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Abstract—A typical obstacle one faces when construct-
ing pseudorandom objects is undesired correlations between
random variables. Identifying this obstacle and constructing
certain types of “correlation breakers” was central for recent
exciting advances in the construction of multi-source and non-
malleable extractors. One instantiation of correlation breakers
is correlation breakers with advice. These are algorithms that
break the correlation a “bad” random variable Y ′ has with a
“good” random variable Y using an “advice” – a fixed string
α that is associated with Y which is guaranteed to be distinct
from the corresponding string α′ associated with Y ′. Prior to
this work, explicit constructions of correlation breakers with
advice require the entropy of the involved random variables
to depend linearly on the advice length.

In this work, building on independence-preserving mergers, a
pseudorandom primitive that was recently introduced by Co-
hen and Schulman, we devise a new construction of correlation
breakers with advice that has optimal, logarithmic, dependence
on the advice length. This enables us to obtain the following
results.
• We construct an extractor for 5 independent n-bit sources

with min-entropy (log n)1+o(1). This result puts us tan-
talizingly close to the goal of constructing extractors for
2 sources with min-entropy O(log n), which would have
exciting implications to Ramsey theory.

• We construct non-malleable extractors with error guar-
antee ε for n-bit sources, with seed length d = O(log n)+
(log(1/ε))1+o(1) for any min-entropy k = Ω(d). Prior to
this work, all constructions require either very high min-
entropy or otherwise have seed length ω(log n) for any
ε. Further, our extractor has near-optimal output length.
Prior constructions that achieve comparable output length
work only for very high min-entropy k ≈ n/2.

• By instantiating the Dodis-Wichs framework with our
non-malleable extractor, we obtain near-optimal privacy
amplification protocols against active adversaries, improv-
ing upon all (incomparable) known protocols.

Keywords-extractors; non-malleable; privacy amplification;
correlation breakers; independence-preserving mergers

I. INTRODUCTION

When constructing pseudorandom objects, such as various

types of extractors, mergers, condensers, and so forth, one

often faces undesired correlations between random variables.

At some point in the construction and its analysis, a pair

of random variables Xgood, Xbad is obtained. Although one

can show that Xgood is uniform (or, more generally, that

Xgood is “well behaved”), Xbad may correlate arbitrarily

with Xgood, preventing one from proceeding with the con-

struction and analysis. In some cases, working around the

undesired correlation between Xgood and Xbad can be done

by exploiting more information about the nature of the

correlation [GRS06], [Li11b], [CS15]. More typically, one

is careful enough to avoid the presence of correlations to

begin with, though such a cautious strategy is sometimes

costly and may rule out what could have been a natural and

direct construction.

Although a recurring theme, the problem of efficiently

breaking arbitrary correlations a random variable has with a

uniformly distributed random variable, using (unavoidably)

an auxiliary source of randomness, was first explicitly stud-

ied by [Coh15a] in the form of an object called a local
correlation breaker. The construction of the latter is based

on the alternating extraction technique [DP07], [DW09], and

is influenced by [Li13b]. 1 By adapting the construction of

local correlation breakers, Chattopadhyay et al. [CGL15]

gave a construction for a different type of correlation break-

ers, which we call a correlation breaker with advice. This

primitive is the main component, both conceptually and in

terms of technical effort, in existing constructions of non-

malleable extractors [CGL15], [Coh15b], [Coh16]. Although

only recently introduced, correlation breakers with advice

already found further applications [CS16].

We turn to give the formal definition of correlation

breakers with advice. We assume familiarity with standard

notions from the literature such as statistical distance, min-

entropy, weak-sources, and seeded extractors. The unfamiliar

reader may consult the Preliminaries of the full version of

this paper.

Definition I.1 (Correlation breakers with advice). A function

AdvCB : {0, 1}n × {0, 1}� × {0, 1}a → {0, 1}m

is called a (k, ε)-correlation breaker with advice if the fol-

1In his pioneer work on multi-source extractors [Li13b], Li developed
a technique for breaking correlations between a pair of random variables
assuming both of which are uniform.
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lowing holds. Let Y be a random variable that is uniformly
distribution over �-bit strings, and let Y ′ be an �-bit random
variable that may be arbitrarily correlated with Y . Let X
be an (n, k)-source that is arbitrarily correlated with an n-
bit random variable X ′. Assume that the joint distribution
of X,X ′ is independent of the joint distribution of Y, Y ′.
Then, for any pair of distinct a-bit strings α, α′,

(AdvCB (X,Y, α) ,AdvCB (X ′, Y ′, α′)) ≈ε

(U,AdvCB (X ′, Y ′, α′)) .

