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Abstract—We characterize the communication complexity of
truthful mechanisms. Our departure point is the well known
taxation principle. The taxation principle asserts that every
truthful mechanism can be interpreted as follows: every player
is presented with a menu that consists of a price for each bundle
(the prices depend only on the valuations of the other players).
Each player is allocated a bundle that maximizes his profit
according to this menu. We define the taxation complexity of
a truthful mechanism to be the logarithm of the maximum
number of menus that may be presented to a player.

Our main finding is that in general the taxation complexity
essentially equals the communication complexity. The proof
consists of two main steps. First, we prove that for rich enough
domains the taxation complexity is at most the communication
complexity. We then show that the taxation complexity is
much smaller than the communication complexity only in
“pathological” cases and provide a formal description of these
extreme cases.

Next, we study mechanisms that access the valuations via
value queries only. In this setting we establish that the menu
complexity – a notion that was already studied in several differ-
ent contexts – characterizes the number of value queries that
the mechanism makes in exactly the same way that the taxation
complexity characterizes the communication complexity.

Our approach yields several applications, including strength-
ening the solution concept with low communication overhead,
fast computation of prices, and hardness of approximation by
computationally efficient truthful mechanisms.
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I. INTRODUCTION

The field of Communication Complexity studies settings

in which n players are interested in computing some known

function f . Each player i, holds some input xi. The basic

task is to determine the maximum number of bits that the

parties need to exchange in order to compute f(x1, . . . , xn).
One of the most successful applications of communication

complexity is Algorithmic Mechanism Design, starting with

the pioneering work of Nisan and Segal [26], [28]. Nisan

and Segal proved lower bounds on the approximation ratios

achievable by algorithms with low communication complex-

ity for combinatorial auctions. Many other applications of

communication complexity to mechanism design have been
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introduced since. For example, communication complexity is

used to bound the power of certain computationally-efficient

truthful mechanisms [4], [8], to understand the overhead of

price computation [1], [14], and to prove bounds on the

quality of equilibria [29].

Our goal in this paper is to answer a fundamental ques-

tion in the intersection of communication complexity and

algorithmic mechanism design: given a truthful mechanism

A, how many bits do the parties need to exchange in order

to determine the allocation and payments?

A bit more formally, the communication complexity of a

protocol is the maximum number of bits that are exchanged

in the protocol, where the maximum is taken over all inputs.

The communication complexity of a function f , denoted

cc(f), is the communication complexity of the protocol that

computes f with the smallest communication complexity.

A truthful mechanism A is composed of a social choice

function that selects one alternative from a set S of alterna-

tives and a payment function that specifies the payment of

each player. Our results build on a basic concept of Mech-

anism Design, the taxation principle. Denote by vi(S) the

value of player i for alternative S ∈ S . The taxation principle

asserts that A can be interpreted in the following simple

form: every player i is (implicitly) presented with a menu

Mv−i that is a function that assigns a price (possibly ∞) for

each alternative in S. Mv−i depends only on the valuations

v−i of the other players. The truthful mechanism A always

outputs an alternative S that simultaneously maximizes the

profit vi(S)−Mv−i
(S) of each player i.

With this interpretation in mind, given a truthful mech-

anism A, for each player i denote by M i = {Mv−i
}v−i

the set of menus that might be presented to i. Denote by

tax(A) the taxation complexity of a truthful mechanism A –

the number of bits needed to represent an index of a specific

menu among the set of menus that may be presented to a

player. That is, tax(A) = maxi log |M i|.
Our main finding directly connects the semantics of the

mechanism and its communication complexity by showing

that the taxation complexity of every truthful mechanism

essentially equals its communication complexity:

Informal take-home message of this paper: In “rich

enough” domains, tax(A) ≈ cc(A).
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We also apply the lens of the taxation principle in a more

restricted model and prove an analogous result: if access

to the valuations is restricted to value queries, then the

menu complexity essentially equals the query complexity

(see definitions below).

In the rest of the introduction we provide a more formal

description of the setup1, of the results, and of various

implications.

The Setting

For concreteness, this paper considers only the setting of

combinatorial auctions, although it should be possible to

extend the results beyond that domain. In a combinatorial

auction there is a set M (|M | = m) of heterogeneous

items and a set N (|N | = n) of players. The output is

an allocation (S1, . . . , Sn) of the items to the players. The

private information of each player i is his value for the set

of items he receives: vi : 2M → R. As common in the

literature, in this paper we assume that each vi is normalized

(vi(∅) = 0) and monotone (for each S ⊆ T , vi(T ) ≥ vi(S)).
This paper considers truthful mechanisms. The Algorith-

mic Mechanism Design literature usually defines truthful

mechanisms to be those that implement some social choice

function in a dominant-strategy equilibrium. In this paper

a mechanism is truthful if it implements the social choice

function in an ex-post Nash equilibrium. This solution

concept applies to games with incomplete information and

is closely related but less restrictive than dominant-strategy

equilibrium. It is more appropriate for the iterative mecha-

nisms that this paper considers. Very roughly speaking, in

an ex-post Nash equilibrium a dominant strategy of every

player is to play according to his true valuation, as long

as the other players are not playing “crazy” strategies. We

refer the reader to the full version for formal definitions and

discussion.

The Taxation Principle in Algorithmic Mechanism Design

The taxation principle [17, 16] was already considered

in Algorithmic Mechanism Design. Most notably, the crux

of the impossibility results of [5, 13, 11] is showing that

for every mechanism that approximately maximizes the

welfare there must be an instance in which one player is

presented a “complicated” menu. In particular, finding a

profit-maximizing bundle in that menu is hard.

