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Abstract—The main contribution of this work is an explicit
construction of extractors for near logarithmic min-entropy. For
any δ > 0 we construct an extractor for O(1/δ) n-bit sources
with min-entropy (log n)1+δ . This is most interesting when δ is
set to a small constant, though the result also yields an extractor
for O(log log n) sources with logarithmic min-entropy.

Prior to this work, the best explicit extractor in terms of
supporting least-possible min-entropy, due to Li (FOCS’15), re-
quires min-entropy (log n)2+δ from its O(1/δ) sources. Further,
all current techniques for constructing multi-source extractors
“break” below min-entropy (log n)2. In fact, existing techniques
do not provide even a disperser for o(log n) sources each with
min-entropy (log n)1.99.

Apart from being a natural problem, supporting logarithmic
min-entropy has applications to combinatorics. A two-source
disperser, let alone an extractor, for min-entropy O(log n) induces
a (polylog n)-Ramsey graph on n vertices. Thus, constructing
such dispersers would be a significant step towards constructively
matching Erdős’ proof for the existence of (2 log n)-Ramsey
graphs on n vertices.

Our construction does not rely on the sophisticated primitives
that were key to the substantial recent progress on multi-source
extractors, such as non-malleable extractors, correlation break-
ers, the lightest-bin condenser, or extractors for non-oblivious bit-
fixing sources, although some of these primitives can be combined
with our construction so to improve the output length and the
error guarantee. Instead, at the heart of our construction is
a new primitive called an independence-preserving merger. The
construction of the latter builds on the alternating extraction
technique.

I. INTRODUCTION

A randomness extractor is a function that produces truly

random bits given a sample from a source that is “somewhat

random”. The standard measure for the amount of randomness

in a source is its min-entropy which, up to a logarithmic

scaling, is the probability to sample the most likely element

to be sampled by the source.

Ideally, one would have liked to define a randomness

extractor as a function Ext : {0, 1}n → {0, 1}m such that for

any n-bit random variable X with min-entropy k, Ext(X) is a

close to uniform in statistical distance. Unfortunately, such a

function does not exist even if one is satisfied with outputting

a single bit, that has a constant bias, given a sample from a

source with min-entropy as high as n− 1.

One approach [CG88] to circumvent this negative result is

to feed the extractor with more than one sample. A multi-
source extractor is a function Ext : ({0, 1}n)s → {0, 1}m
with the guarantee that if X1, . . . , Xs are independent random

variables, each having min-entropy k, then Ext(X1, . . . , Xs)

is close to uniform. A simple probabilistic argument can be

used to show that there exists a multi-source extractor already

for s = 2 sources. The min-entropy k that such a two-source

extractor can support is k = log(n) +O(1). Further, one can

output m = k −O(1) bits, where in both instances, the O(1)
term depends solely on the statistical distance of the output to

the uniform distribution.

Although this existential result is of interest, explicit con-

structions are far more desirable. As it turns out, the most

challenging aspect of constructing multi-source extractors is

to support low min-entropy. Indeed, even after an extensive

research effort that spanned over 25 years, it was not until the

recent work by Li [Li13a] that multi-source extractors with

a constant number of sources could support poly-logarithmic

min-entropy. This held even if one only wished to obtain a

single output bit with a constant bias.

A. Applications to Ramsey theory

Apart from proving to be the most difficult aspect of

constructing multi-source extractors, the problem of support-

ing low min-entropy, even when considering one output bit

with constant bias, is of interest due to its applications to

Ramsey theory. Recall that a graph on N vertices is called

K-Ramsey if it contains no clique or independent set of size

K. Ramsey [Ram28] proved that there does not exist a graph

on N vertices that is 0.5 logN -Ramsey. This result was later

complemented by Erdős [Erd47], who proved that most graphs

on N vertices are (2 + o(1)) logN -Ramsey.

Unfortunately, Erdős’ argument is non-constructive, and one

does not obtain from Erdős’ proof an example of a graph that is

(2+ o(1)) logN -Ramsey. A central problem in combinatorics

is to match Erdős’ proof, up to any multiplicative constant

factor, with a constructive proof. That is, to come up with

an explicit construction of an O(logN)-Ramsey graph on N
vertices.

Erdős’ challenge gained significant attention in the liter-

ature, and the current best known constructions [Coh15c],

[CZ15] achieve K = 2poly log logN , which is quasi-

polynomially close to meeting Erdős’ challenge. Both con-

structions, and also their predecessors [BKS+05], [BRSW12],

rely on the equivalence between two-source dispersers and

bipartite Ramsey graph.

A two-source disperser for min-entropy k is a function

Disp : ({0, 1}n)2 → {0, 1} with the property that for any
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two independent random variables X1, X2, each having min-

entropy k, the output Disp(X1, X2) is non-constant. Note that

a two-source extractor with a constant bias is in particular

a two-source disperser. In fact, a two-source disperser can

be thought of as a two-source extractor with any non-trivial

guarantee on the bias. On the other hand, it is straightforward

to show that a two-source disperser such as Disp above yields

a K = 2k-bipartite Ramsey graph on N = 2n vertices on each

side, where a K-bipartite Ramsey graph is the natural analog

of Ramsey graphs for bipartite graphs. Further, one can show

that a bipartite Ramsey graph yields a Ramsey graph with the

same parameters.

By this connection between Ramsey graphs and dispersers,

it is evident that a two-source disperser (let alone a two-source

extractor) for min-entropy c·log n would immediately induce a

(logN)c-Ramsey graph on N vertices, which is polynomially-

close to optimal if c is constant. We remark that in order to

resolve Erdős’ challenge for bipartite graphs, one would have

to construct a two-source disperser for min-entropy log(n) +
O(1) which seems to be an extremely difficult task.

B. Where do existing techniques break?

Up until the recent work by Li [Li13a], all extractors

for a constant number of sources could only support min-

entropy nΩ(1) [Rao09], [Li13b]. In [Li13a], and in a subse-

quent work [Li15b], Li significantly improved known results

by constructing, for any constant δ > 0, an extractor for

�14/δ� + 2 sources with min-entropy (log n)2+δ . That is,

by using Li’s extractor, one can support min-entropy that

approaches arbitrarily close to (log n)2 – quadratically close

to optimal, by consuming a large enough number of sources.

Based on ideas from [Li13a], [Li15b], subsequent works

considered the problem of optimizing the number of sources

while supporting min-entropy (log n)c, though possibly with

a large exponent c. This includes constructions of three-

source extractors [Li15b], two-source dispersers [Coh15c],

and subsequently also two-source extractors [CZ15], [Li15a],

[Mek15]. All of these constructions require exponents c� 2.