Although every effort was made to keep Definition I.1

to its most succinct form, the definition is still somewhat

involved. Thus, we proceed by providing some informal

remarks that are meant to clarify the definition. We think

of Y in Definition I.1 as being the good random variable.

By “good” we mean that Y is uniformly distributed. The

role of the “bad” random variable is formalized by Y ′ that,

according to the definition, is allowed to correlate with Y in

an arbitrary manner. The third random variable X is a weak-

source of randomness that, as it turns out, is required for the

purpose of breaking the arbitrary correlation Y ′ may have

with Y . We think of X as an auxiliary, or external, source

of randomness as it is independent of the joint distribution

of Y, Y ′. Note that one does not have to use the same

source X when applying AdvCB to Y ′ with α′. In fact, X ′

can be arbitrarily correlated with X , as long as their joint

distribution is independent of the joint distribution of Y, Y ′.
For the sake of simplicity, in the remaining of this section

we put less emphasis on the output length m.

We think of the fixed a-bit string α as the advice that

is given to the correlation breaker, with the guarantee that

the a-bit string α′ that is associated with Y ′ is different

than α. Such an advice, of course, is unavoidable (think

of Y = Y ′, X = X ′). We remark that in some cases, the

variables Y and Y ′ are explicitly computed by our algorithm

and in such case a, a′ can be taken to be some labeling of

these variables. In other cases, one consider Y ′ only in the

analysis, in which case a, a′ are sometimes computed, or

generated, by applying some function f to Y and (in the

analysis) to Y ′, respectively.

The quality of a correlation breaker with advice is deter-

mined by the min-entropy k that it requires from its auxiliary

weak-source of randomness X , and by the length � of Y
(which can be thought of as the entropy of Y ). Thus, given

n, a, and a desired error guarantee ε > 0, the goal is to

construct (k, ε)-correlation breakers with advice with k, � as

small as possible.

A straightforward probabilistic argument can be used to

show that for all integers n, a, and for any ε > 0, there

exists a (k, ε)-correlation breaker with advice for

k = 2 log(1/ε) +O(1),

� = log a+ log(n− k) + 2 log(1/ε) +O(1).

By adapting the construction of local correlation break-

ers [Coh15a], Chattopadhyay et al. [CGL15] gave an explicit

construction of a (k, ε)-correlation breaker with advice with

k, � = O
(
a · log

(an
ε

))
.

Note that both k, � grow linearly with the advice length a
(in fact, the dependence on a is super-linear). Moreover, a is

multiplied by (rather than added to) log(n/ε), which turns

out to be the bottleneck for applications to non-malleable

extractors.

II. OUR CONTRIBUTION

The main technical contribution of this work is an explicit

construction of a correlation breaker with advice that has

logarithmic and additive dependence on the advice length,

significantly improving upon known results.

Theorem II.1 (Main technical result). For all integers
n, a,m, for any ε > 0, and for any constant α > 0 such that
a < 2n/ε there exists an explicit (k, ε)-correlation breaker
with advice, with

� = O (log a+ log n) + (log(1/ε))1+o(1),

k = (2 + α)m+O(�).

Note that the requirement from � in our construction is

optimal (up to constant factors) but for the slight sub-optimal

dependence on ε. Note further that the dependencies on

each parameter n, a, ε add rather than multiply. Moreover,

our correlation breaker supports a very low min-entropy k.

Building on Theorem II.1, we obtain the following results:
5-source extractors for near-logarithmic entropy: We

construct an extractor for 5 independent n-bit sources with

min-entropy (log n)1+o(1). This result puts us tantalizingly

close to the goal of constructing extractors for 2 indepen-

dent sources with min-entropy O(log n), which would have

exciting implications to Ramsey theory. See Theorem II.2.
Near-optimal non-malleable extractors: We construct

non-malleable extractors with error guarantee ε for n-bit

sources, having seed length d = O(log n)+(log(1/ε))1+o(1)

for any min-entropy k = Ω(d). Prior to our work, all

known constructions require either very high min-entropy

or otherwise have seed length ω(log n) regardless of the

error guarantee. Furthermore, our extractor can be set to

have output length k/(2+α) for any constant α > 0, which

is very close to the optimal k/2 bound. Prior to this work,

constructions that achieve output length Ω(k) work only for

very high min-entropy k ≈ n/2. See Theorem II.4.
Near-optimal privacy amplification protocols: By instan-

tiating the Dodis-Wichs framework [DW09] with our non-

malleable extractor, we obtain near-optimal privacy ampli-

fication protocols in the active setting. In particular, the

entropy-loss of the induced two-round protocol is O(log n)+
λ1+o(1) for security parameter λ. See Theorem II.5.