The paper [18] considers a setting with only a single

player whose valuation is drawn from some known distri-

bution. Since there is only one player, the taxation principle

implies that all a truthful mechanism can do is to present

a fixed menu to the player. The player then “selects” a

profit-maximizing bundle. They show that to approximately

maximize revenue the prices of many alternatives (equiv-

alently, bundles) in that menu must be finite (high “menu

complexity”).

1See Section the full version for formal definitions.

We stress that the notion of taxation complexity does not

measure the difficulty of finding a profit-maximizing bundle,

nor how difficult it is to represent a specific menu. The

taxation complexity takes a more “high-level” view of the

mechanism and only measures the number of menus that

might be presented to a player.

The Taxation Complexity is at most the Communication
Complexity

Our first main result says that in rich enough domains the

taxation complexity is at most the communication complex-

ity:

tax(A) ≤ cc(A)

We will shortly provide a more formal statement, but to

better understand this result and its implications, we first dis-

cuss a domain for which this result does not hold. Consider

a two-player combinatorial auction where the valuations of

the players belong to the class of gross substitutes (GS)

valuations2. Let us furthermore restrict the values of all

bundles to be integers in {1, . . . ,m}. We study the VCG

mechanism in this setting. Since the welfare maximizing

allocation can be found with poly(m) communication [28]

(this is also implied by the algorithms mentioned in [24]),

the communication complexity of the VCG mechanism is

poly(m) as well.

Let us now analyze the taxation complexity of the mech-

anism. Denote the valuation of player 1 by v. Player 1
presents a menu to player 2. By the definition of the

VCG mechanism, the price of bundle S in that menu is

v(M) − v(M − S). Thus, there is a one-to-one and onto

correspondence between the set of possible valuations of

player 1 and the set of menus he presents to player 2. All that

is left is to point out that the number of gross substitutes val-

uations is3 doubly exponential (e.g, Knuth [19] shows that it

is at least 2
( m
m/2)
2m /m!). Therefore, for two players with gross

substitutes valuations, the taxation complexity of the VCG

mechanism tax(V CG) is therefore exponential, whereas the

communication complexity cc(V CG) is polynomial.

In contrast, in richer domains the taxation complexity is

not much larger than the communication complexity:

Theorem: Fix some mechanism A.

1) If A is truthful for general valuations, then tax(A) ≤
cc(A).

2) If A is truthful for subadditive valuations, then also

tax(A) ≤ cc(A).
3) If A is truthful for XOS valuations, then tax(A) ≤

m · (cc(A) + 1).

2The definition of this class is subtle; Since it will not be needed in this
paper, we refer the interested reader to the survey [24] for a definition.

3In fact, Knuth [19] shows that the number of matroid rank functions
on {1, . . . ,m} is doubly exponential, and it is known that every matroid
rank function is in particular gross substitutes.
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4) If A is truthful for submodular valuations, then

tax(A) ≤ d·m·(cc(A)+1), where d = |{M(S)}M,S |
is the total number of distinct prices that appear in

some menu.

The cautious reader might wonder how it can be that

the class of GS valuations is contained in all the above-

mentioned classes, but in these classes the communication

complexity severely limits the taxation complexity. The point

is that implementations of mechanisms that are specifically

tailored to GS valuations are able to find profit-maximizing

bundles without learning the full menu. However, when

running those implementations in richer domains, the set

of possible deviations increases and truthfulness is lost.

Characterizing the Communication Complexity of Truthful
Mechanisms

We have that in rich enough domains tax(A) ≤
poly(cc(A)). Had we were able to prove that cc(A) ≤
poly(tax(A)), this would immediately imply that the com-

munication complexity of a truthful mechanism is com-

pletely determined (up to a polynomial factor) by tax(A)
– a well defined combinatorial property that depends only

on the social choice function.

However, we show that cc(A) cannot be bounded by

poly(tax(A)). Towards this end, consider the following

(naive and incorrect) implementation of a two-player mech-

anism A which is truthful for general valuations: since

the menu that is presented to a player depends only on

the other player’s valuation, each player can send tax(A)
bits that denote the index of the menu he presents to the

other player. The obvious next step is to ask each player to

select the profit maximizing bundle from the menu that was

presented to him, announce it (using additional m bits) and

allocate accordingly. The total communication cost of this

implementation is 2(tax(A) +m) as we wanted.

The above implementation is incorrect since this last step

is not well defined because of tie-breaking: there might be

several bundles that simultaneously maximize the profit. The

tie-breaking rule that defines which profit-maximizing bun-

dle each player receives can be in principle quite involved,

and there is no way to avoid that: we show (in the full

version) a two-player mechanism with taxation complexity 1
and communication complexity exp(m), due to tie breaking.

This leads us to the following definition. Let tie(A) be

the communication complexity of determining the allocation

in a truthful mechanism A, where the input of a player is a

valuation vi and in addition all players know the menu that

is presented to each player. Notice that obviously tie(A) ≤
cc(A) since we can always ignore this extra information and

simply run A to determine the allocation. By our discussion

above and our bound on the taxation complexity we get that:

Theorem: Let A be a two-player truthful mechanism for

rich enough domain. Then,

tax(A) + tie(A)

2
≤ cc(A) ≤ 2 · tax(A) + tie(A)

In particular, whenever the communication complexity of

the tie-breaking rule is low, we indeed get that the commu-

nication complexity almost equals the taxation complexity.