By inspection, all of the exciting techniques that were used

for the construction of multi-source extractors seem to break

below min-entropy (log n)2. When insisting on two sources,

the situation is even worse in term of supported min-entropy

as current constructions resort to structural results regarding

the extent to which bounded independence fools certain types

of circuits [Bra10], [Tal14], [KLW10] making these results

costly in terms of min-entropy.

When considering two-source dispersers, current techniques

require min-entropy at least (log n)3. Indeed, besides using a

certain type of a three-source extractor [Li15b], for which we

currently need high min-entropy, the construction by [Coh15c]

is based on locating a nicely structured source with min-

entropy k/(log n)3 inside each of the two min-entropy k
sources on which the disperser operates. This approach only

makes sense for k > (log n)3 even if one has access to an

optimal three-source extractor.

This (log n)2 “barrier” has held also when considering a

super-constant number of sources. In fact, to the best of our

knowledge, using existing methods, it was not known how

to obtain a disperser for o(log n) sources with min-entropy

(log n)1.99, let alone an extractor with a constant number of

sources for such low min-entropy, which is what we are set

to obtain.

C. Our contribution

The main contribution of this work is an explicit con-

struction of multi-source extractors for near logarithmic min-

entropy. More precisely, we prove the following.

Theorem I.1. There exists a universal constant c such that the
following holds. For any integer n and any δ > 0 (that may
depend on n), there exists an efficiently-computable extractor
Ext : ({0, 1}n)b → {0, 1} for b = 2/δ + c sources, each with
min-entropy (log n)1+δ , having output with bias 0.01.

Theorem I.1 is most interesting when one takes δ to be a

small constant as this keeps the number of sources constant

while supporting close to optimal min-entropy. However, we

stress that the parameter δ in Theorem I.1 can be an arbitrary

function of n. In particular, by setting δ = (log log n)−1,

Theorem I.1 yields an explicit multi-source extractor for

2 log logn + O(1) sources with min-entropy O(log n). More

generally, Theorem I.1 gives an explicit multi-source extrac-

tor for min-entropy (log n)1+o(1) with a corresponding ω(1)
number of sources.

It is also worth noting that besides supporting lower min-

entropy, the number of sources required by our extractor is

smaller than that required by [Li15b] in the most interesting

range of parameters, namely, as δ approaches to zero.

Somewhat surprisingly, our extractor do not rely on any

of the primitives that were developed and used by recent

constructions of multi-source extractors, such as non-malleable

extractors [DW09], [DLWZ14], [CRS14], [Li12a], [Li12b],

[CGL15], [Coh15b], correlation breakers [Coh15a], [CGL15],

the lightest-bin condenser [Li13a], [Li15b], or extractors for

non-oblivious bit-fixing sources [AL93], [Vio14], [CZ15],

[Mek15]. We only rely on the alternating extraction tech-

nique [DP07] and components that are by now considered

standard, and which were available for close to a decade. These

includes seeded extractors and condensers [GUV09], Raz’s

seeded extractor with weak-seeds [Raz05], Bourgain’s two-

source extractor [Bou05], error correcting codes, and expander

graphs.

Although our construction does not yield improved Ramsey

graphs, as it requires more than two sources, we believe it is

a step towards such a construction. Our source of optimism

is based on inspecting the research path that led to the

construction of two-source extractors and dispersers for poly-

logarithmic min-entropy. Indeed, it is evident that many of

the ideas and objects that were used in such constructs were

gradually developed in the context of multi-source extractors.

More concretely, at the heart of our construction is a new
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primitive called an independence-preserving merger, which we

hope will be of value in future constructions.

1) Improving the output length and the error guarantee:
Given that one aims to optimize the supported min-entropy,

and especially when having the application to Ramsey theory

in mind, it is somewhat less pressing to output many bits

or to guarantee a sub-constant error. Nevertheless, outputting

many bits with a better error guarantee is a natural goal and,

typically, extractors that have many output bits with low error

guarantee allow for compositions with other primitives.

By using the primitives developed for the proof of The-

orem I.1, together with several results from the literature,

such as the condenser of Li [Li13a] that is based on the

lightest-bin protocol [Fei99], and using mergers with weak-

seeds [Coh15a], we can guarantee a low error and output many

bits.

Theorem I.2. For any integer n and any constant δ > 0, there
exists an efficiently-computable extractor Ext : ({0, 1}n)b →
{0, 1}m for b = 16/δ +O(1) sources, each with min-entropy
(log n)1+δ , having error guarantee 2−Ω((logn)δ/4) and m =
Ω((log n)1+δ) output bits.

II. PROOF OUTLINE

Due to lack of space we do not give any formal proof in

this version of the paper and refer the reader to its full version.

Instead, in the sequel we present the outline of our proofs.

In this section we present the construction and outline the

analysis of our extractor that is given by Theorem I.1. The

main effort taken by our extractor is the efficient transforma-

tion of the sources it operates upon into a sequence of {0, 1}
random variables X1, . . . , Xr, with r = poly(n), such that

all but r1/2−α of the random variables in the sequence are

“good”. By good, we mean that for some parameter t to be

chosen later on, the joint distribution of every t-tuple of good

variables is close to uniform. The parameter α is some small

universal constant that is strictly larger than zero.

One can easily show that if all the good Xi’s were jointly

uniform then the majority function applied to the Xi’s would

have bias O(r−α). However, one cannot obtain such a strong

independence, namely t = Ω(r), given few low min-entropy

sources. Indeed, it is known [AGM03] that a t-wise indepen-

dent distribution over r-bits has min-entropy Ω(t log r), and

the min-entropy has to come from the sources. Luckily, a result

by Diakonikolas et al. [DGJ+10] regarding the extent to which

t-wise independence fools threshold functions, can be applied

to show that as the good Xi’s are t-wise independent, the

bias of Maj(X1, . . . , Xr) is bounded by Õ(1/
√
t) +O(r−α).

Hence, by setting t = Õ(1/ε2), one obtains an extractor with

bias ε as the second summand is negligible when ε is a small

constant, or slightly sub-constant in r.

This general scheme was suggest by Viola in the context

of extractors for certain structured sources [Vio14], and a

variant of the latter was adopted by Chattopadhyay and

Zuckerman [CZ15] for their breakthrough construction of two-

source extractors. We find it beneficial to contrast the [CZ15]

strategy and that of Viola, which we adopt here. In [CZ15],

the authors transformed two sources into a sequence of {0, 1}
random variables X1, . . . , Xr, with r = poly(n), such that all

but r1−β of the random variables are good, where β > 0 is

some small constant. The notion of “good” is similar to ours,

though with a much larger t = (log n)c. Here c is some large

enough constant. In particular, by using an improvement of

the original analysis of [CZ15] due to Meka [Mek15], one

can set c = 2. At any rate, the value of t in [CZ15], [Mek15]

is a function of n whereas our setting of t depends solely on

the bias of the output which, for the proof of Theorem I.1, we

think of as a small constant.