In the following sections we elaborate on our results, put

them in context, and compare with known results.
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A. A 5-source extractor for near-logarithmic min-entropy

For an integer s ≥ 1, a (k, ε) s-source extractor [CG88],

[BIW06] is a function Ext : ({0, 1}n)s → {0, 1}m with the

following property. For any s independent (n, k)-sources

X1, . . . , Xs, the random variable Ext(X1, . . . , Xs) is ε-

close to uniform. In this paper we focus on constant error

guarantee ε, and m = 1 output bits. It is easy to see

that a one-source extractor does not exist even for min-

entropy as high as k = n − 1. On the other hand, there

exists a two-source extractor for min-entropy as low as

k = log n+O(1) [CG88]

Besides being a natural problem, finding explicit two-

source extractors for logarithmic min-entropy would resolve

a classical problem in combinatorics, namely, matching

Erdős proof for the existence of Ramsey graphs [Erd47] with

a constructive proof. In fact, it suffices to construct a two-

source disperser for the same min-entropy, where a disperser

is a weakening of an extractor in which the output is only

required to be non-constant, as apposed to being close to

uniform.

Recall that an undirected graph on n vertices is called

k-Ramsey if it contains no clique or independent set of

size k. Ramsey [Ram28] proved that there does not exist

a 0.5 logn-Ramsey graph on n vertices. This result was

later complemented by Erdős [Erd47], who proved that most

graphs on n vertices are (2 + o(1)) log n-Ramsey.

In a long line of research [CG88], [BIW06], [Bou05],

[Raz05], [Rao09], [BRSW12], [BSZ11], [Li11a], [Li13b],

[Li13a] that has accumulated to [Li15b], Li constructed

a three-source extractor for min-entropy polylog n. Based

on this extractor and on the challenge-response mecha-

nism [BKS+05], [BRSW12], the first two-source disperser

for min-entropy polylog n was constructed in [Coh15c].

Subsequently, Chattopadhyay and Zuckerman [CZ15] (fol-

lowed by some improvements [Li15a], [Mek15]) constructed

a two-source extractor for min-entropy polylog n.

Although exciting, these results are still polynomially far

from optimal. This fairly modest gap is far more significant

when considering the implications to Ramsey theory. Indeed,

the constructions of [Coh15c], [CZ15] induce explicit k-

Ramsey graph on n vertices with k = 2poly log logn, as

apposed to the desired k = O(log n). The most natural

goal today is to obtain k-Ramsey graphs on n vertices

with k = polylog n. Such graphs correspond to two-source

dispersers that support min-entropy O(log n).

Aiming towards this goal, Cohen and Schulman [CS16]

observed that previous techniques for constructing s-source

extractors and dispersers break below min-entropy (log n)2

for any constant s. Based on a new primitive they introduced,

called independence-preserving mergers, a construction of

an extractor for O(s)-sources with min-entropy (log n)1+1/s

was obtained [CS16], breaking the “log2 n barrier”, and

paving the way towards constructing extractors for near-

logarithmic min-entropy. Continuing this research path,

based on Theorem I.1 and on revising the framework for

constructing multi-source extractor set by [CS16], we obtain

a 5-source extractor for near-logarithmic min-entropy.

Theorem II.2. For all n there exists an explicit extractor
5Ext : ({0, 1}n)5 → {0, 1} for min-entropy (log n)1+o(1).

Building on the framework set by [CS16], Chattopadhyay

and Li [CL16] obtained, independently of our work and us-

ing different ideas, an extractor for s-sources, each with min-

entropy (log n)1+o(1), where s is some universal constant.

The number of sources s, although constant, is quite large

– it is proportional to the inverse of the constant β > 0 for

which Bourgain’s two-source extractor [Bou05] can support

min-entropy rate 1/2− β. 2

B. Non-malleable extractors

As mentioned, correlation breakers with advice were

introduced in the context of non-malleable extrac-

tors [CGL15]. As we improve upon previous constructions

of correlation breakers with advice, we readily obtain im-

proved constructions of non-malleable extractors. In this

section we recall the definition of non-malleable extractors,

give an account for explicit constructions of non-malleable

extractors from the literature, and state our result.

A non-malleable extractor is a seeded extractor with a

very strong guarantee concerning the correlations (or, more

precisely, the lack thereof) of the outputs of the extractor

when fed with different seeds. The notion of a non-malleable

extractor was introduced by Dodis and Wichs [DW09],

motivated by the problem of devising privacy amplification

protocols against active adversaries (see Section II-C). More

recently, non-malleable extractors played a key role in the

construction of two-source extractors [CZ15].