Can we extend this theorem to more than two players?

The missing component for three players or more is that it

is not clear whether it is possible to explicitly find the menu

that n− 1 players present to the remaining player with low

communication (the taxation principle only guarantees the

existence of such menu, but gives no guidance on how to

find it). We provide a positive answer:

The Menu Reconstruction Theorem: Let A be an n-

player truthful mechanism. Fix some player i. Then for every

valuation profile v−i, there is a protocol with communica-

tion complexity poly(tax(A), price(A),m, n) that finds the

menu that is presented to player i.

Where we denote by price(A) the maximum number of bits

that it takes for any n−1 players to find the price of a given

bundle S in the menu that they present to the remaining

player. Therefore:

Theorem: Let A be an n-player truthful mechanism in any

domain. Then,

cc(A) ≤ poly(tax(A), price(A), tie(A),m, n)

We also show that as long as the domain includes additive

valuations, price(A) ≤ cc(A). We thus get that for rich

enough domains
tax(A)+tie(A)+price(A)

3 ≤ cc(A), which

allows us to completely determine the communication com-

plexity of truthful mechanisms (up to a polynomial factor):

tax(A) + price(A) + tie(A)

3
≤ cc(A)

≤ poly(tax(A), price(A), tie(A),m, n)

Our characterization is tight in the sense that if we drop

one of the three main terms (tax(A), price(A), tie(A))
then the gap between the LHS and the RHS might be

exponential. For instance, we have already mentioned an

example of a truthful mechanism A with tax(A) = 1 (and

thus price(A) = 0) in which cc(A) = exp(m). We also

provide other “pathological” examples with similar gaps

when dropping either price(A) or tax(A).

Characterizing the Query Complexity

Up until now we imposed no restrictions on the commu-

nication between the parties. However, many of the truthful

mechanisms in the literature assume that the valuations are

represented as black boxes that answer only a specific type

of queries. A simple type of query that was extensively

studied is a value query: given a bundle S, what is v(S)? We
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now characterize the number of value queries that a truthful

mechanism makes, again by applying the taxation principle.

Denote the query complexity of a truthful mechanism

by val(A) – this is the number of value queries that the

most efficient implementation of A makes. Following [18],

The menu complexity of A, denoted mc(A), is roughly

speaking the maximum number of bundles with finite price

that appear in any menu that is used in4 A. We establish

that for mechanisms that use only value queries, the menu

complexity characterizes the query complexity in exactly

the same way that the taxation complexity characterizes the

communication complexity:

Theorem: Let A be a mechanism that is truthful for general

valuations and accesses the valuations via value queries only.

Then:

mc(A) + priceval(A) + tieval(A)

3
≤ val(A)

≤ poly(mc(A), priceval(A), tieval(A),m, n)

where priceval(A) and tieval(A) are defined similarly to

price(A) and tie(A) with the additional restriction that the

communication is restricted to value queries. We note that

the inequality mc(A) ≤ tax(A) is in fact implicit in [5]

and [27, Theorem 11], whereas the right inequality (a menu

reconstruction theorem that uses only value queries) is new

and very different from the menu reconstruction theorem for

unrestricted communication.

To strengthen the analogy between tax(A) and mc(A),
consider the following two player menu optimization prob-

lem: Alice’s input is some menu M ∈ U , where the set of

menus U is known in advance. Bob’s input is some valuation

v. The goal is to find a bundle that maximizes the profit

v(S) −M(S). We restrict ourselves to one way protocols:

Alice speaks first and then Bob. After Bob speaks, both

parties know a profit maximizing bundle S.

We observe that if we let U be the set of menus pre-

sented to some player in a truthful mechanism A, the (one

way) communication complexity of the menu optimization

problem is tax(A) (up to an additive factor of m bits).

Interestingly, our results yield that when Bob is restricted

to value queries (Alice sends an arbitrary message, then,

based on this message, the center queries for the value of

some bundles in v) then the communication complexity is

essentially mc(A). That is, both tax(A) and mc(A) capture

the informational bottleneck of finding a profit-maximizing

bundle in a non-interactive way in their respective models.

The other type of popular query is demand query: given

prices p1, . . . , pm return a bundle S ∈ argmaxT v(T ) −
Σj∈T pj . We identify the affinity of a mechanism as the com-

munication complexity of the menu optimization problem

4The description of the menu complexity given here is inaccurate as it
ignores tie breaking issues. We refer the reader to the full version of this
paper for the precise definition.

when the communication is restricted to demand queries.

Specifically, a menu M is α-min affine if there are α price

vectors p1, . . . , pα and α non-negative numbers r1, . . . , rα

such that for all S, M(S) = min1≤k≤α Σj∈S(pkj ) + rk.

The affinity of A, denoted aff(A), is the minimal number

α such that all menus presented by A are α-min affine.

Denote by dem(A) the number of demand queries that

the most efficient implementation of a truthful mechanism

A makes. Just as tax(A) ≤ cc(A) and mc(A) ≤ val(A),
we show that for general valuations aff(A) ≤ dem(A).
However, unlike tax(A) and mc(A), aff(A) cannot be used

to characterize dem(A). This is one particular consequence

of an impossibility result:

Theorem (no menu reconstruction theorem for demand
queries): There is a mechanism A that is truthful for some

player i with a general valuation in which dem(A) =
poly(m) and pricedem(A) = 1, but exp(m) demand queries

are needed to find the menu presented to player i.

