.
Note that our no-envy guarantee (4) in Theorem 3 has in-

curred a loss of a factor of 1−1/e in front of v(S), compared

to the guarantee in (2). This relaxed guarantee is an even

broader relaxation of the no-regret guarantee. Still, as we

show in the next section this does not affect our approximate

welfare guarantees. We prove Theorem 3 via an interesting

connection between the online buyer’s problem for coverage

valuations and the convex rounding approach for truthful

welfare maximization proposed by [25]. In the online buyer’s

problem, the buyer needs to decide what set to buy at each

step, prior to seeing the prices. It is natural to have the

buyer include each item to his set independently, thereby

defining an expert for all points x ∈ [0, 1]m, where xi is

the probability that item i is included. It turns out that the

expected utility of the buyer under such distribution x is not

necessarily convex, so this choice of experts turns our online

learning problem non-convex. We propose to massage each

expert x ∈ [0, 1]m into a distribution D(x) ∈ Δ(2[m]). With

the right choice of D(·) the expected value function becomes

convex in x, so we may run online convex optimization

algorithms on the massaged experts.

2) Welfare Maximization: We show that SiSPAs attain a

constant factor approximation to the optimal welfare at every

no-envy or approximate no-envy learning outcome for the

broad class of XOS valuations. Thus the relaxation from no-

regret to no-envy learning does not degrade the quality of

the welfare guarantees, and has the added benefit that no-

envy outcomes can be attained by computationally bounded

players in a decentralized manner, using Theorems 2 and 3.

In the full version, we show that this property applies to

many mechanisms that have been analyzed in the literature

via the smoothness paradigm [11].

Corollary 4. When each bidder i ∈ {1, . . . , n} participating
in a sequence of SiSPAs has an XOS valuation (endowed
with a demand and XOS oracle) or an explicitly given
coverage valuation vi(·), there exists a polynomial-time
computable learning algorithm such that, if each bidder
i employs this algorithm to compute his bids bti at each
step t, then after T rounds the expected average welfare is
guaranteed to be at least:

1

2

(
1− 1

e

)
OPT(v1, . . . , vn)−O

(
m2 · n·max

S,i
vi(S)

√
1

T

)
.

If all bidders have XOS valuations with demand and XOS
oracles the factor in front of OPT is 1/2.

We regard Corollary 4, in particular our result for XOS

valuations with demand queries, as going a long way to

alleviate our intractability results for no-regret learning. It

also offers a new approach to mechanism design, namely

mechanism design for no-envy bidders. While only super-

constant approximation factors to the optimal welfare are

known for dominant strategy truthful mechanisms, even

for submodular bidders [12], [13], [14], [26], we attain

constant factor approximations for the larger class of XOS

valuations, albeit with the different solution concept of no-

envy learning. Inded, we regard no-envy learning as a fruitful

new approach to mechanism design going forward.

II. PRELIMINARIES

We analyze the online learning problem that a bidder faces

when participating in a sequence of repeated executions of

a simultaneous second price auction (SiSPA) with m items.
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While we focus on SiSPAs our results extend to the most

commonly studied formats of simple auctions, as discussed

in the full version. A sequence of repeated executions of a

SiSPA corresponds to a sequence of repeated executions of

a game involving n players (bidders). At each execution t,
each player i submits a bid btij on each item j. We denote by

bti the vector of bidder i’s bids at time t and by bt the profile

of bids of all players on all items. Given these bids, each item

is given to the bidder who bids for it the most and this bidder

pays the second highest bid on the item. Ties are broken

according to some arbitrary tie-breaking rule. Each player i
has some fixed (across executions) valuation vi : 2

[m] → R+

over bundles of items. If at time t he ends up winning a set

of items St and is asked to pay a price of θtj for each item

j ∈ St, then his utility is vi(S
t)−∑j∈St θtj , i.e. his utility is

assumed quasi-linear. An important class of valuations that

we will consider in this paper is that of XOS valuations,

defined in Equation (1), which are a super-set of submodular

valuations but a subset of subadditive valuations. We will

also consider the class of coverage valuations, defined in

Equation 3, which are a subset of XOS. Different results

will consider different types of access to an XOS valuation

through an XOS oracle, a demand oracle, or a value oracle,

as described in the introduction (see also [21]).