At this point, a so-called non-oblivious bit-fixing extractor

is applied by [CZ15] to the Xi’s. The reader does not need to

worry about what that is exactly. By some further properties

of this extractor, it is possible to show that the output has bias

1/poly(n). Ingeniously, the t-wise independence enables the

use of Braverman’s result [Bra10], [Tal14] in a critical point

of the analysis of [CZ15].

Unfortunately, as mentioned, generating a sequence of

poly(n) bits that are (log n)c-wise independent requires min-

entropy (log n)c+1 [AGM03]. Moreover, by inspection, the

techniques that were used to generate the Xi’s require min-

entropy (log n)2 even for obtaining pairwise independence

(namely, t = 2) across the good variables. Indeed, [CZ15]

applies a non-malleable extractor by [CGL15] that has seed

length (log n)2 and can only support min-entropy larger than

(log n)2. The min-entropy requirement from the two sources

on which the extractor of [CZ15] operates is induced directly

by the seed length and min-entropy requirement of the non-

malleable extractor. Even by using an improved construction

of non-malleable extractors [Coh15b], which has seed length

O(log n · log logn) and supports min-entropy O(log n), one

of the sources is required to have min-entropy (log n)2 due

to the dependence of the seed in the error guarantee. Again,

this already holds for t = 2, which is anyhow insufficient

for [CZ15], [Li15a], [Mek15].

Our choice of the majority function, as opposed to the

explicit non-oblivious bit-fixing extractors that were developed

and used by [CZ15], [Mek15], is natural as we only need to

produce a sequence of Xi’s where the good variables in the

sequence are t-wise independent, where t is decoupled from

n, and is a function only of the desired bias of the output.

We point out that, computational aspects aside, with some

work one can show that for a constant bias it is possible

to generate such a sequence using only two sources with

logarithmic min-entropy. Unfortunately, as discussed above,

all current techniques require min-entropy (log n)2 even for

obtaining pairwise independence across the good Xi’s.

Our strategy for generating a sequence of Xi’s with the

above mentioned property can be divided into three steps:

a) Step 1 – Ensuring that there are very few bad random
variables.: By consuming a constant number of sources, we

generate a sequence of �-bit random variables {Yi}ri=1 such

that all but r1/2−α of the variables are close to uniform, where

α > 0 is some small universal constant. Any g ∈ [r] for which
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Yg is close to uniform is said to be good. Note that there is

no guarantee on the correlations (or the lack there of) between

the Yi’s. One should think of � = O(log n) and r = poly(n).
b) Step 2 – Obtaining somewhere-independent matrices.:

Using a constant number of fresh sources, we transform each

Yi to a random variable in the form of a (t log n) × � binary

matrix Mi. The guarantee is that for any good g ∈ [r] and

for any i1, . . . , it ∈ [r] \ {g}, there is some row in Mg that

is close to uniform even conditioned on the joint distribution

of the corresponding row of the matrices Mi1 , . . . ,Mit . So,

informally speaking, the matrix Mg is somewhere independent
of Mi1 , . . . ,Mit . In fact, this property holds for 0.9 fraction

of the rows of every good matrix. Further, all rows of Mg , for

a good g, are close to uniform (although possibly correlated

amongst themselves and with rows of other matrices in the

sequence).

c) Step 3 – Merging while preserving independence.: In

the last step we consume 2/δ+O(1) sources so to merge the

rows of each Mi to a single bit, while preserving indepen-

dence. That is, we construct what we call an independence-
preserving merger which, given a matrix, outputs a bit with

the property that when applied to somewhere-independent

matrices, such as Mg , Mi1 , . . . ,Mit above, the merged bit

of Mg is close to uniform even conditioned on the joint

distribution of the other t merged bits. Of course, these merged

bits will be our Xi’s, to which we will eventually apply the

majority function.

Most of the technical effort and novelty of this work is in

implementing the third step, namely, in the construction of

independence-preserving mergers. Though, a fair amount of

work is also required for accomplishing the first two steps. In

the next section we describe the ideas that go into each step.

III. A MORE DETAILED PROOF OUTLINE

In the following sections we elaborate on each of the three

steps of our construction of multi-source extractors.

A. Step 1 – Ensuring that there are very few bad random
variables

In order to apply the majority function to r random variables

in the presence of bad variables and obtain a low biased

output bit, it is necessary that the number of bad variables

is sufficiently smaller than
√
r. As mentioned, by the work

of [DGJ+10], such a bound on the number of bad variables

is sufficient for the same argument to hold even if the good

variables are only guaranteed to be t-wise independent, where

the larger one takes t, the smaller the bias of the output bit will

be. The goal of the first step of our construction is to achieve

this bound on the number of bad variables without worrying

about independence across the good random variables.

Initiated in [Rao09], by now the standard method for

transforming a weak-source into a sequence of random vari-

ables, most of which are uniform, is based on strong seeded

extractors. Let Ext : {0, 1}n × {0, 1}d → {0, 1}� be a strong

seeded extractor with error guarantee ε. Let W be a weak-

source with sufficient min-entropy as required by Ext. Set

r = 2d. We identify {0, 1}d with [r], and define for i ∈ [r] the

i’th random variable in the sequence by Xi = Ext(W, i). By

the properties of strong seeded extractors, all but
√
ε fraction

of the Xi’s are
√
ε-close to uniform. Lets round things up and

assume that all but ε fraction of the variables are truly uniform.

Namely, at most εr of the r variables are bad. Unfortunately

for us, the seed length of a seeded extractor is provably always

larger than 2 log(1/ε) [RTS00], and so the number of bad

variables εr >
√
r. That is, by using a strong seeded extractor

this way, the number of bad variables is always larger than√
r. In previous works this was never an issue. We, however,

require that the number of bad variables would be very small

in comparison to the size of the sequence.

Our solution to this problem is simple – we make use

of seeded condensers rather than seeded extractors, as the

former have a seed length with better dependence in the error

guarantee. A seeded condenser is an efficiently-computable

function Cond : {0, 1}n × {0, 1}d → {0, 1}m with the fol-

lowing property. For any (n, k)-source X and an independent

random variable S that is uniform over {0, 1}d, it holds that

Cond(X,S) is ε-close to having min-entropy at least k′. Note

that an extractor is a special case of a condenser obtained by

setting k′ = m. If k′ = k + d we say that Cond is a lossless
condenser.

Computational aspects aside, for seeded condensers, the

dependence of the seed length in the desired error guarantee

ε is only log(1/ε) as apposed to 2 log(1/ε). This makes

all the difference. Luckily, explicit constructions come very

close to the existential result in this respect. We use the

lossless condenser by Guruswami et al. [GUV09]. Roughly

speaking, for any τ > 0 (which can also by taken to be

larger than 1), Cond can be set to have a seed of length

d ≈ (1 + 1/τ) log(n/ε) and m ≈ (1 + τ)k output bits.