In other words, just as q value queries suffice to find a profit

maximizing bundle when the menu complexity is q, when

the affinity is q a profit maximizing bundle can be found with

q demand queries. However, by our impossibility result it is

not easy to figure out which q queries to make. Nevertheless,

the affinity aff(A) will be useful in some of the applications

that we mention below.

The query complexity of mechanisms is studied in the full

version.

Implications and Extensions

We view the study of these complexity measures as an

investigation of the fundamentals of Algorithmic Mechanism

Design that needs no further justification. Nevertheless, as

is often the case, studying the foundations yields several

interesting implications. We elaborate on some now, as well

as on some open questions. Other open questions are stated

in the technical parts of the paper.

From ex-post Nash to Dominant Strategies (Section
IV): The revelation principle implies that any mechanism

that implements a social choice function in an ex-post

Nash equilibrium can be transformed to a mechanism that

implements the same social choice function in a dominant-

strategy equilibrium. However, the communication blow-up

might be exponential, as in combinatorial auctions with

GS valuations. Our theorems allow us to obtain a new

transformation that takes any two-player mechanism that

implements an ex-post Nash equilibrium in a rich enough

domain to a mechanism that implements the same social

choice function in dominant-strategy equilibrium with only

a polynomial blow up in the communication complexity.

The Limits of Computationally-Efficient Truthful Mech-
anisms (full version): A major research direction in Algo-

rithmic Mechanism Design studies the power of computa-

tionally efficient truthful mechanisms for welfare maximiza-
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tion in combinatorial auctions (e.g., [23, 21, 25, 22, 3, 10]).

For example, VCG is a truthful mechanism that maximizes

the welfare, but in combinatorial auctions with submodular

valuations it requires exponential communication [28]. On

the other hand, there is a 1.58-approximation algorithm

that uses only polynomial communication [15], but it is

not truthful. The best deterministic truthful mechanism that

uses only polynomial communication achieves a poor ap-

proximation ratio of O(
√
m) [10]. Whether this is the best

possible for a deterministic truthful mechanism that uses

only polynomial communication is a major open question.

This state of affairs is typical to other problems as well, and

we basically completely lack tools for proving impossibility

results for computationally efficient truthful mechanisms5.

Our work gives rise to two different novel approaches for

proving such impossibilities.

Approach I: simultaneous algorithms. The first approach for

proving impossibilities is by a reduction to simultaneous
algorithms. This model was introduced in [9]: each of the

n players in a combinatorial auction simultaneously sends

c bits that are a function of his valuation only. The center

then determines the allocation using only those messages.

We show that impossibilities for two-player simultaneous
algorithms imply impossibilities for computationally efficient
truthful mechanisms. Specifically, we show that if there is

a truthful mechanism (for the domains discussed above)

that provides an approximation ratio of α with communi-

cation complexity cc(A), then there is an α-approximation

simultaneous algorithm where the length of the simultaneous

messages is poly(cc(A)). For example, a proof that no

simultaneous algorithm with polynomially long messages for

submodular players achieves a 1.59 approximation (ignoring

incentives issues) immediately establishes the first ever gap

between computationally efficient truthful mechanisms and

their non-truthful counterparts. Note that strong impossibil-

ity results for simultaneous algorithms are known [9], but

those unfortunately hold only for a large number of players.

In particular, nothing is known for two players.

Approach II: lower bounds on tax(A). The second approach

involves handling the taxation complexity directly. The idea

is simple: suppose one can prove that the taxation complex-

ity of every truthful α-approximation mechanism for combi-

natorial auctions with submodular players is exponential (ig-

noring computational issues). Since tax(a) ≤ poly(cc(A)),
it follows that the communication complexity of every α-

approximation truthful mechanism is exponential as well,

which establishes a gap between the power of truthful and

non-truthful computationally efficient algorithms.

5The papers [5], [11], [13] prove impossibility results when access is
restricted to value queries, or when the valuations are given in a succinct
and very specific form. For the general communication model, or even when
access is restricted to demand queries, that are no impossibility results on
the power of computationally efficient truthful mechanisms.

This approach can be extended to mechanisms with re-

stricted access. For example, to prove impossibility results

for mechanisms that use only demand queries (e.g., [6]) it

suffices to show that the affinity of every α-approximation

truthful mechanism for combinatorial auctions with submod-

ular players (ignoring computational issues) is exponential.

We note that the menu complexity of m
1
2−ε-approximation

mechanisms for submodular valuations was already proved

to be exponential, which indeed yielded an impossibility on

the power of truthful mechanisms that use value queries in

the aforementioned setting (the direct hardness approach of

[5]).

Extensions to randomized mechanisms. Before this paper,

the only viable approach for proving impossibility results

for randomized mechanisms in the general communication

model was by characterizing all truthful mechanisms with a

good approximation. Such characterizations are notoriously

hard even for deterministic mechanisms. For randomized

ones, it is probably fair to describe the possibility of ob-

taining such characterizations in the foreseeable future as

almost hopeless.

There are two main notions of randomized truthfulness.

The first is truthfulness in expectation, where each player

maximizes his expected profit. We discuss this notion below,

and here we focus on the other (stronger) notion: universal

truthfulness. Universally truthful mechanisms are simply

a probability distribution over deterministic mechanisms.