Definition II.3 (Non-malleable extractors [DW09]). A func-
tion nmExt : {0, 1}n×{0, 1}d → {0, 1}m is called a (k, ε)-
non-malleable extractor if for any (n, k)-source X and any
function A : {0, 1}d → {0, 1}d with no fixed points, it holds
that

(nmExt(X,Y ), nmExt(X,A(Y )), Y ) ≈ε

(U, nmExt(X,A(Y )), Y ),

where Y is uniformly distributed over {0, 1}d independently
of X .

Computational aspects aside, for any integer n and ε > 0,

Dodis and Wichs [DW09] proved the existence of (k, ε)-
non-malleable extractors having m output bits and seed

length d = log(n − k) + 2 log(1/ε) + O(1) for any

k > 2m + 2 log(1/ε) + log d + O(1). Although the mere

2To the best of our knowledge, taking into account recent points-
lines incidence theorems over finite fields [Jon12], [RNRS14], together
with Bourgain’s application of this result [Bou05], [Rao07], and the way
Bourgain’s extractor is applied by [CS16], s ≥ 1000.
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existence of non-malleable extractors, and with such great

parameters, is somewhat surprising, explicit constructions

are far more desirable.

Constructing non-malleable extractors gained a significant

attention in the literature. However, up until this work, all

constructions require very high min-entropy or otherwise

have seed length ω(log n) regardless of the error guarantee.

More precisely, to support min-entropy polylog n (or even

min-entropy n0.99), the seed length of all prior constructions

is super logarithmic in n and, at best, has dependence of the

order of log2(1/ε) on the error guarantee ε. 3

Building on Theorem II.1 we obtained the following

result.

Theorem II.4. For any integer n, any ε > 0, and any
constant α > 0, there exists an efficiently-computable
(k, ε)-non-malleable extractor nmExt : {0, 1}n×{0, 1}d →
{0, 1}k/(2+α) with seed length d = O(log n) +
(log(1/ε))1+o(1) for any k = Ω(d).

Using different techniques, and independently of our

work, Chattopadhyay and Li [CL16] obtained a non-

malleable extractor with seed length (log(n/ε))1+o(1) and

output length k/2
√

log log(n/ε). Note that the seed length

of [CL16] is super-logarithmic in n even for constant ε (and,

in fact, the dependence on n is not as good as previously

known results [Coh15b]). Further, the number of output

bits of their construction is o(k), whereas we obtain output

length which can be taken arbitrarily close to the optimal

k/2 bound. We remark that in [CL16] there are several other

incomparable constructions.

The precise dependence of the seed length on the error

guarantee, as well as the dependence obtained by [CL16],

is log(1/ε) · c
√

log log(1/ε) for some constant c > 1. Interest-

ingly, this similar dependence is due to different reasons. In

fact, it seems that by combining ideas from both works, one

can slightly improve the result and obtain a construction

with seed length O(log n) + log(1/ε) · c(log log(1/ε))1/3 . 4

Although an insignificant quantitative improvement, it does

suggest that different ideas are used in both works. Indeed,

the strategy taken by [CL16] is to construct a variant of

independence-preserving mergers, and in particular, Chat-

topadhyay and Li do not attempt to obtain improved corre-

lation breakers with advice.

C. Privacy amplification protocols

In the classical problem of privacy amplification [BBR85],

[Mau93], [BBCM95] two parties, Alice and Bob, share a

secret that is “somewhat random” from the point of view

of an adversary Eve. Formally, the secret is modeled by an

(n, k)-source X . In the classical setting, Alice and Bob can

3This work subsumes a technical report by the author [Coh16] in which a
non-malleable extractor with seed length O(logn+log3(1/ε)) is obtained.

4This assertion was not verified as carefully as the proofs in this paper,
and should be trusted accordingly.

communicate over an authenticated channel that is eaves-

dropped by Eve. Put differently, Eve is a passive adversary,

and cannot tamper with the communication. Throughout

the paper we consider only the information-theoretic setting

in which Eve is computationally unbounded. Further, we

assume that both Alice and Bob have local (that is, non-

shared) randomness that is independent of X .

The goal of Alice and Bob is to agree on an m-bit

string R that is ε-close to uniform even conditioned on the

transcript of the protocol, that is visible to Eve. We refer

to λ = log(1/ε) as the security parameter of the protocol.