One can show that for any δ > 0, except with probability

δ over s ∼ S it holds that Cond(X, s) is (ε/δ)-close to a

((1 + τ)k, k)-source. A simple calculation then shows that

if one aims for δr < r1/2−α for some desired constant α,

then one needs to take τ = 1 + O(α), and by choosing ε, δ
appropriately one get that all but r1/2−α of the variables are

r−Ω(α)-close to having min-entropy rate 1/2−O(α).
We, however, want the good variables to be close to uniform

and not just close to having min-entropy rate 1/2 − O(α).
To this end, we make use of Bourgain’s two-source extrac-

tor [Bou05] that supports min-entropy rate 1/2− β for some

small universal constant β > 0. We set our α accordingly.

Luckily, Bourgain’s extractor outputs a constant fraction of

the min-entropy with an exponentially low error guarantee,

which is crucial for us.

With Bourgain’s extractor in hand, we take a second source

Y and compute Cond(Y, i) for all i ∈ [r]. We then define

the random variable Zi = Bour(Cond(X, i),Cond(Y, i)). For

any i that is a good seed for both X and Y , with respect to

Cond, we have that Zi is r−Ω(α)-close to uniform. Thus, a

good variable in the sequence of the Zi’s is not only close

to having high min-entropy but is in fact close to uniform.

Further, the number of bad variables increases by a factor of
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at most two, which is negligible.

At this point all but O(r1/2−α) of the random variables

in the sequence are r−Ω(α)-close to uniform. For technical

reasons, we need the good variables to be even closer to uni-

form. For what comes next, r−2 will do. In order to reduce the

statistical distance, we apply the procedure above to c/α pairs

of independent sources {(Xj , Y j)}c/αj=1, for some large enough

constant c, and take the bitwise XOR of the results. That is,

the i’th random variable in the generated sequence {Wi}ri=1 is

given by Wi =
⊕c/α

j=1 Bour(Cond(X
j , i),Cond(Y j , i)). One

can show that for any i ∈ [r] that is a good seed for all sources

in {(Xj , Y j)}c/αj=1, the random variable Wi is (r−Ω(α))c/α-

close to uniform. So, by setting c accordingly we can get the

error guarantee below its desired bound.

B. Step 2 – Obtaining somewhere-independent matrices

At this point we are given the sequence of r random

variables computed in Step 1, where all but r1/2−α of the

variables are good. Our goal now is to produce a sequence

of matrices M1, . . . ,Mr such that for every good g, the

matrix Mg is somewhere-independent of any t other matrices

Mi1 , . . . ,Mit in the sequence. As mentioned, we in fact need

to guarantee that 0.9 fraction of the rows of Mg are close

to uniform even conditioned on the corresponding row of the

matrices Mi1 , . . . ,Mit , and that all rows of Mg are close to

uniform.

In the following section we describe a fairly simple algo-

rithm for solving this task. The downside of this solution is

that it requires a number of sources that depends on ε – the

bound on the bias of the output bit. This suffices if one is

interested in some constant guarantee on the bias and is not too

bothered with the number of sources consumed, as long as it is

a constant independent of n. Nevertheless, one can do better. In

Section III-B3 we give a solution that consumes only a single

source. This solution, however, relies on correlation breakers
with advice – a primitive that was introduced in the context of

non-malleable extractors [CGL15], [Coh15b]. Unfortunately,

current constructions of correlation breakers with advice are

fairly involved, and so it is beneficial to also have the simpler,

though source-wise more expensive solution, which we now

present.
1) A simple yet source-wise expensive solution: For both

the simple and the more involved implementations of Step 2,

we make use of error correcting codes. For parameters q,m to

be chosen later on, let ECC : Fk
q → F

m
q be an error correcting

code, where we identify F
k
q with [r]. Here Fq stands for the

finite field with q elements. Note that m ≈ log(r)/ρ with ρ
being the rate of the code. We set the relative distance of the

code to δ = 1− 1/(10t).
We apply Step 1 not once but q times, each time with a fresh

set of (a constant number of) sources, so to obtain q indepen-

dent sequences which we denote by {X1
i }ri=1, . . . , {Xq

i }ri=1.

For i ∈ [r] and j ∈ [m], we define the j’th row of the matrix

Mi as (Mi)j = X
ECC(i)j
i . In words, we use the j’th entry of

the codeword that corresponds to the message i so to decide

from which sequence to take the j’th row of Mi.

The analysis is straightforward and proceeds as follows. Fix

g ∈ [r] that is good for all q sequences, and consider any

i1, . . . , it ∈ [r]\{g}. By our choice of δ, for any fixed c ∈ [t],
the codewords ECC(g) and ECC(ic) agree on at most 1/(10t)
fraction of their entries. Thus, ECC(g)j 
∈ {ECC(ic)j}tc=1

for at least 0.9 fraction of j ∈ [m]. For any such j, by

the independence across the sequences generated in Step 1,

(Mg)j is uniform and independent of the joint distribution of

{(Mic)j}tc=1, as desired. Note that the number of bad variables

increased by a multiplicative factor of q, though this loss is

negligible.

2) What code should we use?: We briefly discuss the choice

of the parameters m, q – the block-length and field size of

ECC. Note that the number of sources consumed by the

solution described in the previous section, grows linearly with

q. Thus, it is important to work with a code that has a small

alphabet size. In particular, we cannot use, say, Reed-Solomon

codes as this would require us to consume Ω(logn) sources.

Moreover, we also want a code with high rate as the latter

affects m – the number of rows of the generated matrices,

which in turn puts restrictions on the min-entropy required

from the sources used in Step 3.

As it turns out, the family of algebraic-geometric codes (also

known as Goppa codes) is a suitable choice in our setting.

These are codes that approach the Singleton bound using a

strikingly small alphabet size. More precisely, with such codes

one can obtain ρ+ δ ≥ 1− 1√
q−1 . Thus, with alphabet of size

q = O(t2), the code can have the required relative distance

δ = 1− 1/(10t) and rate ρ = Ω(1/t). As we set t = Õ(ε−2),
this translates to a solution that consumes Õ(ε−4) sources.

The number of rows of the generated matrices is then Õ(ε−2)·
log n.

We stress that algebraic-geometric codes have an extremely

good dependence on the field size, from which we benefit.

Indeed, even random codes, as used in the proof of the Gilbert-

Varshamov bound, require alphabet size q = 2Ω(t) for our

choice of δ. This in turn would require us to consume 2
˜O(ε−2)

sources.

3) A solution that consumes a single source: In this section

we describe a second implementation for Step 2 that has

the advantage of consuming only a single source. To this

end, we make use of a t-correlation breaker with advice.

