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Abstract—In this paper, we apply tools from algebraic
geometry to prove new results concerning extractors for alge-
braic sets, the recursive Fourier sampling problem, and VC
dimension. We present a new construction of an extractor
which works for algebraic sets defined by polynomials over
GF(2) of substantially higher degree than the current state-
of-the-art construction. We also exactly determine the GF(2)-
polynomial degree of the recursive Fourier sampling problem
and use this to provide new partial results towards a circuit
lower bound for this problem. Finally, we answer a question
concerning VC dimension, interpolation degree and the Hilbert
function.
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I. INTRODUCTION

A. Extractors

For a finite domain Ω and a collection of distributions

C over Ω, we say that a function E : Ω → {0, 1}m is an

extractor (sometimes called a deterministic extractor) for C
if, for every random variable X distributed according to any

distribution in C, E(X) is close to the uniform distribution.

We call each distribution C ∈ C a source. Of course, in

order to have any hope of the collection of distributions

C having an extractor, some sort of condition must be

satisfied by the sources. While it is trivial to exhibit simple

conditions on C such that a random function will, with

high probability, be an extractor, the problem becomes far

more interesting when one requires an explicit construction

of E (that is to say, a construction realizable by some

deterministic polynomial time Turing machine). The natural

problem is then to exhibit particular distributions C for which

there exist explicit constructions of extractors.

Numerous versions of this problem have been considered.

In this paper, we consider the case, originally introduced

in [12], where each source is the uniform distribution over

the set of common zeros of a collection of polynomials

defined over some field. Such a set is called an algebraic set
and such a source is called an algebraic source. Algebraic

sources are a natural generalization of affine sources (see,

for instance [16] and [8]) and bit-fixing sources (see, for

instance, [17] and [22]) and build naturally on the earlier

work of efficiently samplable sources (see, for instance, [33],

[21], and [11]).

To be precise, for a finite field F, and a positive integer

d, we consider algebraic sets V ⊆ Fn where V is the set of

common zeros of a collection of polynomials f1, . . . , ft ∈

F[x1, . . . , xn] such that deg(fi) ≤ d. We say that V has

density ρ if |V | ≥ ρ|Fn|. We say that a function f : Fn → F
is an extractor for algebraic sets defined by polynomials of

degree at most d and density ρ if f is close to uniform on

every such algebraic set. A closely related weaker notion

is that of a disperser for algebraic sets, where we say that

a function f : Fn → F is a disperser for algebraic sets
defined by polynomials of degree at most d and density ρ
if, for every such algebraic set V , the image of f : V → F
(the restriction of f to V ) is F. Some authors call this a

zero-error disperser for algebraic sets, to emphasize that all

elements of F lie in the image of f . Clearly any extractor

is also a disperser.

As shown in [12], there exist explicit extractors for poly-

nomials of degree d defined over moderately sized fields,

where |F| = poly(d), and density ρ = 2−
n
2 as well as over

large fields, where |F| = dΩ(n2) and very small density.

However, very little is known about the extreme case in

which F = F2, the two element finite field. To the best

of our knowledge, the current state of the art construction

for extractors and dispersers is that of [10], in which an

explicit construction was exhibited for an extractor for

algebraic sets defined by at most (log log n)
1
2e polynomials

each of degree at most 2, as well as for a disperser for

algebraic sets defined by at most t polynomials each of

degree at most d = (1 − o(1))
log(n

t )

log0.9 n
(in particular, when

t ≤ nα for some α < 1, then the requirement on degree is

d < (1− α− o(1)) log0.1 n).

In this paper, we focus on the case in which F = F2, and

exhibit explicit extractors (and hence explicit dispersers) for

algebraic sets defined by polynomials of substantially higher

degree than any previous construction. We now formally

state our results. For any set V ⊆ Fn
2 , we say that a

function f : Fn
2 → F2 has bias ε on V if bias(f |V ) :=

|Ex∼V [(−1)f(x)]| ≤ ε. A function f : Fn
2 → F2 is called

an extractor for algebraic sets defined by polynomials of

degree at most d of density ρ with bias ε if bias(f |V ) ≤ ε
for every such algebraic set V . We show that any δ-versatile

function (this will be defined precisely in §3) is an extractor

for algebraic sets.

Theorem 1. Let f : Fn
2 → F2 be δ-versatile (on Fn

2 ), where
δ ≥ n

2 − nγ for some 0 ≤ γ < 1
2 . Then, there is a constant

c > 0 such that, for any constants α, β such that 0 < α, β <
1
2 , and for any d ≤ nα and ρ ≥ 2−nβ

, f is an extractor with
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bias
c
(
nγ+d log(

√
n
ρ )

)
√
n

for algebraic sets of density at least
ρ that are the common zeros of a collection of polynomials
each of degree at most d.

As will be shown in §3, the Majority function (the

function MAJ : Fn
2 → F2 where MAJ(x) = 1 when

wt(x) ≥ n
2 and MAJ(x) = 0 when wt(x) < n

2 , where

wt(x) denotes the number of 1s in x) is n
2 -versatile, and so

the following corollary is immediate.

Corollary 1. There is a constant c > 0 such that, for any
constants α, β such that 0 < α, β < 1

2 , and for any d ≤ nα

and ρ ≥ 2−nβ

, MAJ : Fn
2 → F2 is an extractor with bias

cd log(
√

n
ρ )√

n
for algebraic sets of density at least ρ that are the

common zeros of a collection of polynomials each of degree
at most d.

Much as was the case in [12] and [10], our construction

relies on statements involving the set of zeros of a single

low degree polynomial defined over F. The key distinction

between our construction and earlier constructions, which

allows our construction to work even for rather high degree

polynomials over F2, is that our construction exploits the

structure of this set of zeros, rather than simply bounds

on the size of the set of zeros that follow directly from

the degree of the polynomial (that is to say, bounds that

follow directly from the fundamental theorem of algebra,

or, in other words, Schwartz-Zippel type bounds).

B. Recursive Fourier Sampling
The recursive Fourier sampling problem is one of the

most well studied problems in quantum complexity theory.

This problem was first defined, along with the complexity

class BQP (Bounded-Error Quantum Polynomial Time), in

[6], a foundational work of quantum complexity theory. In

that paper, this problem, whose formal definition we delay

for now, was used to exhibit an oracle A relative to which

BQP is not contained in NP or even MA, that is to say

an A such that BQPA �⊂ NPA and BQPA �⊂ MAA. Such

oracle separations are interesting both because they are,

perhaps, suggestive of a unrelativized separation, as well

as because they concretely exhibit a measure of complexity

in which quantum computers provably outperform classical

computers: query complexity, where the resource of interest

is the number of queries to the (very long) input string.
For this reason, it is natural to seek oracle separations

between BQP and increasingly larger classical complexity

classes. However, very little progress in this direction has

been made. While some results are known, such as the fact,

proven in [2], that there is an oracle A such that BQPA �⊂
BPPA

path and BQPA �⊂ SZKA, even the question of whether

or not there exists an oracle A such that BQPA �⊂ AMA

remains open, as does, of course, the substantially stronger

question of whether or not there exists an oracle A such that

BQPA �⊂ PHA.

It is this potential oracle separation between BQP and

the polynomial hierarchy that we now focus on. The natural

approach to this problem, which has been used successfully

to show many other similar oracle separations between

certain complexity classes and the polynomial hierarchy,

is to exploit the connection between relativized separations

from the polynomial hierarchy and lower bounds against

constant depth circuits [15],[34]. Here, the key idea is to

reinterpret the ∃ and ∀ quantifiers of a PH machine as

OR and AND gates, respectively, to convert a PH machine

solving some oracle problem on a 2n bit long oracle string,

into a constant depth, 2poly(n) sized circuit, consisting of

AND, OR, and NOT gates that solves the same problem.

Using this idea, and a 2ω(poly(n)) lower bound on the size

of a constant depth circuit computing the PARITY function

(on an input of size 2n), one concludes that there is an oracle

A relative to which ⊕PA �⊂ PHA. The same idea can, and

has, been used to show other such relativized separations.