The quality of a privacy amplification protocol is measured

by the following parameters: (1) Round complexity – the

number of rounds required by the protocol; (2) Entropy-loss

– the amount of min-entropy that is lost during the protocol,

namely, k −m; (3) Communication complexity – the total

number of bits that are communicated; and (4) Supported

min-entropy – the least value k for which the protocol is

secure.

A strong seeded extractor yields a one-round privacy

amplification protocol: Given a (k, ε)-strong seeded ex-

tractor Ext : {0, 1}n × {0, 1}d → {0, 1}m, Alice samples

s ∼ Ud and sends s to Bob. Alice and Bob then compute

R = Ext(X, s). As Ext is strong, R is ε-close to uniform

even conditioned on s, the transcript of the protocol.

Note that the entropy-loss of the protocol equals the

entropy-loss of the extractor. The communication complexity

is the seed length d, and the supported min-entropy of

the protocol is that supported by Ext. By instantiating the

protocol with explicit near-optimal strong seeded extrac-

tors [GUV09], for any k = Ω(λ), one obtains an explicit

one-round protocol with entropy-loss O(λ) and communi-

cation complexity O(log n+ (λ+ log k) · log k).
1) Privacy amplification protocols against an active ad-

versary: A significantly more challenging problem is to

devise privacy amplification protocols when Eve has full

control over the communication channel, and can therefore

tamper with the communication to her liking. That is, when

the channel is unauthenticated. We allow ourselves to be

somewhat informal regarding the exact requirement from a

protocol in this setting and refer the reader to, say, [DW09]

for a formal treatment. We only emphasize the difficulty

that a protocol for this model has to overcome: not only

R must be close to uniform from Eve’s point of view, but

also Alice and Bob must agree on the same string R, if

possible, and otherwise (and only if necessary) declare that

the communication has been tampered with.

The problem of devising privacy amplification proto-

cols in the active setting was first studied by Maurer and

Wolf [MW97] who constructed a one-round protocol for

k > 2n/3. Subsequently, Dodis et al. [DKRS06] relaxed

the bound to k > n/2. The entropy-loss and communi-

cation complexity of these protocols is n − k, which is

significantly larger than what was obtained in the passive
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setting. Unfortunately, a one-round protocol cannot support

min-entropy k < n/2 [DW09], and so unlike in the passive

adversary model, to avoid high entropy-loss and to save on

communication, in the active adversary setting, one must

resort to multiple round protocols, even for large k. Follow-

ing [MW97], a long line of research studied the problem of

devising privacy amplification protocols against active adver-

saries (see [MW97], [DKRS06], [RW03], [DW09], [KR09],

[CKOR14], [Li12a], [Li12b] and references therein), though

until the work of Dodis and Wichs [DW09], all protocols

required more than two rounds.

Dodis and Wichs [DW09] suggested an elegant framework

for constructing two-round privacy amplification protocols in

the active setting. Much like the framework for the passive

setting, the Dodis-Wichs framework is also instantiated

with an extractor, and the parameters of the protocol are

determined by those of the extractor. However, to handle

active adversaries, the extractor used by the Dodis-Wichs

framework is required to be non-malleable.

To be more precise, the Dodis-Wichs framework also

requires a strong seeded extractor, though we “hardwire”

a known construction of almost optimal strong seeded

extractors [GUV09]. Further, the protocol can in fact be

instantiated with a weaker object than a full-blown non-

malleable extractor, called a look-ahead extractor, though

then one has to use other more sophisticated primitives (a

special type of message authenticated codes) which results

in a protocol with weaker parameters.

The Dodis-Wichs framework motivated the study of non-

malleable extractors. Although Dodis and Wichs proved the

existence of such extractors, an explicit construction was

not obtained in [DW09] and, as covered in Section II-B, a

significant attention was given for matching the existential

result with a constructive proof. Further, Li [Li12a], [Li12b]

devised a privacy amplification protocol for the active set-

ting which only requires a non-malleable condenser – a

weaker object than a non-malleable extractor. Li was able

to construct such condensers and thus, due to the lack of

good enough non-malleable extractors at the time, obtained

improved privacy amplification protocols.

We do not present the Dodis-Wichs protocol in this paper,

and are content with relating the parameters of the protocol

with that of the non-malleable extractor that is being used.

The entropy-loss is O(d), where d is the seed length of

the non-malleable extractor applied to n-bit strings and set

with error guarantee ε. The communication complexity of

the protocol is O(d+ (λ+ log k) · log k), and the supported

min-entropy is that supported by the extractor.

