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Abstract—In a recent breakthrough [1], Chattopadhyay
and Zuckerman gave an explicit two-source extractor for
min-entropy k ≥ logC n for some large enough constant
C, where n is the length of the source. However, their
extractor only outputs one bit. In this paper, we improve
the output of the two-source extractor to kΩ(1), while the
error remains n−Ω(1) and the extractor remains strong
in the second source. In the non-strong case, the output
can be increased to k. Our improvement is obtained by
giving a better extractor for (q, t, γ) non-oblivious bit-
fixing sources, which can output tΩ(1) bits instead of one
bit as in [1].

We also give the first explicit construction of determin-
istic extractors for affine sources over F2, with entropy
k ≥ logC n for some large enough constant C, where n
is the length of the source. Previously the best known
results are by Bourgain [2], Yehudayoff [3] and Li [4],
which require the affine source to have entropy at least
Ω(n/

√
log log n). Our extractor outputs kΩ(1) bits with

error n−Ω(1). This is done by reducing an affine source
to a non-oblivious bit-fixing source, where we adapt the
alternating extraction based approach in previous work
on independent source extractors [5] to the affine setting.
Our affine extractors also imply improved extractors for
circuit sources studied in [6].

We further extend our results to the case of zero-error
dispersers, and give two applications in data structures
that rely crucially on the fact that our two-source or affine
extractors have large output size.
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I. INTRODUCTION

Randomness extraction is a broad area that studies

the problem of converting biased random sources into

nearly uniform random bits. The natural motivation

comes from the wide application of randomness in com-

putation, such as in algorithms, distributed computing

and cryptography, and the requirement that the random

bits used should be uniformly distributed. In reality,

however, natural random sources almost always have

serious biases, and can leak information to an adversary

because of side channel attacks. These defective random
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sources are known as weak random sources. Therefore,

intuitively, a randomness extractor takes as input one or

more weak random sources, and outputs a distribution

that is statistically close to uniform.

Formally, a weak random source is modeled as a

probability distribution over n bit strings with some

entropy k. In the context of randomness extraction,

the standard measure of entropy is the so called min-
entropy, which is defined as follows.

Definition I.1. The min-entropy of a random variable X
is

H∞(X) = min
x∈supp(X)

log2(1/Pr[X = x]).

For X ∈ {0, 1}n, we call X an (n,H∞(X))-source,

and we say X has entropy rate H∞(X)/n.

However, one can easily show that it is impossible to

construct deterministic randomness extractors for one

(n, k) source, even if k is as large as n − 1. Thus,

the study of randomness extractors has been pursued

in two different directions. The first one is to allow

the extractor itself to be randomized. In this case one

ends up with the notion of seeded extractors [7], where

the extractor is given a short independent uniform

random seed (typically of length say O(log n)). It is

now possible to construct such extractors for all weak

random sources. Typically, one also requires the output

of the extractor to be close to uniform even given

the seed. Such extractors are known as strong seeded
extractors. Seeded extractors have a lot of applications

in theoretical computer science and have been studied

extensively, resulting in almost optimal constructions

[8], [9], [10].

Another direction is to impose some special structure

on the weak source, and thereby allows the construction

of deterministic randomness extractors. This is the focus

of this paper. Formally, we have the following definition.

Definition I.2. (Deterministic extractors for structured

sources) Let C be a class of distributions on a finite set
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Ω. A function E : Ω → {0, 1}m is an extractor for C
with entropy threshold k and error ε, if for any weak

source X ∈ C with entropy at least k, we have

|E(X)− Um| ≤ ε.

Here Um is the uniform distribution over {0, 1}m and

| · | stands for the statistical distance.

In this paper we will study the following classes of

weak sources.

Independent Sources: Here, the extractor is given

as input more than one general weak random sources,

and the sources are independent of each other. Using the

probabilistic method, one can show that there exists a

deterministic extractor for just two independent sources

with each having logarithmic min-entropy, which is

optimal since extractors for one weak source do not

exist. In fact, the probabilistic method shows that with

high probability a random function is such a two-source

extractor. However, the most interesting and important

part is to give explicit constructions of such functions,

which turns out to be highly challenging.

The first explicit construction of a two-source extrac-

tor appeared in [11], where Chor and Goldreich showed

that the well known Lindsey’s lemma gives an extractor

for two independent (n, k) sources with k > n/2. Since

then there has been essentially no progress on two-

source extractors until in 2005 Bourgain [12] gave a

construction that breaks the entropy rate 1/2 barrier,

and works for two independent (n, 0.49n) sources. In a

different work, Raz [13] gave an incomparable result of

two source extractors which requires one source to have

min-entropy larger than n/2, while the other source can

have min-entropy O(log n).