Therefore, given this connection between relativized sep-

arations from the polynomial hierarchy and lower bounds

against constant depth circuits, and the powerful techniques

that exist to show lower bounds against constant depth

circuits, [15],[3],[18],[29],[31], one might very naturally ask

why the question of whether or not there exists an A such

that BQPA �⊂ PHA remains open. Most fundamentally, the

problem is that, in order to show that a particular function

f cannot be computed by a small circuit, all of these circuit

lower bound techniques either explicitly (in the case of [29]

or [31]) or implicitly (in the case of [15],[3],[18] as shown

by [24]) argue that f cannot be well approximated by a low-

degree polynomial. This is a problem because, as shown

in [5], any function that can be computed by an efficient

quantum algorithm is well approximated by a low degree

polynomial.

More precisely, however, [5] only guarantees the ex-

istence of a low-degree polynomial over R, whereas the

non-existence of a low-degree polynomial over any field

F would suffice (via the Razborov-Smolensky method) to

prove a circuit lower bound, and so this certainly does

not completely doom the application of traditional circuit

lower bound techniques. Nevertheless, the result of [5] does

suggest that a deeper understanding of approximation by

low-degree polynomials may be necessary to resolve the

question of whether or not there exists an oracle A such

that BQPA �⊂ PHA. It is this issue that we focus on within

this paper.

As has been observed by many authors (for instance

[6],[7],[1],[19],[2]) the recursive Fourier sampling problem

(or a slight variant) is a prime candidate for exhibiting an

oracle A such that BQPA �⊂ PHA, as this problem seems to

perfectly exploit the advantages of a quantum computer at

the expense of a classical one.

The recursive Fourier sampling problem will be formally

defined in §5. For the moment, we will simply state that it is
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a promise problem (that is to say, a partial Boolean function

whose value is only defined on a portion of the input space,

called the promise) which is known to have an efficient

quantum algorithm. By the result of [5], this immediately

implies that there is a low degree real polynomial that well

approximates the recursive Fourier sampling problem on the

promise. In fact, from the standpoint of proving a circuit

lower bound, the situation is even “worse” than this, due to

the result of [20], which shows that there is an even lower

degree real polynomial than the one guaranteed by [5] which

exactly represents the recursive Fourier sampling problem on

its promise. Moreover, [20] proves exactly matching upper

and lower bounds on any real polynomial that represents the

recursive Fourier sampling problem on its promise, thereby

completely resolving the question of the polynomial degree

of the recursive Fourier sampling problem, with respect to

polynomials over R.

In this paper, we consider the question of the polynomial

degree of the recursive Fourier sampling problem for polyno-

mials defined over F2. That is to say, we consider the ques-

tion of what is the lowest degree polynomial defined over

F2 that represents the recursive Fourier sampling problem

on its promise. Before proceeding further, we briefly note

that this question is only non-trivial because the recursive

Fourier sampling problem is a promise problem. For any

total function g : Fn
2 → F2, there is a unique multilinear

polynomial f ∈ F2[x1, . . . , xn] that agrees everywhere with

g; the degree of f is, of course, the minimal degree of any

polynomial in F[x1, . . . , xn] that agrees everywhere with

g. For a promise problem, however, there can be many

multilinear polynomials, of varying degrees, that all agree

on the promise.

Over F2, there is a simple, though relatively high degree,

polynomial that exactly computes the recursive Fourier

sampling problem. Our key result, stated in the following

theorems, is that, for a certain appropriate settings of the

parameters, this simple polynomial is, in fact, the lowest

degree polynomial that agrees with recursive Fourier sam-

pling everywhere on its promise. In fact, we show something

even stronger: no polynomial of lower degree can even non-

trivially one-sided agree with the recursive Fourier sampling

problem (that is to say, if a polynomial is zero everywhere

(on the promise) that the recursive Fourier sampling problem

is zero, then that polynomial must be zero on the entire

promise). We then use these results to prove new statements

about the ability of constant depth circuits to compute the

recursive Fourier sampling problem.

Theorem 2. For any positive integers k, h, Let n = 2k − 1
and let RFSMAJ

n,h denote the recursive Fourier sampling
function with majority. Then �g ∈ F2[x1, . . . , xm] such
that deg(g) <

(
n+1
2

)h
and g(x) = RFSMAJ

n,h (x) ∀x ∈
UMAJ
p,h . Moreover, if any g ∈ F2[x1, . . . , xm] such that

deg(g) <
(
n+1
2

)h
vanishes everywhere on UMAJ

0,h , it vanishes

everywhere on UMAJ
1,h .

Theorem 3. For any positive integers d, n, h such that
d|n, and n ≥ d(2d

2

+ d − 1), Let RFS
GIPn,d

n,h denote the
recursive Fourier sampling function with generalized inner
product. Then �g ∈ F2[x1, . . . , xm] such that deg(g) < dh

and g(x) = RFS
GIPn,d

n,h (x) ∀x ∈ U
GIPn,d

p,h . Moreover, if
any g ∈ F2[x1, . . . , xm] such that deg(g) < dh vanishes
everywhere on U

GIPn,d

0,h , it vanishes everywhere on U
GIPn,d

1,h .

C. VC Dimension

We say that a subset J ⊆ [n] is shattered by a family

of vectors C ⊆ {0, 1}n if, ∀s : J → {0, 1}, ∃c ∈ C such

that cj = s(j) ∀j ∈ J (in other words, if one considers

the set of all substrings of elements of C comprised of

the positions indexed by J , this collection of substrings is

precisely {0, 1}|J|). We then write str(C) = {J ⊆ [n] :
J is shattered byC} to denote the sets that are shattered

with respect to C. We then define the VC dimension of C
as VC(C) = max{|J | : J ∈ str(C)}. For a field F and a

set C ⊆ {0, 1}n, the interpolation degree of C, denoted

by reg(C) is the minimum d such that every function

f : C → F can be expressed as a multilinear polynomial in

F[x1, . . . , xn] of degree at most d.

Recently, in [26], a very interesting connection between

VC dimension and interpolation degree was demonstrated.

A simple characterization of sets with interpolation degree 1
was provided. This naturally raised the question of whether

a similar characterization exists for sets with interpolation

degree r, for arbitrary r. In this paper, we provide such a

characterization, in terms of the rank of a certain inclusion

matrix, which will be defined precisely in §2. As noted in

[26], the primary motivation for such a characterization is

to better understand the structure of sets with a given VC

dimension (see, for instance, [4] and [27]).

Theorem 4. A set C ⊆ {0, 1}n has reg(C) = r if
and only if r is the smallest positive integer such that
rankF2M(C,

(
[n]
≤r

)
) = |C|.

D. Organization of this Paper

We begin, in §2, by reviewing several key definitions

and results from algebraic geometry that will be used

throughout this paper. In §3, we develop the concept of δ-

versatile functions, a natural generalization of the concept

of versatile functions defined in [23]. In §4, we exhibit a

family of extractors for algebraic sets. In §5, we consider the

recursive Fourier sampling problem and present new results

concerning its polynomial degree and new partial results

towards a circuit lower bound. In §6, we use standard results

from algebraic geometry to provide a simple answer to a

question raised in [26] concerning interpolation degree and

VC-dimension. Due to space limitations, several proofs have

been omitted in this extended abstract; see the full paper

[30].
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II. PRELIMINARIES

We begin by recalling several standard definitions from

algebraic geometry. Let F denote a (not necessarily alge-

braically closed) field and F[x1, . . . , xn] denote the ring of

polynomials in n indeterminates. An algebraic set in Fn

is the set of common zeros of a collection of polynomials

in F[x1, . . . , xn]. More precisely, given a set of polyno-

mials f1, . . . , fk ∈ F[x1, . . . , xn], we denote their set of

common zeros by V (f1, . . . , fk) = {(x1, . . . , xn) ∈ Fn :
fi(x1, . . . , xn) = 0 ∀i}.

Rather than working with an arbitrary set of polynomials,

it will often be convenient to consider an algebraically nicer

object: an ideal. For I an ideal in F[x1, . . . , xn], let V (I)
denote the common zero set of all polynomials in I , that is

to say V (I) = {(x1, . . . , xn) ∈ Fn : f(x) = 0 ∀f ∈ I}.
Given a set of polynomials f1, . . . , fk ∈ F[x1, . . . , xn],
let 〈f1, . . . , fk〉 denote the ideal which they generate in

F[x1, . . . , xn]. Clearly, V (〈f1, . . . , fk〉) = V (f1, . . . , fk).
For an algebraic set V , let its vanishing ideal I(V ) be the

ideal of F[x1, . . . , xn] consisting of all polynomials which

vanish on V and let R(V ) = F[x1, . . . , xn]/I(V ) denote its

coordinate ring.