Interestingly, universally truthful mechanisms achieve the

best currently known approximation ratios in some impor-

tant settings (e.g., combinatorial auctions with submodular

players [6]), even if truthful in expectation mechanisms are

considered.

Both approaches are capable of proving impossibility

results for universally truthful mechanisms. First, an impos-

sibility for two-player randomized simultaneous algorithms

implies an impossibility for randomized truthful mecha-

nisms. The second approach is also applicable: a lower

bound on the taxation complexity is likely to be proved

by obtaining a distribution over the input on which no

mechanism with polynomial taxation complexity provides

a good approximation ratio. Yao’s principle and our results

imply that for every universally truthful mechanism with

polynomial communication there is an instance on which its

(expected) approximation ratio is bad.

Efficient Price Computation: Every truthful mechanism

has two tasks: the first is determining the outcome of the

social choice function and the second is computing the

players’ payments. Fadel and Segal [14] ask whether the

additional communication cost of computing the payments

is significantly larger than the communication complexity

of computing the social choice function. In deterministic

settings, they show that the bound is at most exponential

and ask whether this is tight. Single parameter domains are
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handled by [1] and various multi-parameter domains are

handled by [2], [30] via a “single call’ approach, but at the

cost of introducing randomization.

We extend this line of work. Since we showed that

in rich enough domains tax(A), price(A) ≤ cc(A), our

menu reconstruction theorem immediately implies that fully

presenting the players with the actual menu takes only

poly(cc(A)) bits, thus finding the menu is essentially as easy

as computing the allocation and the payments of winning

bundles (cc(A) bits).

Truthful in Expectation Mechanisms (full version):
Our theorems were proved for deterministic mechanisms

(and thus they also apply to randomized universally truthful

mechanisms). Since truthful in expectation mechanisms were

extensively studied (e.g., [7], [12], [22]), it is natural to

ask whether in truthful in expectation mechanisms tax(A)
similarly characterizes cc(A). We provide a negative answer:

for combinatorial auctions with general valuations there

is a truthful in expectation mechanism with polynomial

communication and exponential taxation complexity.

Recall that another setting where the taxation complexity

might be exponential in the communication complexity is

when the valuations are gross substitutes. One can further

make the following wild speculation, which lacks more

evidence and formalization: in domains where the gap

between the taxation complexity and the communication

complexity is small, the performance of computationally

efficient truthful mechanisms is poor, whereas for domains

where it is large, truthfulness is not a severely limiting

requirement.

II. BOUNDING THE TAXATION COMPLEXITY:

tax(A) ≤ poly(cc(A))

We would now like to bound the taxation complexity as a

function of the communication complexity. As a warm up,

in Subsection II-A we prove that the taxation complexity

of a truthful mechanism for general valuations with com-

munication complexity cc(A) is cc(A) + 1, as long as all

bundles get a finite price in every menu (for example, this

is true for deterministic mechanisms that provide some finite

approximation ratio to the welfare).

In Subsection II-B we strengthen this result in several

aspects. First, we generalize the result to any truthful mech-

anism by allowing the prices of bundles to be∞. Second, we

slightly strengthen the bound on the taxation complexity to

cc(A) (and not just cc(A)+1). Finally, we extend our results

for other classes of valuations, not just general valuations.

A. A Warm-up

We start with a warm-up theorem that is inferior to the

result of Subsection II-B:

Theorem 2.1: Consider a mechanism A for combinatorial

auction that is truthful for general valuations. Suppose that

for each player i, bundle S, and menu M that might be

presented to player i we have that M(S) < ∞. Then,

tax(A) ≤ cc(A) + 1.

Proof: Fix some player i. Let the taxation complexity
of player i be the logarithm of the number of menus that

player i might be presented with in A. We will prove that

the taxation complexity of player i is at most cc(A)+1 and

the theorem will follow.

Define a protocol A’ that is completely identical to the

most efficient implementation of A (in particular, the same

allocation and payment functions), except that at the end

of A′ player i sends the bit 1 if his profit is positive (i.e.,

Ai(v) − pi(v) > 0) and the bit 0 otherwise. Note that A′

is truthful since A is truthful and that the communication

complexity of A′ is cc(A) + 1. In addition, for each set of

valuations v−i of the other players the menu presented to i
is identical in both A and A′. Therefore it suffices to prove

that the taxation complexity of player i in A′ is at most

cc(A′). This implies that the taxation complexity of A is

cc(A) + 1.

With this in mind, let M i =
{M|∃(v1, . . . , vi−1, vi+1, . . . vn) s.t. M is presented to i}
be the set of all possible menus that might be presented to

player i. For each M ∈ M i, let vMi be the valuation in

which for every S we have that vMi (S) =M(S). Observe

that each vMi is a valid valuation function: in the full

version we show that M is monotone and normalized, thus

vMi is monotone and normalized as well. Also notice that

for each S, vMi (S) < ∞ since M(S) < ∞. In addition,

for every M ∈ M i choose an arbitrary set of valuations

of the other players vM−i = (vM1 , . . . , vMi−1, v
M
i+1, . . . , v

M
n )

such that if the players’ valuations are vM−i the menu that

player i is presented with is M.

Now we get to the heart of the proof. We will show that

for each M,M′ ∈ M i, M �= M′, the transcript of A′

in the instance (vMi , vM−i ) differs from the transcript of A′

in the instance (vM
′

i , vM
′

−i ). Recall that the communication

complexity of A′ is cc(A)+1, thus there are at most 2cc(A)+1

different transcripts. The bound on the taxation complexity

of A′ will then follow since every instance of the form

(vMi , vM−i ) corresponds to exactly one menu M∈M i.