Online bidding problem: From the perspective of a single

player i, all information that he needs in order to calculate

his utility as a function of his bid in a SiSPA is the highest

bid submitted by the other bidders on each item j, as

well as the probability that he wins each item j if he ties

with the highest other bid on that item. For simplicity of

notation, we will assume throughout the paper that the player

always loses an item when he ties first. All our results, both

positive and negative, easily extend to the more general

case of arbitrary bid-profile dependent tie-breaking. Since

we analyze learning from the perspective of a single player,

we drop the index of player i. For a fixed bid profile of the

opponents, we refer to the highest other bid on item j as the

threshold of item j and denote it with θj . We denote with

θ = (θ1, . . . , θm). The player wins an item j if he submits

a bid bj > θj and loses the item otherwise. When he wins

item j, he pays θj . We are interested in learning algorithms

that achieve a no-regret guarantee even when the thresholds

of the items are decided as is customary by an adversary.

Thus, the online learning problem that a player faces in a

SiSPA is defined as follows:

Definition 1 (Online bidding problem). At each execu-
tion/day/time/step t, the player picks a distribution over bid
vectors bt ∈ [0, B]m and the adversary picks adaptively
(based on the history of the player’s past bid vector distri-
butions (including round t) and bid realizations (excluding
round t)) a threshold vector θt ∈ [0, H ]m. The player wins
set S(bt, θt) = {j ∈ [m] : btj > θtj} and gets reward:

u(bt, θt) = v (S (bt, θt))−∑
j∈S(bt,θt) θ

t
j . (5)

At each t, the distribution over bt chosen by the algorithm
may depend on the history of threshold vectors θ<t.

We evaluate learning algorithms based on their regret with

respect to the best fixed bid vector in hindsight.

Definition 2 (Regret). The regret of an online learning algo-
rithm against an adaptive adversary generating a sequence
θ1:T = (θ1, . . . , θT ) of threshold vectors as per Definition 1
(namely the thresholds depend on the realized bids) is:

Reg
(
θ1:T

)
= sup

b∗

{
Eb1:T

[
1

T

T∑
t=1

(
u(b∗, θt)− u(bt, θt)

)]}
,

where each bt is itself random and depends on θ1:t−1, as
specified by the algorithm. The regret r(T ) of the algorithm
against adaptive adversaries is the maximum regret against
any adaptive adversary. An algorithm has polynomial regret
rate if r(T ) = poly(T−1,m,maxS v(S), B,H), where B,
H are as in Definition 1.

III. HARDNESS OF NO-REGRET LEARNING

We show that there does not exist an efficiently com-

putable learning algorithm with polynomial regret rate for

the online bidding problem for SiSPAs unless RP ⊇ NP,

proving Theorem 1.

We first examine a related offline optimization problem

which we show is NP-hard to approximate to within a small

additive error. We then show how this inapproximability

result implies the non-existence of polynomial-time no-

regret learning algorithms for SiSPAs unless RP ⊇ NP.

Our reduction from offline inapproximability to online in-

tractability is a special case of a generic reduction provided

in the full version.

Throughout this section we will consider the following

very restricted class of valuations: the player is unit-demand

and has a value v for getting any item, i.e. his value for

any set of items is given by v(S) = v · 1{S 
= ∅}. Our

intractability results hold even if we assume that v is

provided in unary representation. Consider the following

problem:

Definition 3 (Optimal Bidding Problem). A distribution D
of threshold vectors θ over a set of m items is given explicitly
as a list of k vectors, where D is assumed to choose a
uniformly random vector from the list. A bidder has a unit-
demand valuation with the same value v for each item, given
in unary. The problem asks for a bid vector that maximizes
the bidder’s expected utility against distribution D. In fact,
it only asks to compute the expected value from an optimal
bid vector, i.e.

sup
b

⎧⎨
⎩v · Pr [∃j ∈ [m] : bj > θj ]−

∑
j∈[m]

θj · Pr [bj > θj ]

⎫⎬
⎭ .

We show that the optimal bidding problem is NP-hard via

a reduction from r-regular set-cover. In fact we show that
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it is hard to approximate, up to an additive approximation

that is inverse-polynomially related to the input size. This

will be useful when using the hardness of this problem to

deduce the in-existence of efficiently computable learning

algorithms with polynomial regret rates.

Theorem 5 (Hardness of Approximately Optimal Bidding).
The optimal bidding problem is NP-hard to approximate to
within an additive ξ even when: the k threshold vectors in the
support of (the explicitly given distribution) D take values
in {1, H}m, H = k2 ·m2, v = 2 · k ·m and ξ = 1

2k .