For a polynomial f ∈ F[x1, . . . , xn], let deg(f) denote its

total degree. Let F[x1, . . . , xn]≤d denote the vector space of

polynomials over F with degree at most d. For an ideal I , let

I≤d = I ∩ F[x1, . . . , xn]≤d denote the subspace consisting

of all polynomials in I of degree at most d. For an algebraic

set V , with vanishing ideal I = I(V ) and coordinate ring

R = R(V ), let R≤d = F[x1, . . . , xn]≤d/I≤d. The affine
Hilbert function ha(R, d) of R is then given by ha(R, d) =
dimF(R≤d). By slight abuse of notation, we will use the

term affine Hilbert function of an algebraic set V, which we

will denote ha(V, d), to simply be the affine Hilbert function

of the coordinate ring R(V ).

Throughout this paper, we consider only zero-dimensional

algebraic sets V (that is to say, V is finite). For such a

V , we define its regularity reg(V ) to be the minimal value

of d such that ha(V, d) = |V |. Equivalently, reg(V ) is the

minimal value of d such that every function V → F can be

realized as a polynomial of degree at most d. This quantity is

frequently referred to as interpolation degree. In the case of

zero-dimensional algebraic sets, this quantity is equivalent

to the Castelnuovo-Mumford regularity of R(V ) (see, for

instance [13] Thm.4.1).

For α = (α1, . . . , αn) ∈ Nn, we define xα to be the

monomial xα1
1 · · ·xαn

n ∈ F[x1, . . . , xn]. For any J ⊆ [n] we

define the (multilinear) monomial xJ by xJ =
∏

j∈J xj .

A degree compatible term order < is a total order on the

monomials xα which respects multiplication (xα < xβ ⇒
xαxγ < xβxγ ∀xα, xβ , xγ ∈ F[x1, . . . , xn]) and is degree

compatible (deg(xα) < deg(xβ) ⇒ xα < xβ ∀xα, xβ ∈
F[x1, . . . , xn]). For a degree compatible term order <,

and polynomial f ∈ F[x1, . . . , xn], we define its leading

monomial lm(f) to be the largest monomial in f with respect

to <. Similarly, for an ideal I in F[x1, . . . , xn], we define its

leading monomials to be LM(I) = {lm(f) : f ∈ I} and its

standard monomials to be SM(I) = {xα : α ∈ Nn}\LM(I).
For an algebraic set V , we define LM(V ) = LM(I(V ))

and SM(V ) = SM(I(V )). We also define SM(V, d) =
{xα ∈ SM(V ) : deg(xα) = d} and LM(V, d) = {xα ∈
LM(V ) : deg(xα) = d}.

Standard monomials provide an extremely convenient tool

for computing both the Hilbert function of an algebraic set

and its regularity, as illustrated in the following lemma (these

are well known facts in algebraic geometry; see, for instance

[14]).

Lemma 1. (a) ha(V, d) =
∑d

i=0 |SM(V, i)|
(b) reg(V ) = maxxα∈SM(V ) deg(xα)
(c) |SM(V )| = |V |
(d) V1 ⊆ V2 ⇒ SM(V1) ⊆ SM(V2)
(e) V1 ⊆ V2 ⇒ LM(V1) ⊇ LM(V2)

Let Mn denote the semigroup of all monomials in n
indeterminates. That is to say, as a set Mn = {xα : α ∈ Nn}
with multiplication between monomials defined in the usual

way. An ideal U of Mn is simply an upwardly closed subset

of Mn (xα ∈ U ⇒ xαxβ ∈ U ∀α, β). For an algebraic

set V ⊆ Fn, LM(V ) is an ideal of Mn. Similarly, SM(V )
is a dual ideal. In other words, if xα ∈ LM(V ), then

xαxβ ∈ LM(V ) and if xα ∈ SM(V ) then xβ ∈ SM(V )
for any divisor xβ of xα.

For I an ideal of F[x1, . . . , xn], let a(I) denote the

minimal degree of any g ∈ I such that g consists of only

monomials from SM(Fn). For an algebraic set V = V (I),
let a(V ) = a(I). The following lemma, proven inde-

pendently in [14] and [28], provides an extremely useful

relationship between reg(V ) and a(V ), where V denotes

the complement of V .

Lemma 2. [14], [28]
If V ⊆ Fn is a nonempty zero-dimensional algebraic set,

then a(V ) + reg(V ) = n.

Lastly, we consider another useful tool for computing the

Hilbert function: inclusion matrices. Let F2 denote the finite

field of two elements. Let 2[n] denote the collection of all

subsets of [n] = {1, . . . , n}, and let F ,G ⊆ 2[n] denote

two families of subsets. The inclusion matrix M(F ,G) is a

|F| × |G| matrix, with entries in F2, where for any F ∈ F
and G ∈ G the (F,G) entry is 1 precisely when G ⊆ F .

Let
(
[n]
≤k

)
denote the family of all subsets of [n] of size at

most k.

Given an algebraic set V ⊆ Fn
2 , we associate it with

a family of subsets in the natural way: for each x =
(x1, . . . , xn) ∈ V the subset {i : xi = 1} is included in

the set family. By a slight abuse of notation, we will also

denote this set family by V . The following is immediate

from definitions (as a nontrivial linear combination of the
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columns corresponds to a polynomial in I(V ) and hence a

leading monomial).

Lemma 3. For any algebraic set V ⊆ Fn
2 , we have

ha(V, d) = rankF2
M

(
V,

(
[n]

≤ d

))
.

Throughout this paper, our key object of interest will be

the affine Hilbert function of an algebraic set. We briefly

note that this is a slight departure from the typical situation

in algebraic geometry in which one considers the “ordinary”

Hilbert function (which is defined similarly to the affine

Hilbert function, but in which one considers the space of

homogeneous polynomials of a particular degree, rather than

arbitrary polynomials of a particular degree) of a variety

(which is an algebraic set in which the ground field F is

algebraically closed). Much as was the case in [32], this is

done in order to allow a better intuitive connection between

the Hilbert function and the questions from complexity

theory that we consider. However, it should be noted that it is

very straightforward to convert between statements involving

the affine Hilbert function of an algebraic set and the Hilbert

function of a variety as, firstly, one can harmlessly extend

the ground field (and, in particular, extend it to its algebraic

closure), and, secondly, one can straightforwardly express

the value of the affine Hilbert function at degree d as

the sum of values of the Hilbert function of degree at

most d. While it is true that certain basic statements that

would hold over an algebraically closed ground field do not

necessarily hold over arbitrary fields, these statements are

either facts that we explicitly exploit in the proof (such as

the number of roots a particular degree d polynomial has in

a particular algebraic set) or are statements that can easily

be modified to analogous statements when the ground field

is a finite field (for example, Hilbert’s Nullstellensatz, which

establishes a bijection between varieties and radical ideals

can be modified to a bijection between algebraic sets and

radical ideals that contain the field polynomials).

III. GENERALIZATION OF VERSATILE FUNCTIONS

In this section, we consider a certain natural generalization

of the concept of versatile functions (as defined in [23], see

also [31] for the concept of Un
F − complete elements) to

promise problems. We begin with a definition.

Definition 1. A function f : Fn
2 → F2 is Versatile if, ∀g :

Fn
2 → F2, ∃u, v ∈ F2[x1, . . . , xn] where deg(u), deg(v) ≤ n

2
and g(x) = u(x)f(x) + v(x) ∀x ∈ Fn

2 .

Versatile functions admit a particularly simple character-

ization in terms of regularity (this is essentially the same

notion as “degree-m independent sets” as considered in

[32]), as shown in the following lemma.

Lemma 4. For a function f : Fn
2 → F2, let U0 = f−1(0)

and U1 = f−1(1). Then f is versatile if and only if
reg(U0), reg(U1) ≤ n

2 .