Roughly speaking, this is a function that breaks the cor-

relations between random variables given an “advice” and

using a fresh weak-source of randomness. More formally, a t-
correlation breaker with advice is a function AdvCB : {0, 1}�×
{0, 1}n × {0, 1}a → {0, 1}� with the following property. For

any arbitrarily correlated �-bit random variables Y, Y1, . . . , Yt,

with Y uniform, any a-bit strings α, α1, . . . , αt, and for any

weak-source W that is independent of the joint distribution of

Y, Y1, . . . , Yt, it holds that whenever α 
∈ {αi}ti=1, the random

variable AdvCB(Y,W,α) is close to uniform even conditioned

on the joint distribution of {AdvCB(Yi,W, αi)}ti=1.

With correlation breakers in hand, we are ready to define

the sequence of Mi’s. Let {Xi}ri=1 be the sequence generated
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in Step 1. Note that, unlike the first implementation, we only

generate a single sequence. Let W be a weak-source that is

independent of this sequence. For i ∈ [r] and j ∈ [m], we de-

fine the j’th row of Mi by (Mi)j = AdvCB (Xi,W,ECC(i)j) .
That is, we use the j’th entry of the codeword corresponding

to message i as the advice for the correlation breaker.

The analysis proceeds as follows. Let Xg be a good variable

and let i1, . . . , it ∈ [r]\{g}. As before, by our choice of δ, for

any fixed c ∈ [t], the codewords ECC(g) and ECC(ic) agree

on at most 1/(10t) fraction of their entries. Thus, ECC(g)j 
∈
{ECC(ic)j}tc=1 for at least 0.9 fraction of j ∈ [m]. Therefore,

and using the fact that Xg is uniform, the property of AdvCB
implies that (Mg)j is close to uniform even conditioned on the

joint distribution of {(Mic)j}ci=1 for 0.9 fraction of j ∈ [m],
as desired.

To summarize, while in this solution we consumed a single

source so to break the undesired correlations, in the first

solution we used more sources so not to introduce undesired

correlations to begin with.

C. Step 3 – Merging while preserving independence

As mentioned, most of the technical effort of this work is

invested in the third step, in which we merge the rows of each

matrix Mi, computed in the previous step, while preserving

the independence across the sequence. In this section we

show how to use 2/δ +O(1) sources, each with min-entropy

(log n)1+δ , so to accomplish this task.

The strategy that we employ is to reduce the problem of

merging any number of variables (namely, the rows of a

matrix) while preserving independence to the simplest case of

merging only two variables while preserving independence. As

this atomic primitive is the most delicate to analyze, in this

section we only describe the reduction to the two variables

case. Let us start by giving a precise formulation for the

problem of merging two random variables while preserving

independence. For simplicity, we consider only the case t = 1,

though what to be presented next can be easily generalized to

any t. Indeed, only Step 2 required a non-trivial idea to support

arbitrary large t without increasing the number of sources.

We are given a pair of �-bit random variables X,Y , both

of which are uniform, though they may correlate arbitrarily.

Let X ′, Y ′ be a second pair of �-bit random variables. We

are not guaranteed that these random variables are uniform.

More perilously, X ′, Y ′ may arbitrarily correlate amongst

themselves and with X,Y . Assume, however, that we are

guaranteed that at least one of the following holds:

1) X is uniform even conditioned on X ′; or

2) Y is uniform even conditioned on Y ′.
Our goal is to merge X,Y while preserving this indepen-

dence. More precisely, we would like to design an efficiently-

computable function

IPMerg : {0, 1}� × {0, 1}� → {0, 1}�

such that IPMerg(X,Y ) is close to uniform even conditioned

on IPMerg(X ′, Y ′). In Section III-D we show how to accom-

plish this task. As a matter of fact, such a primitive does

not exist per se, and some fresh randomness, in the form of

an independent weak-source, is required for the purpose of

independence-preserving merging.

1) Independence-preserving half condensers and mergers:
In this section we show how to obtain an independence-

preserving merger for an arbitrary number of variables given

the two-variables independence-preserving merger IPMerg,

discussed in the previous section, as a black box. Due to its

high min-entropy requirement, this new merger will not be

the actual merger that will be used to merge the rows of the

matrices obtained by Step 2. Nevertheless, the merger will

be used as a building block for the construction of the final

merger that will be used by our extractor.

With IPMerg in hand, one can easily implement what

we call an independence-preserving half-condenser. This is

a function IPHalfCond : {0, 1}r×� → {0, 1}(r/2)×� such that

if M,M ′ are random variables in the form of r × � binary

matrices with M being somewhere-independent of M ′, and

where each row of M is uniform, then IPHalfCond(M) is

somewhere-independent of IPHalfCond(M ′), and each row of

IPHalfCond(M) is uniform. Indeed, for any j ∈ [r/2], one

can simply set IPHalfCond(M)j = IPMerg(M2j−1,M2j). It

is easy to see that the independence is preserved. Indeed, if

Mg is close to uniform even conditioned on M ′
g for some

g ∈ [r] then by the guarantee of IPMerg, and by construction,

IPHalfCond(M)�g/2� is close to uniform even conditioned on

IPHalfCond(M ′)�g/2�. Further, one can show that all rows of

IPHalfCond(M) are close to uniform.

Of course, one can invoke IPHalfCond again, this time

applied not to M,M ′, but rather to IPHalfCond(M) and

IPHalfCond(M ′), so to reduce the number of rows by a factor

of 4 while preserving independence, and so forth. By a careful

analysis, one can show that the use of a fresh weak-source per

application of IPHalfCond is not required. Instead, one can

“juggle” between two sources – for even iterations use one

source and for odd iterations use the other. So, using only two

sources, one can apply IPHalfCond for log r iterations and

merge M to a random variable in the form of a string which

is independent of the string obtained by merging M ′.
Unfortunately, for the first iteration alone, the min-entropy

required by the source for IPHalfCond is Θ(r log n). As the

Mi’s obtained by Step 2 have r = Ω(log n) rows, this requires

Ω(log2 n) min-entropy from the sources, which is more than

what we can afford. On the other hand, we used only 2 sources

for the entire merging process, and as the number of rows

decreases exponentially with the number of iterations, the min-

entropy requirement for the first iteration dominates the total

min-entropy that is needed for the entire merging process.

That is, the merger described above works when given two

independent sources with min-entropy O(r log n).
2) Multi-source independence-preserving condensers and

mergers: As mentioned, the merger that was constructed in the

previous section requires more min-entropy than we can afford

from its two auxiliary sources. We start this section by present-

ing an independence-preserving condenser that is guaranteed

to work even with much lower min-entropy sources. This
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condenser, however, will require two auxiliary sources for its

operation as apposed to IPHalfCond that used a single source.