Given the hardness of optimal bidding in SiSPAs, we are

ready to sketch the proof of our main impossibility result

(Theorem 1) for online bidding in SiSPAs. Our result holds

even if the possible threshold vectors that the bidder may see

take values in some known discrete finite set. It also holds

even if we weaken the regret requirements of the online

bidding problem, only requiring that the player achieves

no-regret with respect to bids of the form {0, v/2m}m,

i.e., the bid on each item is either 0 or an 2m-th faction

of the player’s value. Notice that any such bid is a non-

overbidding bid. We will refer to the afore-described weaker

learning task as the simplified online bidding problem. We

sketch here how to deduce from the inapproximability of

optimal bidding the impossibility of polynomial-time no-

regret learning, deferring details to the full version.

Proof sketch of Theorem 1. We present the structure

of our proof and the challenges that arise. Consider a

hard distribution D for the optimal bidding problem from

Theorem 5, and let b∗ be the bid vector that optimizes the

expected utility of the bidder when a threshold vector is

drawn from D. Also, let u∗ be the corresponding optimal

expected utility. (Theorem 5 says that approximating u∗ is

NP-hard.) Now let us draw T i.i.d. samples θ = (θ1, . . . , θT )
from D. Clearly, if T is large enough, then, with high

probability, the expected utility ũθ of b∗ against the uniform

distribution over θ1, . . . , θT is approximately equal to u∗.
Now let us present the sequence θ1, . . . , θT to a no-regret

learning algorithm. The learning algorithm is potentially ran-

domized so let us call ûθ the expected average utility (over

the randomness in the algorithm and keeping sequence θ
fixed) that the algorithm achieves when facing the sequence

of threshold vectors θ1, . . . , θT . If the regret of the algorithm

is r(T ), this means that ûθ ≥ supb(
1
T

∑T
t=1 u(b, θ

t)) −
r(T ) ≥ ũθ−r(T ). In particular, if r(T ) scales polynomially

with 1/T then, for large enough T , ûθ is lower bounded by

ũθ (minus some small error), and hence by u∗ (minus some

small error). Hence, ûθ (plus some small error) provides

an upper bound to u∗. Moreover, if we run our no-regret

learning algorithm a large enough number of times N
against the same sequence of threshold vectors and average

the average utility achieved by the algorithm in these N
executions, we can get a very good estimate of ûθ, and hence

a very good upper bound for u∗, with high probability.

The challenge that we need to overcome now is that, in

principle, the expected average utility ûθ of our no-regret

learner against sequence θ1, . . . , θT could be much larger

than supb(
1
T

∑T
t=1 u(b, θ

t)) and hence ũθ and u∗, as the

algorithm is allowed to change its bid vector in every step.

We need to argue that this cannot happen. In particular,

we would like to upper bound ûθ by u∗. We do this via

a Martingale argument exploiting the randomness in the

choice of the sequence θ. Using Azuma’s inequality, we

show that for large enough T , the ûθ is upper bounded by

u∗ plus some small error with high probability. In fact we

show something stronger: if T is large enough then, with

high probability, u∗ plus some small error upper bounds the

algorithm’s average utility (not just average expected utility),

where now both the threshold and the bid vectors are left

random. Hence, we can argue that, with high probability, if

we run our algorithm N times over a (long enough) sequence

of random threshold vectors and we compute the average

(across the N executions) of the average (across the T steps)

utility of our algorithm, then this double average is upper

bounded by u∗ plus some small error. Hence, we get a lower

bound on u∗. If we choose T,N large enough then we can

get an approximation of u∗ to within an additive error that

depends inverse polynomially with the input size. Since the

latter is NP-hard, we get that there cannot exist a polynomial-

time no-regret algorithm unless RP ⊇ NP .

IV. WALRASIAN EQUILIBRIA AND NO-ENVY LEARNING

The hardness of no-regret learning in simultaneous auc-

tions motivates the investigation of other notions of learning

that have rational foundations and at the same time admit ef-

ficient implementations. Our inspiration in this paper comes

from the study of markets and the well-studied notion of

Walrasian equilibrium. Recall that an allocation of items

to buyers together with a price on each item constitutes

a Walrasian equilibrium if no buyer envies some other

allocation at the current prices. That is the bundle S allocated

to each buyer maximizes the difference v(S)− p(S) of his

value v(S) for the bundle minus the cost of the bundle.