Prior to this work, the best explicit non-malleable ex-

tractor [Coh15b] (which has better parameters than known

non-malleable condensers [Li12a], [Li12b]) requires a seed

of length Ω(log(n/ε) · log(log(n)/ε)) and thus induces a

protocol with entropy-loss Ω(λ2+λ log n+log n · log logn).
By instantiating the Dodis-Wichs framework with the non-

malleable extractor that is given by Theorem II.4, we obtain

the following near-optimal protocol that, in particular, has

entropy-loss of the order of λ1+o(1) + log n.

Theorem II.5. For all n, λ, there exists an explicit two-
round privacy amplification protocol against active adver-
saries that supports min-entropy k = Ω(d), with entropy-loss
O(d), and communication complexity O(d + (λ + log k) ·
log k), where d = λ1+o(1) +O(log n).

Based on their non-malleable extractor [CL16], Chat-

topadhyay and Li obtained privacy amplification protocols

with higher entropy-loss and communication complexity as

a function of n.

III. PROOF OUTLINE

Due to lack of space we do not give any formal proof

in this version of the paper and refer the reader to its full

version. Instead, in the sequel we present the outline of our

proofs.

Our construction of correlation breakers with advice that

is given by Theorem II.1 heavily relies on the notion of

independence-preserving mergers – a pseudorandom prim-

itive that was introduced recently by [CS16] for the con-

struction of multi-source extractors. We also make use of the

notion of hierarchy of independence. To outline our proof,

we must first present these two concepts.

A. Independence-preserving mergers

Informally speaking, an independence-preserving merger

is a function that mergers a sequence of random variables

to a single random variable while preserving some form of

independence that sequence has with a second sequence of

random variables. To be more precise, we make use of the

notion of somewhere-independent matrices [CS16].

We say that a sequence of random variables X1, . . . , Xr

is somewhere-independent of the sequence Y1, . . . , Yr if the

following two conditions are met:

• There exists g ∈ [r] such that Xg is close to uniform

even conditioned on Yg;

• For all i ∈ [r], the random variable Xi is close to

uniform.

We typically consider random variables on, say, �-bit strings,

and stack the random variables in the sequence X1, . . . , Xr

(resp. Y1, . . . , Yr) as the rows of an r × � matrix X (resp.

Y ). We say that X is somewhere-independent of Y .

An independence-preserving merger is a function of the

form

IPMerg : {0, 1}r×� × {0, 1}n → {0, 1}�,
that has the following property: if X is somewhere-

independent of Y then IPMerg applied to X is close to

uniform even conditioned on the corresponding application

to Y . Note that IPMerg has two arguments. The first is

the matrix whose rows we want to merger. The second
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argument is fed with a sample from an auxiliary weak-

source of randomness that is required for the purpose of

the merging process. The actual construction that we use

requires a sample from a second weak-source that is allowed

to correlate with the matrix. This is done for technical

reasons that we prefer to avoid delving into in this section.

In [CS16], a construction of independence-preserving

mergers was given that requires the row length �, as well

as the min-entropy of the auxiliary source of randomness,

to be of order r · log(n/ε), where ε measures the statistical

closeness of the output of IPMerg applied to X from

the uniform distribution conditioned on the corresponding

output applied to Y . We make an extensive black-box use

of this construction.

B. Hierarchy of independence

The notion of hierarchy of independence is captured by a

pair of functions

a(y, x) : {0, 1}� × {0, 1}n → {0, 1}�,
b(y, x) : {0, 1}� × {0, 1}n → {0, 1}�,

that has the following property. Let Y, Y ′ be arbitrarily

correlated �-bit random variables such that Y is uniform. Let

X,X ′ be arbitrarily correlated n-bit random variables such

that X has sufficiently high min-entropy. Assume further

that the joint distribution (X,X ′) is independent of the joint

distribution (Y, Y ′). Then, the following holds:

• a(Y,X) is close to uniform, and

• b(Y,X) is close to uniform even conditioned on

a(Y,X), a(Y ′, X ′).
That is, the variable b(Y,X), which we think of as being in

the higher level of the hierarchy, is uniform even conditioned

on the random variables a(Y,X), a(Y ′, X ′) in the lower

level of the hierarchy. Thus, in this hierarchic-sense, the

pair (a, b) allows one to break correlations between random

variables. Based on the alternating extraction technique, one

can efficiently construct such a pair of functions. In fact,

for technical reasons, the function b requires one more

argument.

C. The general strategy and context

With independence-preserving mergers and the notion of

hierarchy of independence in hand, we are ready to outline

the proof of Theorem II.1. Our construction can be divided

to three modular steps. We give a short description for each

of these steps, and elaborate further in Section IV.

Step 1 – Constructing a base correlation breaker.:
First, we construct a correlation breaker with advice to which

we refer to as the base correlation breaker with advice.