The construction of this two-source independence-preserving

condenser relies on the two-source independence-preserving

merger that was constructed in Section III-C1. We then turn

to construct the multi-source independence-preserving merger

that will be used by our extractor.

For the construction of our two-source independence-

preserving condenser we make use of expander graphs. More

precisely, by using an appropriate explicit expander graph, for

any integer r and for any ε > 0, one can obtain a bipartite

graph G = (L,R,E), with |L| = |R| = r and right-degree

d = O(1/ε), that has the following property. For any set

B ⊂ L of size |B| ≤ 0.1r, all but ε fraction of the vertices

in R have a neighbor outside of B. Therefore, by throwing

away all but an arbitrary subset of 10εr vertices from R, one

obtains a bipartite graph G′ = (L′, R′, E′) with L′ = L,

|R′| = 10εr, and right-degree d = O(1/ε), such that for any

set B as above, all but 0.1 fraction of the vertices in R′ have

a neighbor outside of B. The important point here is that the

size of R′ can be made much smaller than the size of L′ at

the expense of increasing the right-degree.

Set ε = (log n)−δ and let G′ = (L′, R′, E) be the graph

described above with |L′| = r, |R′| = r′ = O(r/(log n)δ),
and right-degree d = O(1/ε) = O((log n)δ). We identify L′

with [r], and for each v ∈ R′ consider the d × � matrix Mv

that is obtained by taking the rows of M which correspond

to the neighbors of v in G′. To summarize, we associate with

M a sequence of r′ matrices of order d× �.
Our two-source independence-preserving condenser is de-

fined as follows. We apply the independence-preserving

merger described in Section III-C1 to each of the matrices

Mv , with the same pair of sources for all v. This yields an

r′ × � matrix. We now show that 0.9 fraction of the rows

of this matrix are close to uniform even conditioned on the

corresponding row of the condensed M ′.
The analysis is straightforward – as M is independent of

M ′ in 0.9 fraction of its rows, the property of G′ guarantees

that for 0.9 fraction of v ∈ R′ it holds that Mv is somewhere-

independent of M ′
v . Thus, for any such v, we have that the

merged value of Mv is close to uniform even conditioned on

the merged value of M ′
v .

By consuming two sources with min-entropy d log n =
(log n)1+δ we condense the r × � matrix M to a matrix with

r/(log n)δ rows while preserving the independence guarantee

for 0.9 fraction of the rows. As r = O(log n), one can repeat

this condensing process for 1/δ iterations, each time using two

fresh sources, so to obtain an independence-preserving merger

that consumes 2/δ sources each with min-entropy (log n)1+δ .

This will be our final merger.

D. A two-variables independence-preserving merger

In previous sections we saw how to reduce the construction

of multi-source extractors to that of merging two random vari-

ables while preserving independence. Let us recall the setting.

We are given a pair of �-bit random variables X,Y , both of

which are uniform, though they may correlate arbitrarily. Let

X ′, Y ′ be a second pair of �-bit random variables that are

arbitrarily correlated amongst themselves and with X,Y . We

are guaranteed that at least one of the following holds: (1)

Independence in X – the random variable X is uniform even

conditioned on X ′; or (2) Independence in Y – the random

variable Y is uniform even conditioned on Y ′.
Our goal is to design an efficiently-computable function

IPMerg : {0, 1}�×{0, 1}� → {0, 1}� such that IPMerg(X,Y )
is close to uniform even conditioned on IPMerg(X ′, Y ′). Of

course, simply outputting, say, the first input, won’t do as

although we will output a uniform string, it could be the case

that this string is the one correlated with the corresponding

string in the other pair. In fact, as mentioned in the previous

section, there is no function with such a guarantee. Therefore,

relaxing the problem a bit, we would like to design an

efficiently-computable function IPMerg : {0, 1}� × {0, 1}� ×
{0, 1}n → {0, 1}� such that IPMerg(X,Y,W ) is uniform

even conditioned on IPMerg(X ′, Y ′,W ), where W is an

(n, k)-source that is independent of the joint distribution of

X,Y,X ′, Y ′.
1) Some preliminary suggestions: A good starting point for

motivating our construction is the following useful property of

strong seeded extractors. Roughly speaking, it can be shown

that as long as one uses a fresh seed, previous outputs of an

extractor do not reveal information about the future output,

even if the sources being used are arbitrarily correlated. More

precisely, we have the following fact.

Fact III.1. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a
strong seeded extractor for min-entropy k. Let S be a ran-
dom variable that is uniformly distributed over {0, 1}d. Let
W,W ′, S′ be arbitrarily correlated random variables that are
jointly independent of S. Assume further that H∞(W ) � k.
Then, Ext(W,S) is close to uniform even conditioned on
Ext(W ′, S′).

It is not hard to prove Fact III.1 though we omit its proof.

We will not use this fact anyhow and recalled it here for mo-

tivating the actual construction. At any rate, given Fact III.1,

a first attempt would be to completely ignore W , and define

IPMerg1(X,Y,W ) = Ext(X,Y ). The reasoning behind this

suggestion is the following: If there is independence in Y then

one might make the hasty conclusion that regardless of the

correlations between the sources X and X ′, Fact III.1 tells

us that Ext(X,Y ) is close to uniform even conditioned on

Ext(X ′, Y ′). This, of course, is flawed – the source X and

the seed Y to Ext are correlated and so, regardless of X ′, Y ′,
the output Ext(X,Y ) is not necessarily close to uniform.

Of course, we knew all along that one must use the extra

randomness of W , so this idea was bound to fail.

A revised idea would be to use the fresh source W as

a “buffer” between X,Y , and define IPMerg2(X,Y,W ) =
Extout(X,Extin(W,Y )). This idea in fact almost works

when there is independence in Y . We revise the con-

struction a bit further and define IPMerg3(X,Y,W ) =
Extout(X,Extin(W,Y |s)), where Y |s stands for the length s
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prefix of Y . In particular, we set s = �/10. We further set the

output length of the inner extractor Extin (which is the seed

length for the outer extractor Extout) to s. The outer extractor

Extout is also set to output s bits given a source X with min-

entropy 0.7�. By this choice of parameters, IPMerg3 has output

length s = �/10 rather than �, though the reader should not

worry about this issue as the number of output bits can be

easily increased back to � using standard techniques, and in

any case, our final construction does not suffer this shrinkage

in the output length. One can now prove the following claim.

Claim III.2. Assume that k � �. If there is independence in Y
then IPMerg3(X,Y,W ) is close to uniform even conditioned
on IPMerg3(X

′, Y ′,W ).