Implicitly the Walrasian equilibrium postulates some degree

of rationality on the buyers: given the prices of the items,

each buyer wants a bundle of items such that he has no-envy
against getting any other bundle at the current prices.

We adapt this no-envy requirement to SiSPAs. In a SiSPA

a player is facing a set of prices on the items, which are

determined by the bids of the other players and are hence

unknown to him when he is choosing his bid vector. In

a sequence of repeated executions of a SiSPA, the player

needs to choose a bid vector at every time-step. The fact

that he does not know the realizations of the item prices

when making his choice turns the problem into a learning

problem. We say that the sequence of actions that he took

satisfies the no-envy guarantee, if in the long run he does

not regret not buying any fixed set S at its average price.
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Definition 4 (No-Envy Learning Algorithm). An algorithm
for the online bidding problem of Definition 1 is no-envy

if, for any adaptive adversary generating threshold vectors
θ1:T , the bid vectors b1:T chosen by the algorithm satisfy:

E

[
1

T

T∑
t=1

u(bt, θt)

]
≥ max

S⊆[m]

⎛
⎝v(S)− E

⎡
⎣∑
j∈S

θ̂Tj

⎤
⎦
⎞
⎠−ε(T ),

where θ̂Tj = 1
T

∑T
t=1 θ

t
j , ε(T )→ 0. It has polynomial envy

rate if ε(T ) = poly(T−1,m,maxS v(S), B,H).
To allow for even larger classes of settings to have

efficiently computable no-envy learning outcomes, we will

also define a relaxed notion of no-envy. In this notion the

player is guaranteed that his utility is at least some α-fraction

of his value for any set S, less the average price of that

set. The latter is a more reasonable relaxation in the online

learning setting given that, unlike in a market setting, the

players do not know the realization of the prices when they

make their decision.

Definition 5 (Approximate No-Envy Learning Algorithm).
An algorithm for the online bidding problem is an α-
approximate no-envy algorithm if, for any adaptively chosen
sequence of threshold vectors θ1:T by an adversary, the bid
vectors b1, . . . , bT chosen by the algorithm satisfy:

E

[
1

T

T∑
t=1

u(bt, θt)

]
≥ max

S⊆[m]

⎛
⎝v(S)

α
− E

⎡
⎣∑
j∈S

θ̂Tj

⎤
⎦
⎞
⎠−ε(T )

To gain some intuition about the difference between no-

envy and no-regret learning guarantees consider the follow-

ing. When we compute the utility from a fixed bid vector

in hindsight, then in every iteration the set of items that

the player would have won is nicely correlated with that

round’s threshold vector in the sense that the player wins

an item in that round only when the item’s threshold is low.

On the contrary, when evaluating the player’s utility had he

won a specific set of items in all rounds the player may win

and pay for an item even when the price of the item is high.

The results of this section imply that for XOS valuations, the

no-regret condition is stronger than the no-envy condition.

Hence, when we analyze no-envy learning algorithms for

XOS bidders we relax the algorithm’s benchmark. Corre-

spondingly, if the bidders of a SiSPA are XOS and use no-

envy learning algorithms to update their bid vectors, the set

of outcomes that they may converge to is broader than the

set of no-regret outcomes.

Online Buyer’s Problem: We first show that we can

reduce the no-envy learning problem to a related online

learning problem, which we call the online buyer’s problem.

Definition 6 (Online buyer’s problem). Imagine a buyer with
some valuation v(·) over a set of m items who is asked to
request a subset of the items to buy each day before seeing
their prices. In particular, at each time-step t an adversary

picks a set of thresholds/prices θtj for each item j adaptively
based on the past actions of the buyer. Without observing the
thresholds at step t, the buyer picks a set St of items to buy.
His instantaneous reward is:

u(St, θt) = v(St)− E

[∑
j∈St θtj

]
, (6)

i.e., the buyer receives the set St and pays the price for each
item in the set.

For simplicity, we overload notation and denote by u(b, θ)
the reward in the online bidding problem from a bid vector

b and with u(S, θ) the reward in the online buyer’s problem

from a set S. We relate the online buyer’s problem to the

online bidding problem in SiSPAs in a black-box way, by

showing that when the valuations are XOS (and assuming

access to an XOS oracle), then any no-regret or “approx-

imate” no-regret algorithm for the online buyer’s problem
can be turned in a black-box and efficient manner into a

no-envy algorithm for the online bidding problem.