Proof: If f is versatile, then, by definition, ∀g : Fn
2 →

F2, ∃u, v ∈ F2[x1, . . . , xn] where deg(u), deg(v) ≤ n
2

and g(x) = u(x)f(x) + v(x) ∀x ∈ Fn
2 , and so g(x) =

v(x) ∀x ∈ U0 and g(x) = u(x) + v(x) ∀x ∈ U1. Since

deg(u+ v) ≤ max(deg(u), deg(v)), it immediately follows

that reg(U0), reg(U1) ≤ n
2 .

If reg(U0), reg(U1) ≤ n
2 , then, by definition, ∀g : Fn

2 →
F2, ∃u′, v′ ∈ F2[x1, . . . , xn] where deg(u′), deg(v′) ≤ n

2
such that g(x) = u′(x) ∀x ∈ U0 and g(x) = v′(x) ∀x ∈
U1. Therefore, g(x) = u(x)f(x) + v(x) ∀x ∈ Fn

2 , where

u = u′ + v′ and v = v′. Since deg(u), deg(v) ≤ n
2 , f is

versatile.

As shown in [23], the Majority function (the function

MAJ : Fn
2 → F2 where MAJ(x) = 1 when wt(x) ≥ n

2
and MAJ(x) = 0 when wt(x) < n

2 , where wt(x) denotes

the number of 1s in x) is versatile. As a first illustration of

the utility of standard monomials, we present a new short

proof of this fact.

Lemma 5. The function MAJ : Fn
2 → F2 is versatile.

Proof: Let U0 = {x ∈ Fn
2 : MAJ(x) = 0}. Let

S = {xα : α ∈ {0, 1}n, wt(α) < n
2 }. We will show that

SM(U0) = S. Since |S| = |U0| = |SM(U0)|, it suffices to

show S ⊆ LM(U0). To see this, note that for any J ⊆ [n],
where |J | ≥ n

2 , we clearly have xJ ∈ I(U0) (because, for

any x ∈ U0, a strict majority of the xj are 0 and so any

sufficiently large product xJ =
∏

j∈J must vanish on U0)

and so xJ ∈ LM(U0). Trivially, x2
j ∈ LM(U0) ∀j, as, of

course, x2
j +xj ∈ I(U0) ∀j. Due to the fact that LM(U0) is

upwardly closed, the previous two facts immediately imply

S ⊆ LM(U0), as desired.

Similarly, if U1 = {x ∈ Fn
2 : MAJ(x) = 1},

then, by the same logic as above, SM(U1) = {xα :
α ∈ {0, 1}n, wt(α) ≤ n

2 }. Therefore, by definition,

reg(U0), reg(U1) ≤ n
2 .

We now generalize the notion of versatility to functions

of the form f : U → F2, for some U ⊆ Fn
2 . As shown

above, a versatile function partitions the set Fn
2 , which has

regularity n, into two pieces, the preimage of 0 and the

preimage of 1, which each have regularity at most n
2 . We

will call a function f δ-versatile on U if the function f
induces a partitioning of U with a regularity gap of at least

δ. This notion is formalized in the following definition.

Definition 2. For a function f : U → F2, let U0 = {x ∈ U :
f(x) = 0} and U1 = {x ∈ U : f(x) = 1}. We say that f is
δ-versatile on U if δ ≤ reg(U)− reg(U0), reg(U)− reg(U1).

Clearly, this notion generalizes the concept of versatility

as a versatile function is n
2 -versatile on Fn

2 . We now prove

several useful properties of δ-versatile functions which will

be used throughout the paper.

Lemma 6. If f : U → F2 is δ-versatile on U then, �g ∈
F2[x1, . . . , xn] where deg(g) < δ and g(x) = f(x) ∀x ∈ U .
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Proof: Assume, for contradiction, that such a g exists.

By the definition of regularity, there exists at least one

function h : U → F2 such that, ∀q ∈ F2[x1, . . . , xn] with

deg(q) < reg(U), ∃x ∈ U such that h(x) �= q(x).
Let U0 = {x ∈ U : f(x) = 0} and U1 = {x ∈

U : f(x) = 1}. Due to the fact that f is δ-versatile on

U we have, by definition, reg(U0), reg(U1) ≤ reg(U) − δ.

Therefore, ∃u, v ∈ F2[x1, . . . , xn] where deg(u), deg(v) ≤
reg(U) − δ and h(x) = u(x) ∀x ∈ U0, h(x) =
v(x) ∀x ∈ U1. If we then define q ∈ F2[x1, . . . , xn] by

q = u(g+1)+vg, we clearly have deg(q) ≤ max(deg(u)+
deg(g), deg(v) + deg(g)) ≤ (reg(U) − δ) + deg(g) <
(reg(U) − δ) + δ = reg(U) and h(x) = u(x)(g(x) + 1) +
v(x)g(x) = q(x) ∀x ∈ U , which is a contradiction.

Next, we consider the behavior of δ-versatile functions

f : U → F2 where the set U has a certain special property.

Given any U ⊆ Fn
2 , there is, of course, a unique multi-

linear polynomial (recall that a polynomial is multilinear

if every monomial has degree at most 1 in each variable)

rU ∈ F2[x1, . . . , xn] such that rU (x) = 1 if and only if

x ∈ U . Clearly, rU ∈ I(V ). Moreover, each monomial of

rU is in SM(Fn
2 ) (due to the fact that the standard monomials

of Fn
2 are precisely the multilinear monomials), and so we

immediately conclude that a(V ) ≤ deg(rU ). We call an

algebraic set U critical if a(V ) = deg(rU ).

Lemma 7. Let U ⊆ Fn
2 be a critical algebraic set, let f :

U → F2 be δ-versatile on U , and let U0 = {x ∈ U :
f(x) = 0} and U1 = {x ∈ U : f(x) = 1}. Then, ∀q ∈
F2[x1, . . . , xn] such that deg(q) < δ, q ∈ I(U0) if and only
if q ∈ I(U1).

Proof: We show that,∀q ∈ F2[x1, . . . , xn], where

deg(q) < δ, q ∈ I(U0) ⇒ q ∈ I(U1); the reverse

implication follows by symmetry. Assume, for contradiction

that q ∈ I(U0) but q �∈ I(U1). Let Y = {x ∈ U :
q(x) = 1}. Clearly Y ⊆ U1 and Y is nonempty. Let

t ∈ F2[x1, . . . , xn] denote the unique multilinear polynomial

such that t(x) = rU (x)q(x) ∀x ∈ Fn
2 , then t ∈ I(Y ) and

deg(t) ≤ deg(rU ) + deg(q). Using Lemma 2, we have

reg(Y ) = n− a(Y ) ≥ n− deg(t)

≥ n− deg(rU )− deg(q) = reg(U)− deg(q)

> reg(U)− δ ≥ reg(U1).

However, we cannot possibly have reg(Y ) > reg(U1)
because, as noted above, U1 ⊆ U , and so, by Lemma 1(b,d)

we must have reg(Y ) ≤ reg(U1).
The following lemma provides an extremely useful char-

acterization of the behavior of a δ-versatile f on the inter-

section of a critical U with a certain simple algebraic set,

namely the union of the vanishing sets of a collection of low

degree polynomials.

Lemma 8. Let U ⊆ Fn
2 be a critical algebraic set, let f :

U → F2 be δ-versatile on U , and let U0 = {x ∈ U : f(x) =
0} and U1 = {x ∈ U : f(x) = 1}. For any d < δ and for
any g1, . . . , gk ∈ F2[x1, . . . , xn] where deg(gi) < d ∀i, let
G = ∪iV (gi). Then,

SM(U ∩G, j) = SM(U0∩G, j) = SM(U1∩G, j) ∀j ≤ δ−d

Proof: Clearly, U0 ∩ G ⊆ U ∩ G, U1 ∩ G ⊆ U ∩
G and so by Lemma 1(d), SM(U0 ∩ G), SM(U1 ∩ G) ⊆
SM(U∩G), from which it immediately follows that SM(U0∩
G, j), SM(U1 ∩G, j) ⊆ SM(U ∩G, j).

We will now show SM(U0 ∩ G, j), SM(U1 ∩ G, j) ⊇
SM(U ∩ G, j)∀j ≤ δ − d, which will complete the proof.