We will not make use of Claim III.2 since, as we discuss

next, we do not know how to prove a similar statement for the

independence in X case. Nevertheless, IPMerg3 will be used

in our final construction.
What can go wrong by using IPMerg3 assuming that there

is independence in X rather than in Y ? At first look, IPMerg3
seems promising. Indeed, in that case X is uniform even

conditioned on the source X ′, the seed Y is uniform, and

thanks to the buffer source W , Extin(W,Y |s) yields a seed

for the outer extractor Extout that is independent of X . What

harm can the correlation between Y and Y ′ cause? Well,

recall that each of the pairs (X,Y ), (Y, Y ′), (Y ′, X ′) might

be correlated. Therefore, by conditioning on Y, Y ′ we may

introduce correlations between X and X ′. Thus, our proof

strategy employed in Claim III.2, which involves conditioning

on the values of (prefixes of) Y, Y ′ is problematic.
Although we do not know how to show that IPMerg3 works

when there is independence in X , it does work when there is

independence in Y . Moreover, the problem we have seems to

arise only due to the correlations between X and the other

random variables. In fact, this can be made formal as one can

show that IPMerg3 works perfectly assuming both X,Y are

uniform and assuming that one of the following holds:

1) X is uniform even conditioned on the joint distribution

of Y,X ′, Y ′; or

2) Y is uniform even conditioned on Y ′.
Note that Case 2 is the original independence in Y case, so the

analysis above holds for that case. Case 1 is stronger than the

independence in X case in that it assumes that X is uniform

not only conditioned on X ′ but rather conditioned on all other

random variables in the picture.
In the next section we show how to guarantee that one

of these stronger properties holds given only the original

assumption. This reduction, however, will cause some further

complications that will require our attention.
2) Relying on a hierarchy of independence: The discus-

sion above leads us to consider the following problem. Let

X,X ′, Y, Y ′ be random variables for which the original as-

sumption holds, namely, both X and Y are uniform though

correlated, and we have independence either in X or in Y . As

before, let W be a fresh (n, k)-source. This source was used

in the suggestion above as a “buffer” between X and Y . We

will make further use of W , and so this auxiliary source has

several conceptual roles in the final construction.

For what comes next, we also need a second (n, k)-source

Z, though we do not consider this source as a new source

of randomness with respect to X,X ′, Y, Y ′, as we do not

require that Z is independent of (X,X ′, Y, Y ′). We only

need Z to have some min-entropy left even conditioned on

(X,X ′, Y, Y ′). Having the big picture in mind, the variables

X,X ′, Y, Y ′ are not given as inputs to our extractor but are

computed by the first two steps. The source Z is one of the

sources used by these steps, and we make sure that even

conditioned on (X,X ′, Y, Y ′), the source Z has some min-

entropy left.

We would like to design a pair of functions a : {0, 1}� ×
{0, 1}n×{0, 1}n → {0, 1}�, b : {0, 1}�×{0, 1}n×{0, 1}n →
{0, 1}�, such that: (1) If there is independence in X then

b(X,Z,W ) is close to uniform even conditioned on the joint

distribution of b(X ′, Z,W ), a(Y, Z,W ), and a(Y ′, Z,W );
and, (2) If there is independence in Y then a(Y, Z,W ) is

close to uniform even conditioned on a(Y ′, Z,W ). We further

require that each of b(X,Z,W ), a(Y, Z,W ) is uniform. By

setting Xnew = b(X,Z,W ), X ′
new = b(X ′, Z,W ), Ynew =

a(Y, Z,W ), and Y ′new = a(Y ′, Z,W ), we see that if there

is independence in X or in Y then one of the following

holds: (1) Xnew is close to uniform even conditioned on

Ynew, X
′
new, Y

′
new; or Ynew is close to uniform even conditioned

on Y ′new. Furthermore, each of Xnew, Ynew is close to uniform.

This is exactly the stronger guarantee that we set off to obtain.

It is therefore tempting to just go ahead and use this reduction

in a black-box manner, and define IPMerg4(X,Y, Z,W ) =
IPMerg3(Xnew, Ynew,W ). Indeed, using the functions a, b, we

“transformed” the original guarantee on X,Y,X ′, Y ′ to the

stronger guarantee on Xnew, Ynew, X
′
new, Y

′
new, under which

one might hope that IPMerg3 can be shown to work. However,

by a more careful inspection one can see that a new problem

arises – the variables Xnew, X ′
new, Ynew, and Y ′new are no longer

independent of W .

So, unfortunately, the idea of breaking the correlations

between X and (Y,X ′, Y ′) so to handle the independence in

X case in a black-box manner while keeping intact the analysis

of the independence in Y case fails. Fortunately, however, the

specific way in which we implement a, b does allow us to make

use of the ideas developed so far. It turns out that by a suitable

modification to IPMerg4, and by using specific instantiation

for a, b, we can handle both cases. So, in order to continue

with the analysis we must present our construction for a, b.

3) A specific implementation for establishing a hierar-
chy of independence: In this section we present a specific

implementation for the functions a, b that were presented

in the previous section. The construction is based on the

technique of alternating extraction. As it turns out, we can

also define the function a with one argument less, and so

we define a : {0, 1}� × {0, 1}n → {0, 1}�, b : {0, 1}� ×
{0, 1}n × {0, 1}n → {0, 1}�, by a(X,W ) = Ext(W,X|s),
b(X,Z,W ) = Ext(W,Exts(Z,Exts(W,X|s))). Here Ext is a

strong seeded extractor with � output bits, and Exts is the
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extractor obtained by truncating the output of Ext after s
bits. We argue that this implementation meets our needs. To

be more precise, we “cluster” the random variables that are

obtained in different stages of the computation of a, b, and set

M = X,Y,X ′, Y ′,
A = a(X,W ), a(X ′,W ), a(Y,W ), a(Y ′,W ),

Z = Exts(Z,Exts(W,X|s)),Exts(Z,Exts(W,X ′|s)).
So, M denotes the two pairs of random variables that are

fed as inputs to the mergers. The next stage of computation

is captured by A. Note, in particular that this also includes

Exts(W,X|s) and Exts(W,X ′|s). Lastly, Z denotes the seeds

fed to the outer extractor in the computation of b.

We do not analyze a, b here and are satisfied with stating

the following claim. In the next section we show how one can

use this specific implementation of a, b so to obtain our final

two-variables independence-preserving merger.

Claim III.3. With the notation set so far, the following holds.
• If there is independence in X then b(X,Z,W ) is close

to uniform even conditioned on b(X ′, Z,W ),Z,A,M.
• If there is independence in Y then a(Y,W ) is close to

uniform even conditioned on a(Y ′,W ),M.
• Regardless of whether there is independence in X or in

Y , it holds that a(Y,W ) is close to uniform conditioned
on M. Further, b(X,Z,W ) is close to uniform condi-
tioned on Z,A,M.

4) Our final two-variables independence-preserving
merger: Before presenting our two-variables independence-

preserving merger, we need to acquire one more object

– an extractor with weak-seeds due to Raz [Raz05].