More precisely, we construct a (k, ε)-correlation breaker

with advice

BaseAdvCB : {0, 1}n × {0, 1}� × {0, 1}a → {0, 1}m

with � = O (log n+ a · log (a/ε)) and k = 3m+O(�).
Note that BaseAdvCB already modestly improves upon

the existing construction as the advice length a is added to

log n, rather than being multiplied by log n, 5 though it is not

the reason we bother constructing a new correlation breaker

with advice. We do so mainly for the sake of completeness.

Indeed, the existing construction of correlation breakers with

advice is only implicit in [CGL15]. The explicit defini-

tion was coined only subsequently in [Coh15b], referring

to [CGL15] for a proof. Having the definition and formal

statement in one source and the proof, implicitly, in a

second source is far from ideal. Moreover, one needs to

be careful when adopting the proof of [CGL15] due to the

dependence on the error guarantee. We give a completely

different construction which we believe to be simpler and

more direct given independence-preserving mergers.

An informal description of the construction of the base

correlation breaker with advice is given in Section IV-A.
Step 2 – Stepping-up correlation breakers with ad-

vice.: The base correlation breaker with advice that we

construct in the Step 1 requires min-entropy that is linear

in the advice length a. In the second step, we design an

efficient algorithm that transforms, in a black-box manner,

one correlation breaker with advice AdvCBin to another

AdvCBout, with better dependence on the advice length

(as long as the dependence is not “too good” to begin

with). By applying this transformation repeatedly, each time

with the previously generated correlation breaker, we obtain

a correlation breaker with advice that only requires min-

entropy 2O(
√
log a) · log(n/ε). The stepping-up algorithm,

as well as the construction of the base correlation breaker,

makes use of independence-preserving mergers. For more

details, see Section IV-B.
Step 3 – Condensing the advice.: Although the corre-

lation breaker with advice that is obtained in Step 2 already

significantly improves upon the known construction, it still

has a super logarithmic, and multiplicative, dependence on

the advice length a. Unfortunately, we do not know how to

improve the dependence on the advice length, at least not

without having access to a better independence-preserving

merger. Instead, we take a completely different approach –

we make the advice shorter!

More precisely, in the third step we devise an efficient

algorithm that is given as input an advice of length a, and

outputs a new advice of length log(1/ε) + τ(a). Here, ε is

a bound on the probability that the new (allegedly) advice

will fail to remain a valid advice – namely, be distinct from

the value obtained by applying the same procedure to any

different a-bit string. The function τ(a) is an extremely

slowly growing function of a. In particular, if a is bounded

5By applying a more careful analysis, one can show that the con-
struction of the base correlation breaker with advice only requires � =

O
(
logn+ a+ a

log a
· log(1/ε)

)
. However, we do not benefit from this

given the stepping-up algorithm that we present in Step 2.
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above by, say, 2n/ε or even by an expression which is double

or triple exponential in n/ε, the affect τ(a) has is negligible.

Putting it all together.: The seed length and min-

entropy required for the advice condenser is O(log(na/ε)).
Thus, by condensing the advice prior to the application of

the correlation breaker with advice that is obtained in Step

2, one only requires �, k of order

log(an) + 2
√

log(τ(a)+log(1/ε)) · log(n/ε). (1)

This is not quite what is stated in Theorem II.1. In par-

ticular, note the undesired multiplicative dependence. This

dependence can be removed by applying the “switch”

idea [Coh15b]. More precisely, before applying the corre-

lation breaker with advice, and after condensing the advice,

we apply some transformation to the source and the seed

so to obtain a new source and a new seed, both of length

≈ log(n/ε). Thus, informally speaking, the quantitative

affect this transformation has on the seed length is that any

appearance of n on the right summand of Equation (1) is

replaced by log(n/ε). Using the fact that τ(a) is a very

slowly growing function of n, a short calculation shows that

the multiplicative dependence is bounded by the additive

terms as stated in Theorem II.1.

IV. A MORE DETAILED PROOF OUTLINE

In this section we elaborate a bit further on each of the

three steps that were presented in the previous section.

A. Step 1 – the base correlation breaker

As mentioned, in the first step we construct the base

(k, ε)-correlation breaker with advice

BaseAdvCB : {0, 1}n × {0, 1}� × {0, 1}a → {0, 1}m,

where � = O (log n+ a · log (a/ε)) and k = 3m + O(�).
In this section we give an informal description of the

construction.