Consider any j ≤ δ − d. Due to the fact that, for any

particular algebraic set, every monomial is either a leading

monomial or a standard monomial, if suffices to show

LM(U0 ∩G, j),LM(U1 ∩G, j) ⊆ LM(U ∩G, j).
To see that LM(U0 ∩G, j) ⊆ LM(U ∩G, j), assume, for

contradiction, that this is not the case. Then ∃xα ∈ LM(U0∩
G, j) ∩ SM(U ∩G, j). Due to the fact that xα ∈ LM(U0 ∩
G, j) we have, by definition, that ∃q ∈ F2[x1, . . . , xn] such

that q ∈ I(U0 ∩G) and lm(q) = xα. Clearly, deg(q) = j ≤
δ − d. Due to the fact that xα ∈ SM(U ∩ G, j), we have,

by definition q �∈ I(U ∩ G). This immediately implies q �∈
I(U1∩G) because U∩G = (U0∪U1)∩G = (U0∩G)∪(U1∩
G), and so if q did vanish on U1 ∩G, then it would vanish

on U ∩G (because, by construction, it vanishes on U0∩G).

Moreover, since U1∩G = U1∩ (∪iV (gi)) = ∪i(U1∩V (gi)
we conclude ∃i such that q �∈ I(U1 ∩ V (gi)). Fix such an i
and consider the set Y = {x ∈ U : q(x) = 1 and gi(x) =
0}. Notice that due to the requirements that x ∈ U and

gi(x) = 0, we immediately have Y ⊆ U ∩ V (gi), and since

q vanishes on U0∩V (gi), we then have Y ⊆ U1∩V (gi). Let

t ∈ F2[x1, . . . , xn] be the (unique) multilinear polynomial

equal to (rU )(q)(gi + 1). By construction, t(x) = 1 if and

only if x ∈ Y , and so t ∈ I(Y ). We then have

a(Y ) ≤ deg(t) ≤ deg(rU ) + deg(q) + deg(gi + 1)

< a(U) + (δ − d) + d = a(U) + δ.

Applying Lemma 2, we then have

reg(Y ) = n− a(Y ) > n− (a(U) + δ)

= (n− a(U))− δ = reg(U)− δ ≥ reg(U1),

where the last inequality holds due to the fact that f is

δ-versatile. However, we cannot possibly have reg(Y ) >
reg(U1) because, as noted above, U1 ⊆ U , and so, by

Lemma 1(b,d) we must have reg(Y ) ≤ reg(U1). This con-

tradiction allows us to conclude LM(U0 ∩G, j) ⊆ LM(U ∩
G, j). By a precisely symmetric argument, LM(U1∩G, j) ⊆
LM(U ∩G, j), which completes the proof.
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IV. EXTRACTORS FOR ALGEBRAIC SETS

In this section, we exhibit a new construction for an

extractor for algebraic sets with extremely strong parameters.

We begin with the following lemma, which provides a useful

bound on the Hilbert function.

Lemma 9. Let V ⊆ Fn
2 satisfy reg(V ) ≥ n

2 −
√
n. Then,

there is a constant c > 0 such that, for any β > 0 and any
k ≤ n

1
2−β , we have

ha(V, reg(V ))− ha(V, reg(V )− k) ≤ ck√
n
|V |.

Proof: Omitted. See full paper [30].

Remark 1. The above bound can be seen to be essentially
optimal, as shown by considering the standard monomials
of the function MAJORITY computed in the previous section.

We now show that any δ-versatile function, for appropri-

ately chosen δ is an extractor.

Theorem 1. Let f : Fn
2 → F2 be δ-versatile (on Fn

2 ), where
δ ≥ n

2 − nγ for some 0 ≤ γ < 1
2 . Then, there is a constant

c > 0 such that, for any constants α, β such that 0 < α, β <
1
2 , and for any d ≤ nα and ρ ≥ 2−nβ

, f is an extractor with

bias
c
(
nγ+d log(

√
n
ρ )

)
√
n

for algebraic sets of density at least
ρ that are the common zeros of a collection of polynomials
each of degree at most d.

Proof: Let U0 = f−1(0) and U1 = f−1(1). Due

to the fact that f is (n2 − nγ)-versatile, we immedi-

ately have reg(U0), reg(U1) ≤ n
2 + nγ . We also have

reg(U0), reg(U1) ≥ n
2 − nγ because 2n = |U0| + |U1| =

|SM(U0)|+ |SM(U1)|, and the regularity of an algebraic set

is the size of its largest standard monomial(Lemma 1(b)).

Consider any algebraic set V = V (g1, . . . , gk) where gi ∈
F2[x1, . . . , xn] and deg(gi) ≤ d ∀i. Using the Razborov-

Smolensky method [29],[31], we have a collection of poly-

nomials y1, . . . , yl ∈ F2[x1, . . . , xn] such that deg(yi) ≤
d, V (g1, . . . , gk) ⊆ V (y1, . . . , yl) and |V (y1, . . . , yl) \
V (g1, . . . , gk)| ≤ 2n−l. Setting y = 1 +

∏l
i=1(1 + yi), we

then have deg(y) ≤ dl and V (y) = V (y1, . . . , yl).
Consider U0 ∩ V (y) and U1 ∩ V (y). By Lemma 8, we

have

SM(U0 ∩ V (y), i) = SM(U1 ∩ V (y), i) = SM(V (y), i),

for i ≤ n
2 − nγ − dl. From this, and Lemma 1(a), we

immediately conclude ha(U0 ∩ V (y), n
2 − nγ − dl) =

ha(U1 ∩ V (y), n
2 − nγ − dl). Clearly, U0 ∩ V (y) ⊆ U0

and U1 ∩ V (y) ⊆ U1, and so, by Lemma 1(d,b), we have

reg(U0∩V (y)) ≤ reg(U0) ≤ n
2 +nγ , and reg(U1∩V (y)) ≤

reg(U1) ≤ n
2 + nγ . Moreover, reg(U0 ∩ V (y)), reg(U1 ∩

V (y)) ≥ n
2 − nγ − dl. To see this, first notice that Lemma

2 allows us to conclude reg(V (y)) ≥ n− dl (because y+1
vanishes on the complement of V (y)), which immediately

implies that SM(V (y)) consists of an element xκ of degree

at least n − dl. As SM(V (y)) is a dual ideal, we then

also conclude that it consists of an element of degree

precisely n
2 − nγ − dl (simply take any divisor of xκ of

the appropriate degree). By the above relationship between

SM(V (y)), SM(U0 ∩ V (y)) and SM(U1 ∩ V (y)), we then

conclude that both SM(U0 ∩ V (y)) and SM(U1 ∩ V (y))
contain an element of degree n

2 −nγ−dl, and so, by Lemma

1(b), the claimed lower bound on regularity follows.

V. RECURSIVE FOURIER SAMPLING

In this section, we consider the recursive Fourier sampling

problem. Numerous variants of this problem have been

considered by many authors (see, for instance, [6], [7], [1],

[2], [19]). The version considered in this paper, and the

notation used, follows most closely [19], but essentially the

same claims hold for all other standard variants. We begin

by precisely defining the problem.

A. Definition of the Problem

First, we define the Fourier sampling function. For every

positive integer n, we define the partial Boolean function

FSn : {0, 1}2n+1 → {0, 1, ∗} as follows. We interpret the

2n+1 bit long input to FSn as a pair of truth tables defining

the functions f, g : {0, 1}n → {0, 1}. For x, s ∈ {0, 1}n,

let xi and si denote the ith bit of x and s, respectively. Let

x · s =
∑

i xisi denote the usual Boolean inner product

(where of course the sum is evaluated modulo 2). We then

define FSn(f, g) = g(s) if ∃s ∈ {0, 1}n such that f(x) =
x · s ∀x and FSn(f, g) = ∗ otherwise.

This function can very naturally be interpreted as encod-

ing a promise problem, called the Fourier sampling problem,

in which the promise is that f is a linear function (that is

to say a function of the form f(x) = x · s), and the value

of FSn(f, g) (when the promise is satisfied) is simply g(s).
We will frequently refer to the value s as the secret encoded

by f .