Claim 2.2: For every M,M′ ∈ M i, M �= M′, the

transcript of A′ in the instance (vMi , vM−i ) differs from the

transcript of A′ in the instance (vM
′

i , vM
′

−i ).

Proof: Assume towards contradiction that there are

M,M′ ∈ M i, M �= M′ such that the transcript of

the instance (vM−i ,M) is identical to the transcript of the

instance (vM
′

−i ,M′). Using standard fooling-set arguments

(e.g., [20]), this implies that the transcripts of (vM−i ,M′)
and (vM

′
−i ,M) are identical as well. We will show that

this is not the case and reach a contradiction. Towards this

end, observe that the last bit that player i sends in both

instances is by construction 0 (since vMi (S) = M(S) and

vM
′

i (S) = M′(S) for every bundle S, so the profit in
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both instances is 0). However, we will show that in either

(vMi , vM
′

−i ) or (vM
′

i , vM−i ) the last bit that player i sends

is 1. In particular we get a different transcript, which is a

contradiction.

To see that in one of the instances (vMi , vM
′

−i ) and

(vM
′

i , vM−i ) the last bit that is communicated is 1, notice

that since M �= M′, there must be a bundle S such that

M(S) �= M′(S). Assume without loss of generality that

M(S) >M′(S). Thus in the instance (vM
′

i , vM−i ) the profit

of player 1 for the bundle S is vMi (S) −M′(S) > 0. By

the taxation principle, player i must win a bundle with at

least that (positive) profit. Thus the last bit that player i
communicates is 1, which gives us the desired contradiction.

This concludes the proof of Theorem 2.1.

Tightness: To see that the Theorem 2.1 is essentially

tight, we present a mechanism with taxation complexity very

close to the communication complexity. Consider the follow-

ing truthful mechanism for combinatorial auctions with two

players, Alice and Bob. Let MBob = {M1, . . . ,M2c} be

a set of 2c menus, where for each Mi ∈ MBob we have

that Mi({a}) = i, Mi(∅) = 0, and Mi(S) =∞ for every

S �= ∅, {a}. Let t be Alice’s value for item a rounded to the

nearest integer in {1, 2, 3, . . . , 2c}. Alice now sends t using

c bits of communication. If Bob’s value for item a is at least

t, Bob sends the bit 1, receives a, and pays t. Otherwise, he

sends the bit 0, receives no items at all, and pays nothing.

Alice always receives the empty bundle. The mechanism is

clearly truthful, its communication complexity c+1, and its

taxation complexity is c.

B. Bounding the Taxation Complexity: The Full Result

We now significantly strengthen the results of Subsection

II-A. In particular, we give bounds on the taxation complex-

ity also for mechanisms that are truthful for restricted classes

of valuations (subadditive, XOS, and submodular). We will

show that:

Theorem 2.3: Let V be some class of valuations. Fix a

mechanism A for combinatorial auctions that is truthful

when the valuations of the players are in V . Then:

1) If V is the set of all normalized and monotone valua-

tions then tax(A) ≤ cc(A).
2) If V is the set of subadditive valuations then tax(A) ≤

cc(A).
3) If V is the set of XOS valuations then tax(A) ≤ m ·

(cc(A) + 1).
4) If V is the set of submodular valuations then tax(A) ≤

d ·m · (cc(A) + 1), where d = |{M(S)}M∈Mi,S | is

the total number of distinct prices that appear in some

menu.

The proof of Theorem 2.3 is postponed to the full version.

Interestingly, we do not know whether the bounds for XOS

and submodular valuations are tight, since we have no

example for a mechanism A that is truthful for these classes

with tax(A) > cc(A).
We note that the vast majority of the algorithms in the

literature are truthful for general valuations (e.g., maximal

in range algorithms, posted prices mechanisms). The restric-

tions on the valuations are typically used only for the per-

formance analysis. The taxation complexity of those mecha-

nisms is therefore at most their communication complexity.

We also remark that the bound on the taxation complexity for

submodular valuations depends on the number of possible

prices. A natural open question is:

Open Question 1: Let A be a mechanism for combina-

torial auctions that is truthful for submodular valuations. Is

tax(A) ≤ poly(cc(A),m)?
More generally, we have already mentioned two domains

in which there is a truthful mechanism A with tax(A) >>
cc(A). The first was combinatorial auctions with gross sub-

stitute valuations. For combinatorial auctions with general

valuations we mentioned a randomized truthful in expecta-

tion mechanism, but this mechanism (as well as all truthful

in expectation mechanisms) can be thought as a deterministic

one by letting the range be the set of all possible distributions

over allocations and letting the value of a player for a

distribution be the expected value of the bundle he receives

in that distribution. This leads us to the following question:

Open Question 2: Characterize the set of domains in

which for every truthful mechanism A we have that

tax(A) ≤ poly(cc(A),m).

III. MENU RECONSTRUCTION:

cc(A) ≤ poly(tax(A), price(A), tie(A),m, n)

Our goal in this section is to provide a characterization

of the communication complexity of truthful mechanisms.

Our first task is to develop a low communication protocol

that lets n − 1 players find the menu they present to the

remaining player.