Lemma 6 (From buyer to bidder). Suppose that we have
access to an efficient learning algorithm for the online
buyer’s problem which guarantees for any adaptive adver-
sary that the buyer’s expected average reward is at least:

maxS

(
1
αv(S)−

∑
j∈S θ̂Tj

)
− ε(T ), (7)

where θ̂Tj = 1
T

∑T
t=1 θ

t
j . Then we can construct an efficient

α-approximate no-envy algorithm for the online bidding
problem, assuming access to XOS value oracles. Moreover,
this algorithm never submits an overbidding bid.

We conclude by showing that if all players in a SiSPA

use an α-approximate no-envy learning algorithm, then

the average welfare is a 2α-approximation to the optimal

welfare, less an additive error term stemming from the envy

of the players. In other words the price of anarchy of α-

approximate no-envy dynamics is upper bounded by 2α.

Theorem 7. If n players participating in repeated execu-
tions of a SiSPA use an α-approximate no-envy learning
algorithm with envy rate ε(T ) and which does not overbid,
then in T executions of the SiSPA the average bidder welfare
is at least 1

2α OPT−n·ε(T ), where OPT is the optimal welfare
for the input valuation profile v = (v1, . . . , vn).

V. ONLINE LEARNING WITH ORACLES

In this section we devise novel follow-the-perturbed leader

style algorithms for general online learning problems. We

then apply these algorithms and their analysis to get no-envy

learning algorithms for the online bidding problem. In the

full version, we give implications to security games [24].

Consider an online learning problem where at each time-

step an adversary picks a parameter θt ∈ Θ and the

algorithm picks an action at ∈ A. The algorithm receives a

reward: u(at, θt), which could be positive or negative. We

will assume that the rewards are uniformly bounded by some
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function of the parameter θ, for any action a ∈ A, i.e.:

∀a ∈ A : u(a, θ) ∈ [−f−(θ), f+(θ)]. We will denote with

θ1:t a sequence of parameters {θ1, θ2, . . . , θt}. Moreover, we

denote with: U(a, θ1:t) =
∑t

τ=1 u(a, θ
τ ), the cumulative

utility of a fixed action a ∈ A, under sequence θ1:t.

Definition 7 (Optimization oracle). We will consider the
case where we are given oracle access to the following
optimization problem: given a sequence of parameters θ1:t

compute some optimal action for this sequence:

M
(
θ1:t

)
= argmaxa∈A U(a, θ1:t). (8)

We define a new type of perturbed leader algorithms

where the perturbation is introduced in the form of extra

samples of parameters:

Algorithm 1 (Follow the perturbed leader with sample

perturbations). At each time-step t:
1. Draw a random sequence of parameters {x}t =
{x1, . . . , . . . , xk}t independently and based on some time-
independent distribution over sequences. Both the length of
the sequence and the parameter xi ∈ Θ at each iteration of
the sequence can be random.
2. Denote with {x}t ∪ θ1:t−1 the augmented sequence of
parameters where we append the extra parameter samples
{x}t at the beginning of sequence θ1:t−1

3. Invoke oracle and play: at = M
({x}t ∪ θ1:t−1

)
.

Using a reduction of [27] (see their Lemma 12) we can

show that to bound the regret of Algorithm 1 against adaptive

adversaries it suffices to bound the regret against oblivious

adversaries (who pick the sequence non-adaptively), of the

following algorithm, which only draws the samples once.

Algorithm 2 (Follow the perturbed leader with fixed sample

perturbations). Draw a random sequence of parameters
{x} = {x1, . . . , . . . , xk} based on some distribution over
sequences and at the beginning of time. At each time-step t,
invoke oracle M and play action: at = M

({x} ∪ θ1:t−1
)
.

We give a general theorem on the regret of a perturbed

leader algorithm with sample perturbations.

Theorem 8. Suppose that the distribution over sample
sequences {x}, satisfies the stability property that for any
sequence of parameters θ1:T and for any t ∈ [1 : T ]:

E{x}
[
u(at+1, θt)− u(at, θt)

] ≤ g(t) (9)

where at as defined in Algorithm 2. Then the expected
regret of Algorithm 2 against oblivious adversaries is upper
bounded by:∑T

t=1 g(t) + E{x}
[∑

xτ∈{x} (f−(x
τ ) + f+(x

τ ))
]

(10)

Hence, the regret of Algorithm 1 against adaptive adver-
saries is bounded by the same amount.