Next, we define a slight variant of the above problem

where the function g is fixed (that is to say that it is not

part of the input to the function). Formally, for any positive

integer n and any function g : {0, 1}n → {0, 1}, we define

the function FSg
n : {0, 1}2n → {0, 1} as follows. We now

interpret the input to the function as encoding the truth table

of a single function f : {0, 1}n → {0, 1}. We then define

FSg
n(f) = g(s) if ∃s ∈ {0, 1}n such that f(x) = x · s ∀x

and FSg
n(f) = ∗ otherwise.

We now define the recursive Fourier sampling function,

which is a variant of the Fourier sampling function in which

each bit of f is produced, recursively, by a smaller instance

of the recursive Fourier sampling problem.

Formally, let RFSn,1 : {0, 1}n+2n → {0, 1} be the (total)

Boolean function where the input is interpreted as a pair

(s, g) for a secret s ∈ {0, 1}n and a function g : {0, 1}n →
{0, 1} given as a 2n bit long truth table, and RFSn,1(s, g) =
g(s).
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For each h > 1, we define RFSn,h recursively in terms of

RFSn,h−1 as follows. Let Mn,h = n2n(h−1) +
∑h−1

j=1 2jn.

Then RFSn,h : {0, 1}Mn,h → {0, 1, ∗} is the partial

Boolean function defined as follows. The input is interpreted

as being of the form (R0, R1, . . . , R2n−1, g), where for each

σ ∈ {0, 1}n, Rσ is an instance of RFSn,h−1 and g is a

function g : {0, 1}n → {0, 1} given as a 2n bit long truth

table. We then define RFSn,h(R0, . . . , R2n−1, g) = g(s)
if ∃s ∈ {0, 1}n such that ∀σ ∈ {0, 1}n RFSn,h−1(Rσ) =
σ · s and RFSn,h(R0, . . . , R2n−1, g) = ∗ otherwise.

In a precisely analogous fashion, we define RFSg
n,h

where now there is a single fixed g used throughout the

problem, rather than a collection of functions provided as

part of the input.

We very naturally interpret RFSn,h and RFSg
n,h as

encoding a particular promise problem, where the promise is

that, at every node in the tree, there exists some s ∈ {0, 1}n
such that the function f : {0, 1}n → {0, 1} defined at this

node is of the form f(x) = x · s.

Fix the entire input to the recursive Fourier sampling

function in any way such that every promise is satisfied.

For any node t in the tree, we define the value of the node,

which we denote by b(t) to be the output of the instance

of recursive Fourier sampling corresponding to the subtree

rooted at t.

Notice that, due to the structure of the promise, in order

to determine the value of node t, it is only necessary to

know the values of n linearly independent children of t.
That is to say, if the children of t are given by C(t) =
{tσ : σ ∈ {0, 1}n}, then b(t) is completely determined by

the value of a subset of children C ′ for any C ′ ⊆ C such

that C ′ = {tσ1 , . . . , tσn} where {σ1, . . . , σn} are linearly

independent (as vectors in {0, 1}n, in other words the σi

form a basis of {0, 1}n).

For i ∈ [n], let χi ∈ {0, 1}n denote the ith elementary

basis element. That is to say χi has value 1 in position i and

0 elsewhere. Clearly, the set of χi form a basis of {0, 1}n,

and so, for any node t, the value of node t is completely

determined by the values of these children. We call this set

of children the elementary children of t, which we denote

by Ce(t) = {tχi : i ∈ [n]}.
Therefore, given an instance (a particular single setting

of the input) of RFSn,h or RFSg
n,h that is guaranteed to

satisfy the promise, the answer (the value of the root of the

tree) can be determined by first determining the value of

the n elementary children of t. The value of each of these

children can be determined from their n elementary children.

This process can be repeated until the leaves of the tree are

reached, at which point the value of each node is simply the

output of an instance of RFSn,1. We refer to this collection

of leaves obtained by repeatedly finding elementary children

as the elementary leaves. For a tree of height h, there are

clearly nh−1 elementary leaves.

B. Recursive Fourier Sampling is δ-versatile

In this section, we show that for certain natural choices

of the function g, such as the majority function or the

generalized inner product function, RFSg
n,h is δ-versatile,

for suitably chosen δ.

Fix n, and let m denote the total length of the input to

RFSg
n,h. Clearly m = n2(h−1)n. Let Ug

p,h ⊆ Fm
2 denote

the set of all points at which all promises are satisfied (that

is to say, the set of all values of inputs to the recursive

Fourier sampling function such that, at every node of the

tree, every linearity constraint is satisfied). We frequently

refer to Ug
p,h as the “promise”. On the promise, the recursive

Fourier sampling problem is, of course, a total function. By

slight abuse of notation, we also denote this induced total

function as RFSg
n,h : Ug

p,h → F2. Similarly, we define

Ug
0,h = (RFSg

n,h)
−1(0) and Ug

1,h = (RFSg
n,h)

−1(1) as

the points at which the recursive Fourier sampling problem

evaluates to 0 and 1, respectively. The superscript g will

often be omitted when the function is clear from context.

The first key result of this section, which holds for any

g, is the following lower bound on regularity of Ug
p,h,Ug

0,h,

and Ug
1,h.

Lemma 10. For any positive integers n, h and for any g ∈
F2[x1, . . . , xn], let d = deg(g) and let RFSg

n,h : Fm
2 → F2

denote the recursive Fourier sampling function. Then

reg(Ug
p,h) ≥ ndh−1 + (n− d)

h−1∑
j=1

2jndh−j−1

reg(Ug
0,h), reg(Ug

1,h) ≥ (n− d)
h−1∑
j=0

2jndh−j−1.

Proof: Omitted. See full paper [30].

We now exhibit certain functions for which the above

lower bounds on regularity are exact. The first such example

is the majority function, for certain appropriately chosen

input sizes. For a x ∈ {0, 1}n, let x = (x1, . . . , xn) and

let wt(x) = |{i : xi = 1}| denote the number of 1s in x.

Let MAJ : Fn
2 → F2 be defined such that MAJ(x) = 1

if and only if wt(x) ≥ n
2 . We begin by determining

the unique squarefree polynomial in F2[x1, . . . , xn] that

represents MAJ. Let ei(x) =
∑

J⊆[n],|J|=i

∑
j∈J xj denote

the ith elementary symmetric polynomial. For y, z ∈ {0, 1}l,
write y ≥b z if and only if yi ≥ zi ∀i.
Lemma 11. For any positive integer n, the unique square-
free polynomial in F2[x1, . . . , xn] that is identically equal
to MAJ : Fn

2 → F2 on Fn
2 is given by∑

l≥n
2

∑
j≥bl

ej(x).

Proof: Omitted. See full paper [30].

We now consider RFSMAJ
n,h . We begin by demonstrating

a useful symmetry in UMAJ
p,h . Define the value 1̂h ∈ UMAJ

p,h as
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follows. Consider the recursive Fourier sampling tree. We

define 1̂h by first defining b(t) for every node t in the tree

(that is to say, we define the value b(t) that node t has

with input 1̂h). First, assign the root of the tree the value 1.

Then, for each node that has been assigned a value, assign

values to the children of that node as follows. If node t
has value b(t), then set b(tσ) = b(t) for each tσ ∈ Ce(t).
Assign all other children the value forced by the promise:

for each tσ ∈ C(t) \Ce(t), set b(tσ) =
∑

j∈[n],σj=1 b(tχj ).
Equivalently, if a node has value 0, all of its children have

value 0; if a node has value 1, then each child tσ has value

given by the parity of the string σ. Once the entire tree

has been labeled in such a fashion, define 1̂h by setting the

portion of the input corresponding to each leaf (that is to

say, the n places of the input representing the secret at that

leaf) to the value of that leaf.

It is clear that the value 1̂h ∈ UMAJ
p,h as claimed, due to the

fact that 1̂h was constructed in a way such that the promise

is satisfied at every node. Moreover, 1̂h ∈ UMAJ
1,h as, by

construction, the value of the root is 1. For any x ∈ UMAJ
p,h ,

let x̂ = x ⊕ 1̂h (where ⊕ denotes bitwise parity). We then

have the following.

Lemma 12. For any odd positive integer n and any positive
integer h, x ∈ UMAJ

0,h if and only if x̂ ∈ UMAJ
1,h .