Given the difficulty of constructing explicit two-

source extractors, much research has been focusing on

a slightly more general model, where the extractor is

allowed to have more then two independent sources as

the input. Starting from [14], there has been a long line

of fruitful results [14], [13], [12], [15], [16], [17], [18],

[5], [19], [20], which introduced many new techniques

and culminated in the three source extractor of exponen-

tially small error by the author [19]. However, in the two

source case the situation has not been improved.

Recently, Chattopadhyay and Zuckerman [1] made

a breakthrough to this problem by giving the first

explicit two-source extractors for (n, k) sources with

k ≥ logC n for some large enough constant C. This

dramatically improves the situation of two-source ex-

tractors and is actually near optimal. However, their

construction only outputs one bit and thus a natural

question is whether one can achieve a significantly

larger output length.

Affine Sources: An affine source is the uniform

distribution over some unknown subspace of a vector

space, and affine extractors are deterministic extractors

for such sources.

Definition I.3. (affine source) Let Fq be the finite field

with q elements. Denote by F
n
q the n-dimensional vector

space over Fq . A distribution X over F
n
q is an (n, k)q

affine source if there exist linearly independent vectors

a1, · · · , ak ∈ F
n
q and another vector b ∈ F

n
q s.t. X is

sampled by choosing x1, · · · , xk ∈ F uniformly and

independently and computing

X =
k∑

i=1

xiai + b.

In this paper we focus on the case where q = 2.

Using the probabilistic method, it is not hard to show

that there exists a deterministic affine extractor, as long

as k > 2 logn and the output length m < k − O(1).
The problem is to given an explicit construction of such

a function.

There has also been a lot of work studying affine ex-

tractors and dispersers. For example, Gabizon and Raz

[21] constructed explicit extractors for affine sources

even with entropy 1. However, their constructions re-

quire the field size to be much larger than n, i.e.,

q > nΩ(1), in order to use Weil’s theorem. DeVos

and Gabizon [22] constructed explicit extractors for

(n, k)q affine sources when q = Ω((n/k)2) and the

characteristic of the field Fq is Ω(n/k). As the field

size gets smaller, constructing explicit affine extractors

becomes significantly harder.

The extreme and hardest case where the field is

F = GF(2), is the focus of the rest of the paper. Note

that in this case the min-entropy H∞(X) is the same as

the standard Shannon entropy H(X). Here, it is well

known how to construct extractors for affine sources

with entropy rate greater than 1/2. However the problem

becomes much harder as the entropy rate drops to 1/2
and below 1/2. Bourgain [2] used sophisticated charac-

ter sum estimates to give an extractor for affine sources

with entropy k = δn for any constant δ > 0. This

was later slightly improved to k = Ω(n/
√
log log n) by

Yehudayoff [3] and the author [4], which have remained

the best known results. Rao [23] constructed extractors

for affine sources with entropy as small as polylog(n),
as long as the subspace of X has a basis of low-

weight vectors. In the case where one only wishes to

output one bit with support {0, 1} (i.e., a disperser),
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Ben-Sasson and Kopparty [24] gave constructions for

entropy Ω(n4/5), and Shaltiel [25] gave a construction

for entropy 2log
0.9 n.

Circuit Sources: Trevisan and Vadhan [26] consid-

ered the question of extracting random bits from sam-
plable sources, which are n-bit distributions generated

by some small circuit from � uniform bits. They showed

that such extractors imply circuit lower bounds for

related circuits. They also constructed explicit extractors

for such sources with min-entropy k = Ω(n) under

some necessary computational assumptions (such as the

existence of a function computable in time 2O(n) which

requires 2Ω(n) size Σ5 circuits). Subsequently, Viola

[6] constructed unconditional extractors for sources

generated by local circuits and circuits of small depth

(e.g., NC0 and AC0 circuits). However, for both these

sources, the extractors in [6] require min-entropy at least

n2/3+Ω(1).
Non-oblivious bit-fixing Sources: As in [1], an

intermediate class of sources we use in our construction

is a special kind of non-oblivious bit-fixing source. Non-

oblivious bit-fixing sources are sources on n bits which

are uniform except some unknown q bits. However the

q bits can depend arbitrarily on the n − q uniform

bits. Extractors for non-oblivious bit-fixing sources are

equivalent to resilient functions, and were studied in

[27], [28], [29], [6]. What we need here is a special kind

of non-oblivious bit-fixing sources which only requires

bounded independence in the “good” bits. Such sources

were first defined by Viola in [6], where he constructed

an extractor that extracts one bit from a non-oblivious

bit-fixing source with q ≈ √n bad bits, and the “good”

bits are polylog(n)-wise independent. Subsequently, [1]

gave an improved one-bit extractor that can handle

q = n1−δ for any constant δ > 0. We now formally

define such sources.