On input x ∈ {0, 1}n, y ∈ {0, 1}�, and α ∈ {0, 1}a, the

first step for computing BaseAdvCB(x, y, α) is constructing

a matrix m = m(x, y, α) with 2a rows, as follows. For every

i ∈ [a], if αi = 0 we set

m2i−1 = a(y, x),

m2i = b(y, x).

Otherwise, if αi = 1, we set

m2i−1 = b(y, x),

m2i = a(y, x).

Observe that by doing so, one is guaranteed that

M = m(X,Y, α) is somewhere-independent of M ′ =
m(X ′, Y ′, α′) for any α �= α′ and any random variables

X,Y,X ′, Y ′ as described above. Indeed, by construction,

one of the rows of M contains b(Y,X) while the corre-

sponding row of M ′ contains a(Y ′, X ′). By the hierarchy

of independence, that row of M is close to uniform even

conditioned on the corresponding row of M ′. Moreover, note

that every row of M is close to uniform, and so indeed M
is somewhere-independent of M ′.

At this point, one can apply the independence-preserving

merger to M so to obtain the output Z. The corresponding

application to M ′ will result in a random variable Z ′ with

the guarantee that Z is close to uniform even conditioned

on Z ′, as desired.

To be more precise, one should use only, say, a prefix of Y
for the construction of the matrix M so not to exhaust all the

min-entropy of Y , and leaving some for the independence-

preserving merger. We consider this issue to be a technicality

and prefer not to delve into the details in this section.

B. Step 2 – stepping-up correlation breakers with advice

The base correlation breaker with advice that was con-

structed in Step 1 requires entropy that is linear in the advice

length. In the second step, we devise an efficient algorithm

that transforms, in a black-box manner, one correlation

breaker with advice AdvCBin to another AdvCBout, with

a better dependence of the required entropy on the advice

length.

The high-level idea is as follows. Given x ∈ {0, 1}n,

y ∈ {0, 1}�, and α ∈ {0, 1}a, we partition the a-bit advice

string α to b substrings, or blocks, of equal length which

we denote by α1, . . . , αb. We then apply AdvCBin to each

of the b blocks and stack all the results in a matrix with b
rows. To that matrix we apply the independence-preserving

merger so to obtain the final output.

Again, we are being intentionally blur regarding the exact

way we use x, y. Indeed, one must leave enough entropy in

the random variables after one computation so to meet the

requirement of the next. Further, the independence between

(X,X ′) and (Y, Y ′) must always be preserved.

Let us consider this transformation when applied to the

base correlation breaker with advice, with b =
√
a. As

the advice passed to AdvCBin is of length a/b =
√
a, the

required entropy for computing the matrix is roughly of

order
√
a · log(n/ε). The obtained matrix has

√
a rows,

and so the independence-preserving merger requires only√
a · log(n/ε) entropy from its sources. All in all, we have

managed to reduce the entropy dependence on the advice

length from linear in a to O(
√
a).

Applying the transformation again, now to the newly

obtained correlation breaker with advice, this time with

b = a1/3, one obtains a third correlation breaker with advice

that only requires entropy O(a1/3 · log(n/ε)). We continue

to apply this sequence of improvements where on the j’th

iteration, we set b = a1/(j+1). After v iterations, the required

entropy is roughly of the form 2O(v) · a1/v · log(n/ε). By

setting v =
√
log a, we obtain a correlation breaker with

advice that only requires entropy 2
√
log a · log(n/ε).
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C. Step 3 – condensing the advice

Somewhat orthogonally to the ideas presented so far, in

the third step we show how to shorten, or condense, a given

advice, at least as long the advice is longer than log(1/ε).
More precisely, we devise an algorithm to which we call an

advice condenser

AdvCond : {0, 1}ain × {0, 1}n × {0, 1}d → {0, 1}aout

that has the following property. For any X,X ′, Y, Y ′ as

above, and for any distinct fixed ain-bit strings α, α′, it holds

that

Pr [AdvCond(α,X, Y ) = AdvCond(α′, X ′, Y ′)] ≤ ε.

Moreover, aout = O(log(1/ε) + τ(ain)), where τ(ain) =
log(c)(ain) is the c-iterated log function applied to ain. 6

For any constant c, the entropy required from X,Y for

the purpose of condensing the advice is only O(log(na/ε)),
which we are willing to pay. Hence, informally speaking,

by having our advice condenser, one can always assume

that the advice has length of order min(a, log(1/ε)+ τ(n)).
In particular, the advice length can be assumed to grow

extremely slowly as a function of n. This is quite a strong

assumption whereas, somewhat surprisingly, the construction

of our advice condenser, which is influenced by the advice

generator of [CGL15], is fairly simple.
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