Proof: Given any x ∈ UMAJ
0,h , the root of the corre-

sponding recursive Fourier sampling tree has value 0. The

key observation is that adding 1̂h flips the value at every

elementary leaf of the tree. That is to say, if on input x,

a particular elementary leaf t has value b ∈ {0, 1}, then

on input x̂, that leaf has value b. This occurs because, by

construction, 1̂h is 1 at every position in the elementary

leaves. It is then straightforward to see that value of the

root of the tree flips and that every promise is preserved,

which implies x̂ ∈ UMAJ
1,h . The reverse implication follows

from the fact that ˆ̂x = x and symmetry.

We now show that UMAJ
0,h and UMAJ

1,h have identical standard

monomials.

Lemma 13. For any odd positive integer n and any positive
integer h, SM(UMAJ

0,h ) = SM(UMAJ
1,h ).

Proof: For any algebraic set, every monomial is either a

leading monomial or a standard monomial, and so it suffices

to show LM(UMAJ
0,h ) = LM(UMAJ

1,h ).

We first show LM(UMAJ
0,h ) ⊆ LM(UMAJ

1,h ). Consider any

xα ∈ LM(UMAJ
0,h ). By definition, ∃qα ∈ F2[x1, . . . , xm]

such that qα ∈ I(UMAJ
0,h ) and lm(qα) = xα. Define q̂α ∈

F2[x1, . . . , xm] such that q̂α(x) = qα(x̂). Notice that

lm(q̂α) = lm(qα) = xα.

Moreover, for any x ∈ UMAJ
1,h , Lemma 12 implies that x̂ ∈

UMAJ
0,h and so

q̂α(x) = qα(x̂) = 0,

where the last follows from the fact that q vanishes on UMAJ
0,h .

This implies that q̂α ∈ I(UMAJ
1,h ), and so xα ∈ LM(UMAJ

1,h ).

Therefore, LM(UMAJ
0,h ) ⊆ LM(UMAJ

1,h ).

A precisely symmetric argument implies LM(UMAJ
0,h ) ⊇

LM(UMAJ
1,h ).

Next, we provide upper bounds for the regularity of UMAJ
p,h ,

UMAJ
0,h , and UMAJ

1,h .

Lemma 14. For any odd positive integer n and any positive
integer h, let RFSMAJ

n,h : Fm
2 → F2 denote the recursive

Fourier sampling function with majority. Then

reg(UMAJ
p,h ) ≤

(
n− 1

2

) h−1∑
j=1

2jn
(
n+ 1

2

)h−j−1

+n

(
n+ 1

2

)h−1

reg(UMAJ
0,h ), reg(UMAJ

1,h ) ≤
(
n− 1

2

) h−1∑
j=0

2jn
(
n+ 1

2

)h−j−1

.

Proof: Omitted. See full paper [30].

We now conclude that, for appropriately chosen input size,

RFSMAJ
n,h is versatile.

Lemma 15. Let n = 2k− 1 for any positive integer k, then
RFSMAJ

n,h is
(
n+1
2

)h
-versatile on UMAJ

p,h . Moreover, UMAJ
p,h is a

critical algebraic set.

Proof: Omitted. See full paper [30].

Next, we exhibit another class of functions such that the

lower bound on regularity in Lemma 10 is tight. Consider

any g ∈ F2[x1, . . . , xn] and let d = deg(g). V0 = g−1(0)
and V1 = g−1(1) denote the preimages of 0 and 1,

respectively. For any k × n matrix A with entries in F2,

let φA : Fn
2 → Fk

2 denote the linear map defined by A. We

say a function g is well-mixed if, for every n − d + 1 × n
matrix A, V0

kerφA
�∼= Fn−d+1

2 and V1

kerφA
�∼= Fn−d+1

2 . We then

have the following.

Lemma 16. For any positive integers n, h, let g ∈
F2[x1, . . . , xn] be well-mixed. Let d = deg(g) and let
RFSg

n,h : Fm
2 → F2 denote the recursive Fourier sampling

function with g. Then

reg(Ug
p,h) ≤ ndh−1 + (n− d)

h−1∑
j=1

2jndh−j−1

reg(Ug
0,h), reg(Ug

1,h) ≤ (n− d)
h−1∑
j=0

2jndh−j−1.

Proof: Omitted. See full paper [30].

This immediately allows us to conclude that, for any well-

mixed g, RFSg
n,h is versatile, as shown in the following

lemma.
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Lemma 17. For any positive integers n, h, let g ∈
F2[x1, . . . , xn] be well-mixed. Let d = deg(g) and let
RFSg

n,h : Fm
2 → F2 denote the recursive Fourier sampling

function with g. Then RFSg
n,h is dh-versatile on Ug

p,h and
Ug
p,h is a critical algebraic set.

Proof: Omitted. See full paper [30].

We now show that a certain natural function, the gener-

alized inner product function, is well-mixed, and therefore

the corresponding version of recursive Fourier sampling

is versatile. For any positive integer n and any d|n, let

GIPn,d : Fn
2 → F2 be defined such that

GIPn,d = x1 · · ·xd + xd+1 · · ·x2d + . . .+ xn−d+1 · · ·xn.

Notice that the ordinary inner product function simply

corresponds to the case in which d = 2.

Lemma 18. For any positive integers d, n such that d|n, and
n ≥ d(2d

2

+ d− 1), the function GIPn,d : Fn
2 → F2 is well-

mixed. Moreover, the function RFS
GIPn,d

n,h is dh-versatile on
U

GIPn,d

p,h and U
GIPn,d

p,h is a critical algebraic set.

Proof: Omitted. See full paper [30].

C. Polynomial Degree

Using the results of the previous section, we now prove

very strong statements about the degree of any polynomial

that computes, or even one-sided agrees with, the recursive

Fourier sampling problem.

Theorem 2. For any positive integers k, h, Let n = 2k − 1
and let RFSMAJ

n,h denote the recursive Fourier sampling
function with majority. Then �g ∈ F2[x1, . . . , xm] such
that deg(g) <

(
n+1
2

)h
and g(x) = RFSMAJ

n,h (x) ∀x ∈
UMAJ
p,h . Moreover, if any g ∈ F2[x1, . . . , xm] such that

deg(g) <
(
n+1
2

)h
vanishes everywhere on UMAJ

0,h , it vanishes
everywhere on UMAJ

1,h .

Proof: By Lemma 15, RFSMAJ
n,h is

(
n+1
2

)h
-versatile on

UMAJ
p,h and UMAJ

p,h is a critical algebraic set. The first claim of

the theorem is an immediate consequence of Lemma 6 and

the second claim is an immediate consequence of Lemma

7.

Theorem 3. For any positive integers d, n, h such that
d|n, and n ≥ d(2d

2

+ d − 1), Let RFS
GIPn,d

n,h denote the
recursive Fourier sampling function with generalized inner
product. Then �g ∈ F2[x1, . . . , xm] such that deg(g) < dh

and g(x) = RFS
GIPn,d

n,h (x) ∀x ∈ U
GIPn,d

p,h . Moreover, if
any g ∈ F2[x1, . . . , xm] such that deg(g) < dh vanishes
everywhere on U

GIPn,d

0,h , it vanishes everywhere on U
GIPn,d

1,h .

Proof: By Lemma 18, RFS
GIPn,d

n,h is dh-versatile on

U
GIPn,d

p,h and U
GIPn,d

p,h is a critical algebraic set. The first claim

of the theorem is an immediate consequence of Lemma

6 and the second claim is an immediate consequence of

Lemma 7.

D. Towards a Circuit Lower Bound

In the previous section, an extremely strong lower bound

was given on the lowest degree polynomial over F2 that

computes (or even non-trivially one-sided agrees with) the

recursive Fourier sampling function on the promise. In this

section, we discuss partial results towards a lower bound

on the size of a constant depth circuit that computes the

recursive Fourier sampling function, as well as what sort

of additional results would allow these partial results to be

extended to prove such a lower bound. We begin by defining

the circuit class of interest. Let n denote, as before, the

size of the secret at each node of the recursive Fourier

sampling tree, and h denote the height of the recursive

Fourier sampling tree. We consider circuits that consist of

AND, OR, and NOT gates, where the fan-in of the AND
and OR gates is unbounded, the size of the circuit (the total

number of gates) is at most 2O(poly(n)), and the depth of

the circuit (the number of gates on the longest path from

the input to the output) is a constant (independent of n
and h). This circuit class is of interest due to the fact that

proving a lower bound against it (that is to say, proving that

no circuit of this form can compute the recursive Fourier

sampling function on its promise), would immediately imply

the existence of an oracle A such that BQPA �⊂ PHA. This

follows due to the relationship between such circuits and

the polynomial hierarchy ([15],[34]) and the fact that there

is an efficient quantum algorithm for the recursive Fourier

sampling problem ([6],[1],[19]), when h = O(log n). Such a

bound is at least plausible as the trivial circuit (which simply

computes the recursive Fourier sampling in the brute force,

level-by-level way, in which each subproblem is solved by

solving n subproblem one level down) has size 2θ(n
h),

which, when h = θ(log n) is, of course, not 2O(poly(n)).