Theorem 3.1 (The Menu Reconstruction Theorem): Fix a

truthful mechanism A. Denote by v−i the valuation profile

of all players except i. The communication complexity of

finding the index of the menu presented to i by v−i is

poly(tax(A), price(A),m, n).
In the statement of the theorem, we denote by price(A)
the communication complexity of the following (n − 1)-
player problem: fix some truthful mechanism A, player i,
and bundle S. The input of each player i′ �= i is a valuation

vi′ . Let M be the menu that is presented to i in A when the

valuations are v−i. price(A) is the minimal number of bits

that is required to compute M(S), considering all players i
and bundles S.

Due to lack of space, we bring the proof of the theorem

in the full version. We note that although for concreteness

the menu reconstruction theorem is proved for combinatorial

auctions, it actually applies to any domain. That is, fix

any truthful n-player mechanism A whose range is a set
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of alternatives A. Then, the menu presented to any player

can be found using poly(tax(A), price(A), log |A|, n) bits

(again, price(A) is the communication complexity of finding

the price of an alternative S ∈ A).

We now want to express the communication complexity

of menu reconstruction in terms of cc(A). In the full version

we show that if A is truthful for additive valuations, then

price(A) ≤ cc(A). Since Theorem 2.3 gives us that for

general valuations tax(A) ≤ cc(A), we get that finding the

full menu is not much harder than determining the allocation

and the prices of the winning bundles:

Corollary 3.2: Fix a mechanism A that is truthful for

general valuations. Denote by v−i the valuation profile of

all players except i. The communication complexity of

finding the index of the menu presented to i by v−i is

poly(cc(A),m, n).
Similar bounds also hold for other valuation classes, by

using Theorem 2.3 appropriately.

More importantly, we can now characterize the commu-

nication complexity of truthful mechanisms. Let tie(A) be

the communication complexity of determining the allocation

of A when the valuation of each player i is vi and all

players know the menu Mi player i is presented with by

v−i.
6 Notice that tie(A) ≤ cc(A), since we can always run

A and ignore the extra information about the Mi’s. This

gives a characterization of the communication complexity of

mechanisms that are truthful for general valuations (again,

similar bounds hold by applying other parts of Theorem 2.3):

Theorem 3.3: (characterization of the communication
complexity of truthful mechanisms) Fix a mechanism A that

is truthful for general valuations. Then:

tax(A) + price(A) + tie(A)

3
≤ cc(A) ≤ poly(tax(A), price(A), tie(A),m, n)

Proof: We first prove the LHS. We always have that

tie(A) ≤ cc(A). A is truthful for general valuations and

hence it is also truthful for additive valuations. In the full

version we use this to show that price(A) ≤ cc(A). To finish

this part, observe that by Theorem 2.3, tax(A) ≤ cc(A).
The RHS is obtained by applying the menu reconstruction

theorem n times, once for each player. Then, we need

additional tie(A) communication bits to determine the final

allocation.

In the full version we show that our characterization is

tight in the sense that if we drop at least one of the three

main terms (tax(A), price(A), tie(A)) then the gap between

the LHS and the RHS might be exponential. For instance, we

6The notation tie(A) hints that this is a question about tie breaking: each
player must be allocated a profit maximizing bundle and the set of profit
maximizing bundles can be computed without additional communication as
it depends on the presented menu and vi only. However, deciding which
specific bundle in the set the player is allocated might depend also on the
valuations of the other players and might require extra communication.

have already mentioned an example of a truthful mechanism

A with tax(A) = 1 (and thus price(A) = 0) in which

cc(A) = exp(m). We also provide examples with similar

gaps when dropping price(A) and tax(A).

IV. FROM EX-POST NASH TO DOMINANT STRATEGY

The revelation principle implies that if there is a mech-

anism that implements some social choice function in an

ex-post Nash equilibrium, there is also a mechanism that

implements the same social choice function in a domi-

nant strategy equilibrium. Unfortunately, the communication

complexity of the latter mechanism might be exponential

comparing to the communication complexity of the former

(e.g., the already mentioned example of the VCG mechanism

for gross substitutes valuations). We provide a more efficient

transformation.

Proposition 4.1: Let A be a two player mechanism for

combinatorial auctions that reaches an ex-post Nash equi-

librium. Then, there is a mechanism A′ that implements

the same social choice function in dominant strategies with

communication complexity 2(tax(A) + m) + tie(A) ≤
2(tax(A) + m) + cc(A). In particular, if A is truthful for

general valuations, then the communication complexity of

the new implementation is 3cc(A) + 2m.

In particular, for general valuations we pay “almost nothing”

(communication-wise) for strengthening the solution concept

(simply using the fact that for general valuations by Theorem

2.3 we have that tax(A) ≤ cc(A)). Similar transformations

are possible of course for other classes of valuations using

Theorem 2.3. Before formally proving Proposition 4.1 we

provide some intuition. A naive proof for this proposition

would be the following protocol:

1) Each player i simultaneously sends tax(A) bits that

denote the index of Mi – the menu he presents to the

other player.

2) Each player i sends a description of some maximum

profit bundle Ti in the menu presented to him (m bits

for each player). Denote the price of Ti in the menu

by pi.
3) Each player i is assigned Ti and pays pi.

This protocol “almost works” except that it is not clear

how each player i chooses which maximum-profit bundle to

report if there are several bundles that maximize the profit.

To solve this we have to be able to break ties correctly, and

make sure that each player has a dominant strategy.