This is a strong seeded extractor that works even if the

seed is not uniform, but rather has min-entropy rate

1/2 + δ for an arbitrarily small constant δ > 0. With

Raz’s extractor and with a, b that were defined in the

previous section, we can finally define our two-variables

independence-preserving merger by IPMerg(X,Y, Z,W ) =
Raz (b(X,Z,W ),Extin(Z, a(Y,W ))) . We set the output

length of the inner extractor Extin to s′, and the output

length of Raz to m. Recall that � is the output length

of a, b. We set things up such that s′ � s and

� � m. This is our way of making sure that some

random variables will have enough min-entropy even

conditioned on some other, shorter, random variables.

Our goal is to show that IPMerg(X,Y, Z,W ) is close

to uniform even conditioned on IPMerg(X ′, Y ′, Z,W ) =
Raz (b(X ′, Z,W ),Extin(Z, a(Y

′,W ))) . For the analysis

we consider two cases, corresponding to whether there is

independence in X or independence in Y .

a) Analyzing the independence in X case.: By

Claim III.3, the source b(X,Z,W ) to Raz is close to uni-

form even conditioned on b(X ′, Z,W ),A,Z,M. Note also

that conditioned on these random variables, b(X,Z,W ) is

a deterministic function of W , and so b(X,Z,W ) is close

to uniform conditioned on the other source b(X ′, Z,W )

(which we already know) and on the seeds Extin(Z, a(Y,W )),
Extin(Z, a(Y

′,W )) to Raz (as they are deterministic functions

of Z conditioned on A).

Intuitively, this allows us to “replace” the source

b(X,Z,W ) in Raz by the uniform distribution. That is, it

is enough to show that Raz(U,Extin(Z, a(Y,W ))) is close to

uniform conditioned on IPMerg(X ′, Y ′, Z,W ), where U is

uniform and independent of all the other random variables in

the picture.

This is a much easier task! Indeed, the uniform distribution

is some valid source for Raz (granted, with lots of min-

entropy). So, as long as the seed Extin(Z, a(Y,W )) fed to

Raz is close to uniform, we have that with high probability

over s ∼ Extin(Z, a(Y,W )), the output Raz(U, s) is close to

uniform. Now, this random variable is completely independent

of all other random variables, and in particular it is close to

uniform even conditioned on IPMerg(X ′, Y ′, Z,W ). To show

that Extin(Z, a(Y,W )) is close to uniform is not hard and we

skip the proof. We now move to the more delicate case.

b) Analyzing the independence in Y case.: By

Claim III.3, a(Y,W ) is close to uniform even conditioned

on a(Y ′,W ),M. We note that a(Y,W ) is independent of

Z conditioned on M, and so a(Y,W ) is close to uniform

even conditioned on Extin(Z, a(Y
′,W )), a(Y ′,W ), and M.

Therefore, the seed Extin(Z, a(Y,W )) to Raz is close to

uniform even conditioned on

H = a(Y,W ),Extin(Z, a(Y
′,W )), a(Y ′,W ),M.

In fact, as Extin(Z, a(Y,W )) is independent of A conditioned

on H, we have that Extin(Z, a(Y,W )) is close to uniform even

conditioned on

H′ = Extin(Z, a(Y
′,W )),A,M.

Recall that

b(X ′, Z,W ) = Ext(W,Exts(Z,Exts(W,X ′|s))).
Note that the variable Exts(W,X ′|s) is contained in A, which

in turn is contained in H′. Thus, Exts(Z,Exts(W,X ′|s))
is a deterministic function of Z conditioned on H′. Now,

although the seed Extin(Z, a(Y,W )) is also a deterministic

function of Z conditioned on H′, and in particular it may

correlate with Exts(Z,Exts(W,X ′|s)), we can still condition

on Exts(Z,Exts(W,X ′|s)) and, with high probability, get that

the seed Extin(Z, a(Y,W )) has min-entropy s′ − s. In fact,

as we would like to remove the correlations between the

source and the seed fed to Raz, we also condition on the

“part” of the source b(X,Z,W ) that correlates with the seed

Extin(Z, a(Y,W )), that is, we would like to condition on

both Exts(Z,Exts(W,X|s)) and Exts(Z,Exts(W,X ′|s)). By

interpreting s′ � s as s′ > 20s we have that conditioned on

H′′ = Exts(Z,Exts(W,X|s)),Exts(Z,Exts(W,X ′|s)),H′,
the seed Extin(Z, a(Y,W )) has min-entropy s′ − 2s > 0.9s′.

At this point, the output IPMerg(X ′, Y ′, Z,W ) is a

deterministic function of b(X ′, Z,W ) which, in turn, is
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a deterministic function of W . Thus, we can fix the

output IPMerg(X ′, Y ′, Z,W ) without affecting the seed

Extin(Z, a(Y,W )). That is, we have that the latter seed is

close to having min-entropy rate 0.9 even conditioned on

IPMerg(X ′, Y ′, Z,W ),H′′. This is good enough for a seed

passed to Raz.

To conclude the proof, it suffices to show that the

source b(X,Z,W ) fed to Raz has sufficient amount of

min-entropy even conditioned on the same set of vari-

ables IPMerg(X ′, Y ′, Z,W ),H′′. Indeed, note that condi-

tioned on these variables, the source b(X,Z,W ) and seed

Extin(Z, a(Y,W )) fed to Raz are independent. This is why

we also bothered to condition on Exts(Z,Exts(W,X|s)) – the

part of the source b(X,Z,W ) that correlates with the seed

Extin(Z, a(Y,W )).
We now turn to show that the source b(X,Z,W ) has high

min-entropy even conditioned on IPMerg(X ′, Y ′, Z,W ),H′′.
By Claim III.3, b(X,Z,W ) is close to uniform condi-

tioned on Z,A,M. Note that conditioned on Z,A,M, the

source b(X,Z,W ) is independent of Extin(Z, a(Y
′,W )),

and so the source b(X,Z,W ) is close to uniform

even conditioned on Extin(Z, a(Y
′,W )),Z,A,M. At this

point, IPMerg(X ′, Y ′, Z,W ) is a deterministic function of

b(X ′, Z,W ) which, as we condition on Z , is in turn a

deterministic function of W . As � � m, we are guar-

anteed that even conditioned on IPMerg(X ′, Y ′, Z,W ), the

source b(X,Z,W ), which was close to uniform prior to

the conditioning, has not lost much of its min-entropy. As

Exts(Z,Exts(W,X|s)) and Exts(Z,Exts(W,X ′|s)) are con-

tained in Z , the latter conditioning on IPMerg(X ′, Y ′, Z,W )
completes the list of random variables on which we condition

to the desired set IPMerg(X ′, Y ′, Z,W ),H′′.
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