One reasonable approach to proving such a lower bound

would be to apply a variant of the Razborov-Smolensky

method [29],[31]. We begin by briefly sketching the main

idea of the Razborov-Smolensky method, specialized to

F2. We consider a (total) function g : Fm
2 → F2, where

m = 2O(poly(n)). We wish to show that no circuit C of the

above form, of size at most 2O(poly(logm)) = 2O(poly(n)),

can compute the function g. The key observation is that there

is an f ∈ F2[x1, . . . , xm] where deg(f) = O(poly(n)) such

that f agrees with C almost everywhere, and so if it can

be shown that g is not well approximated by a low degree

polynomial, it immediately follows that g is not actually

computed by C. To show that a particular g cannot agree

almost everywhere with a low degree polynomial, it suffices

to show that g has the property that, on any set R ⊆ Fn
2 ,

if g is represented on R by a polynomial of degree at most

d, then every function q : R → F2 is represented on R
by a polynomial of degree not much higher than d. This
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suffices because if g agrees almost everywhere with a low

degree polynomial f , then there is a very large set R on

which every function q : R → F2 is represented by a low-

degree polynomial; a straightforward counting of the number

of functions of that form and the number of low-degree

polynomials shows that this is impossible.

The main idea behind the lower bound on the polynomial

degree of recursive Fourier sampling, shown in the previous

sections, is that there are functions g such that RFSg
n,h

has the property that there is a large gap between the

regularity of the promise, reg(Ug
p,h), and the regularities

of the preimages of 0 and 1, reg(Ug
0,h) and reg(Ug

1,h).
In other words, there are functions on Ug

p,h which can

only be computed by relatively high degree polynomials,

whereas every function on Ug
0,h and Ug

1,h can be computed

by relatively low degree polynomials. It then follows that

RFSg
n,h itself cannot be computed on Ug

p,h by a low degree

polynomial, because if it were, then every function on Ug
p,h

would be computable by a low degree polynomial.

While this is very similar to the observation made in

the Razborov-Smolensky method, there is one crucial dif-

ference: due to the fact that the promise Ug
p,h is extremely

small, one cannot conclude, via a straightforward counting

argument, that there is a function on Ug
p,h that requires a

high degree polynomial; instead, this fact was shown via an

analysis of the structure of this algebraic set. It is the very

fact that such an analysis is possible that gives hope that

this technique could be extended to prove the desired circuit

lower bound. To be precise, to prove the desired circuit

lower bound, it would suffice to show that, not merely is

it the case that RFSg
n,h is ω(poly(n))-versatile on Ug

p,h, as

already shown, but in fact RFSg
n,h is ω(poly(n))-versatile

on R for any sufficiently large R ⊆ Ug
p,h. This would

suffice because, if RFSg
n,h had this property, then it could

not be the case that RFSg
n,h is well approximated by a

low degree polynomial on Ug
p,h, from which it would then

follow that RFSg
n,h is not computed by a small circuit on

Ug
p,h. In fact, something substantially weaker would suffice:

one only needs to consider the case in which R is of the

form Ug
p,h ∩ V (f1, . . . , fk) where each fi ∈ F2[x1, . . . , xm]

satisfies deg(fi) = O(poly(n)). In other words, one only

needs to consider the case in which R is a large subset of

Ug
p,h such that R is the intersection of Ug

p,h with an algebraic

set that is the set of common zeros of a collection of low

degree polynomials. This suffices because, much as was

done in Braverman’s proof of the Linial-Nisan conjecture

[9], one can consider the structure of the set of points on

which a small circuit agrees with the low degree polyno-

mial produced by the Razborov-Smolensky method. To be

precise, consider applying the Razborov-Smolensky method

to a AND of a collection of polynomials p1, . . . , pk ∈
F2[x1, . . . , xm] where deg(pi) = O(poly(n)) ∀i. This AND
of low degree polynomials is well approximated by a single

p′ ∈ F2[x1, . . . , xm], given by the product of a collection

of a small number of randomly chosen sums of the pi.
Moreover, the output of the AND of p1, . . . , pk agrees with

p′ precisely on V (p′(1 + p1), . . . , p
′(1 + pk)). Repeating

this process for every gate in the circuit, from the bottom

up, yields an algebraic set of the form V = V (f1, . . . , fk)
where deg(fi) = O(poly(n)) ∀i, where, on V , each gate

individually agrees with its approximating polynomial. To

be clear, this algebraic set V is a (possibly proper) subset

of the set of points on which the circuit agrees with the

overall approximating polynomial, due to the fact that a

local mistake (that is to say, a point at which an individual

gate disagreeing with its approximating polynomial) may

not propagate through the entire circuit to yield a global

mistake (that is to say, a point at which the circuit disagrees

with the approximating polynomial); however, the extremely

simple form of V makes it a natural choice for performing

the required analysis of regularity.
While the current analysis falls short of being able to

prove the type of circuit lower bound needed for the desired

relativized separation result, it does produce some interesting

partial results. For example, consider any circuit C consist-

ing of an OR of a collection p1, . . . , pk ∈ F2[x1, . . . , xm]
where deg(pi) ≤ d = O(poly(n)) ∀i. Circuits of this type

are interesting as it can easily be seen that if one can prove

that such a circuit cannot be a good approximator with one-

sided error of the recursive Fourier sampling problem on its

promise (where we say C is a good approximator with one-

sided error if C outputs 1 everywhere on Ug
1,h and outputs

0 almost everywhere on Ug
0,h) this would immediately yield

the existence of an A such that BQPA �⊂ AMA. The existing

analysis does provide some insight into the behavior of any

such circuit on the promise, though it, unfortunately, falls

short of proving the required lower bound. To be precise,

by noting that the set of points on which C outputs one is

given by V = ∪iV (1+pi), and applying Lemma 8, one can

immediately conclude that, for any g such that RFSg
n,h is

δ-versatile on Ug
p,h,

SM(Ug
p,h ∩ V, j) = SM(Ug

0,h ∩ V, j) = SM(Ug
1,h ∩ V, j),

where j ≤ δ − d. This is, by itself, a very strong statement

about the structure of the set of points on which any such

circuit C evaluates to 1. Moreover, due to the fact that, by

Lemma 1(c), the size of any algebraic set is equal to the

size of the set of standard monomials of that set, the above

claim also yields a (weak) statement about the relationship

between the sizes of Ug
0,h ∩ V and Ug

1,h ∩ V .

VI. VC DIMENSION

In this section, we answer an open question posed in

[26]. We begin with a few definitions. We begin by recalling

several key results from that paper.

Lemma 19. [26](Thm.2.2) For any C ⊆ {0, 1}n, reg(C) ≤
VC(C).
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The following result, expressed in the terminology of this

paper, was then shown.

Lemma 20. [26](Prop.6.1) For any C ⊆ {0, 1}n, reg(C) =
1 precisely when rankF2M(C,

(
[n]
≤1

)
) = |C|

They then asked if there was a similar simple character-

ization of when reg(C) = r, for r > 1, which would be

highly desirable as any such characterization would, by the

above lemma, provide a characterization of sets with VC

dimension at least r. We show the following.

Theorem 4. A set C ⊆ {0, 1}n has reg(C) = r if
and only if r is the smallest positive integer such that
rankF2M(C,

(
[n]
≤r

)
) = |C|.

Proof: By Lemma 3, ha(C, d) = rankF2
M(C,

(
[n]
≤d

)
).

By definition, reg(C) is the minimum r such that ha(C, r) =
|C|.
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