Proof: (of Proposition 4.1) We start with some defini-

tions. Let P be some protocol. Given strategies strategies

s1(·), . . . , sn(·), we say that a (possibly partial) transcript

T of P is consistent with a valuation profile (v1, . . . , vn)
if the transcript is T when each player i is playing si(vi).
Consider a transcript T of P that is not consistent with any

valuation profile (v1, . . . , vn). Let T ′ be the minimal prefix

of T that is not consistent and let i be the player that sent

the last bit in T ′. Player i is the inconsistent player of T ′.
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For each player i, let si denote the equilibrium strategy

of each player i in A. The mechanism A′ is the following:

1) Each player i simultaneously sends tax(A) bits that

denote the index of Mi – the menu he presents to the

other player in si(vi).
2) Each player i sends a description of some maximum

profit bundle Ti according to the menu presented to

him by the other player (m bits for each player).

Denote the price of Ti in the menu by pi.
3) Run the mechanism A.

4) For each player i let s′i(vi) be the strategy where in

the first step player i sends the index of Mi and in

Step 3 player i plays as in si(vi).
5) If there exist valuations v1, v2 such that the transcript

is consistent with s′1(v1) and s′2(v2) then the outcome

of A′ is identical to that of A. Otherwise, let i be

the inconsistent player. In this case, player i is not

allocated any bundle and pays nothing. The other

player wins the bundle Ti and pays pi.

Observe that if each player i with valuation vi plays s′i(vi)
then the outcome of A′ is identical to the outcome of A when

each player i plays si(vi). The statement of the proposition

regarding the communication complexity of A′ is obvious

as well. It remains to show that s′i is a dominant strategy.

We start with two helper claims.
Claim 4.2: If player i’s strategy is s′i(vi), for some vi,

then player i is not an inconsistent player.
Proof: Assume that i = 1, but the proof is essentially

the same for i = 2. Let q2 be the strategy of player

2. Consider a run of A′. If player 2 is an inconsistent

player then there is nothing to prove. Therefore, we will

consider the messages sent by player 1 one by one, in

each point assuming that the transcript so far is consistent

with some strategies (s′1(v1), s
′
2(v2)). Now consider player

1 sending his next message according to s′1(v1). Notice

that this message is identical to the message that is sent at

this point in the transcript where the players use strategies

s′1(v1) and s′2(v2). In particular the next message according

to s′1(v1) that player 1 sends does not make him inconsistent

since the partial transcript is identical to the prefix of the

final transcript when both players are playing according to

s′1(v1) and s′2(v2).
Claim 4.3: If player i with valuation vi uses the strategy

s′i(vi) then his profit is vi(Ti)− pi.
Proof: As before, assume that i = 1, the proof is

essentially the same for i = 2. By Claim 4.2 player 1 is not

an inconsistent player. If player 2 is the inconsistent player,

then by the definition of the protocol player 1 is assigned

T1 and pays p1 so his profit his v1(T1)− p1, as needed.
Therefore, assume that the strategies played are consistent

with some strategies (s′1(v1), s
′
2(v2)). Denote the bundle that

player 1 got by T ′1 and his payment by p′1. Now recall that

the outcome of A′ with these strategies is identical to the

outcome of A with the strategies (s1(v1), s2(v2)) and that

since these strategies form an ex-post Nash equilibrium in A,

it must be that T ′1 is a maximum-profit bundle according to

the menuM2. However, T1 is also a maximum profit bundle

according to M2 and thus v1(T
′
1)−p′1 = v1(T1)−p1, which

finishes the proof.

To conclude the proof it suffices to show that:

Claim 4.4: For every player i with valuation vi, s
′
i(vi) is

a dominant strategy in A′.
Proof: We prove the claim for i = 1, the claim for i = 2

is essentially the same. Fix a strategy qi for every player i.
If player 2 is inconsistent then by claim 4.3 the profit of

player 1 is v1(T1)−p1. If player 1 plays a different strategy

that makes player 2 consistent, the menu M2 must still be

consistent with the menu presented to him in the first step,

otherwise player 2 is inconsistent. Since T1 maximizes the

profit, the profit of player 1 is at most v1(T1)− p1.

Let S1 be the bundle that player 1 is allocated in A′. Let

M2 be the menu that player 1 is presented with at the first

step of the protocol. We will show that the payment of player

1 is M2(S1) – the price of S1 in M2. Claim 4.3 gives us

that player 1 is not worse off playing s′1(v1) in this case. If

player 1 is inconsistent then his profit is 0 and, again, he is

not worse off playing s′1(v1), which completes the proof.

We now show that if player 1 is consistent then the

payment of player 1 is M2(S1). This is obvious if player

2 is inconsistent. Else, the strategies are consistent with

some (s′1(v
′
1), s

′
2(v

′
2)). Since player 2 is consistent, we have

that when player 2 uses the strategy s2(v
′
2) he presents

to player 2 the menu M2 and player 1 chooses a profit-

maximizing bundle from that menu. Since the outcome of

A with strategies (s1(v
′
1), s2(v

′
2)) is identical to the outcome

of A′ with strategies (s′1(v
′
1), s

′
2(v

′
2)) we have that the price

of S1 in A′ is determined according to M2.

This concludes the proof of the proposition.

Open Question 3: Is there a social choice function f
(for three players or more) for combinatorial auctions with

general valuations such that:

• There exists a protocol with communication complexity

poly(m) that implements f in ex-post Nash equilib-

rium.

• Any dominant-strategy implementation of f requires

exp(m) bits.
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