We apply the perturbed leader approach to the online

buyer’s problem from Section IV. Then using Lemma 6 we

can turn any such algorithm to a no-envy learning algorithm

for the original bidding problem in second price auctions,

when the valuations fall into the XOS class.

In the online buyer’s problem the action space is the

collection of sets A = 2m, while the parameter set of

the adversary is to pick a threshold θj for each item j,

i.e. Θ = R
m
+ . The reward u(S, θ), at each round from

picking a set S, if the adversary picks a vector θ ∈ Θ
is given by Equation (6). We will instantiate Algorithm 2

for this problem and apply the generic approach of the

previous section. We will specify the exact distribution over

sample sequences that we will use and we will bound

the functions f−(·), f+(·) and g(·). First, observe that the

reward is bounded by a function of the threshold vector:

u(S, θ) ∈ [−‖θ‖1, H ], where H is an upper bound on the

valuation function, i.e. v([m]) < H .

Optimization oracle: It is easy to see that the offline

problem for a sequence of parameters θ1:t is exactly a

demand oracle, where the price on each item j is its average

threshold θ̂tj in hindsight.

Single-sample exponential perturbation: We will use

the following sample perturbation: we will only add one

sample x ∈ Θ, where the coordinate xi of the sample is

distributed independently and according to an exponential

distribution with parameter ε, i.e. for any k ≥ 0 the density

of xi at k is f(k) = 1
2εe

−εk, while it is 0 for k < 0.

In the full version of the paper we show that the latter per-

turbation leads to good stability properties for Algorithm 2,

i.e. a good upper bound on g(t). Given the stability bound

we then apply Theorem 8 to get the following result:

Theorem 9. Algorithm 1 when applied to the online buyers
problem with a single-sample exponential perturbation with
parameter ε =

√
1

HDT , where D is the maximum threshold
that the adversary can pick and H is the maximum value,
runs in randomized polynomial time, assuming a demand
oracle and achieves regret O

(
m2(D +H)

√
T
)

.

Theorem 9, Lemma 6 and the reduction form oblivious to

adaptive adversaries, imply a poly-time no-envy algorithm,

assuming access to demand and XOS oracles. For submod-

ular valuations XOS oracles can be simulated in poly-time

via demand oracles [21], thereby only requiring access to

demand oracles. Thus we get Theorem 2.

VI. NO-ENVY LEARNING VIA CONVEX ROUNDING

In this section we show how to design efficient ap-

proximate no-envy learning algorithms via the use of the

convex rounding technique. Though our techniques can be

phrased more generally, we will cope with the concrete

case where players have explicitly given coverage valuations.

Answering value and XOS queries for such valuations can

be done in polynomial time [25], [21].

Proving Theorem 3: Based on Lemma 6, in order to

design an α-approximate no-envy algorithm for the online

bidding problem, it suffices to design an efficient algorithm
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for the online buyer’s problem with guarantees as described

in Lemma 6. In the remainder of the section we will

design such an algorithm for the online buyer’s problem
with α = e

e−1 and for explicit coverage valuations, thereby

proving Theorem 3. Subsequently, by Theorem 7 the latter

will imply a price of anarchy guarantee of 2e
e−1 for such

dynamics. Next we sketch how one can design an algorithm

for the online buyer problem and defer the full details to

the full version. Suppose that the buyer picks a set at each

iteration at random from a distribution where each item j is

included independently with probability xj to the set. Then

for any vector x, the expected utility of the buyer from such a

choice is ESt∼xt [u(St, θt)] = V (xt)−〈θt, xt〉, where V (·)
is the multi-linear extension of v(·) and 〈x, y〉 is the inner

product between vectors x and y. If V (·) was concave we

could invoke online convex optimization algorithms, such

as the projected gradient descent of [28] and get a regret

bound, which would imply a regret bound for the buyers

problem. However, V (·) is not concave for most valuation

classes. We will instead use a convex rounding scheme,

which is a mapping from any vector x to a distribution over

sets D(x) such that F (x) = ES∼D(x) [v(S)] is a concave

function of x. We also require that the marginal probability

of each item be at most the original probability of that item

in x. If the rounding scheme satisfies that for any integral x
associated with set S, F (x) ≥ 1

αv(S), then we can call

an online convex optimization algorithm on the concave

function F (x) − 〈θ, x〉. The latter yields an α-approximate

no-envy algorithm for the online buyers problem.
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