Definition I.4. A distribution D on n bits is t-wise

independent if the restriction of D to any t bits is uni-

form. Further D is a (t, ε)-wise independent distribution

if the distribution obtained by restricting D to any t
coordinates is ε-close to uniform.

Definition I.5. A source X on {0, 1}n is called a (q, t)-
non-oblivious bit-fixing source if there exists a subset

of coordinates Q ⊆ [n] of size at most q such that the

joint distribution of the bits indexed by Q = [n] \Q is

t-wise independent. The bits in the coordinates indexed

by Q are allowed to arbitrarily depend on the bits in

the coordinates indexed by Q.
If the joint distribution of the bits indexed by Q is

(t, γ)-wise independent then X is said to be a (q, t, γ)-
non-oblivious bit-fixing source.

A. Our Results

In this paper, we improve the output length of the

two-source extractor in [1] to kΩ(1).

Theorem I.6. There exists a constant C > 0 such
that for all n, k ∈ N with k ≥ logC n, there exists a
polynomial time computable function 2Ext : {0, 1}n ×
{0, 1}n → {0, 1}m with m = kΩ(1) and ε = n−Ω(1)

satisfying the following: if X,Y are two independent
(n, k) sources, then

|(2Ext(X,Y ), Y )− (Um, Y )| ≤ ε.

Since the extractor is strong in Y , if we don’t need a

strong two-source extractor, then we can use the output

of 2Ext to extract from Y and output almost all the min-

entropy. For example, by using a strong seeded extractor

from [30] that uses O(log2 n log k) bits to extract all

the min-entropy (and requiring that say m ≥ log3 n),

we have the following theorem.

Theorem I.7. There exists a constant C > 0 such
that for all n, k ∈ N with k ≥ logC n, there exists a
polynomial time computable function 2Ext : {0, 1}n ×
{0, 1}n → {0, 1}m with m = k and ε = n−Ω(1)

satisfying the following: if X,Y are two independent
(n, k) sources, then

|2Ext(X,Y )− Um| ≤ ε.

Next we give an affine extractor over F2 that works

for entropy k ≥ polylog(n), thus significantly im-

proving all previous results in terms of the entropy

requirement (even in the disperser case). Our extractor

outputs kΩ(1) bit and has error n−Ω(1).

Theorem I.8. There exists a constant C > 0 such
that for all n, k ∈ N with k ≥ logC n, there exists a
polynomial time computable function AExt : {0, 1}n →
{0, 1}m with m = kΩ(1) and ε = n−Ω(1) satisfying the
following: for any (n, k) affine source X , we have that

|AExt(X)− Um| ≤ ε.

Table I summarizes our result compared to previous

constructions of extractors and dispersers for affine

sources over F2.

By using a reduction from NC0 and AC0 sources to

affine sources in [6], we also obtain improved extractors

for NC0 and AC0 sources, which only require min-

entropy n1/2+Ω(1).

Theorem I.9. For any constant α > 0, d = O(1) and
any n, k ∈ N with k ≥ n1/2+α, there is an explicit
extractor acExt : {0, 1}n → {0, 1}m with m = kΩ(1)
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Construction Entropy Output Error

[2] k ≥ δn, any constant δ Θ(n) 2−Ω(n)

[3], [4] k = Ω(n/
√
log logn) nΩ(1) 2−nΩ(1)

[24] k = Ω(n4/5) 1 Disperser

[25] k ≥ 2log
0.9 n 1 Disperser

This work k ≥ logC n, some C > 1. kΩ(1) n−Ω(1)

Table I
SUMMARY OF AFFINE EXTRACTORS AND DISPERSERS OVER

F2 .

and ε = n−Ω(1) such that if X is an (n, k) source
generated by a depth-d AC0 circuit of size nd, then

|acExt(X)− Um| ≤ ε.

All the above extractors are based on an extractor for

(q, t, γ)-non-oblivious bit-fixing sources. In particular,

we have the following theorem which improves the

output length of such an extractor in [1] from one bit

to tΩ(1).

Theorem I.10. There exists a constant c > 0 such that
for any constant δ > 0 and all n, q, t ∈ N with q ≤
n1−δ , t ≥ c log21 n and any γ ≤ 1/nt+1, there exists
an explicit extractor BFExt : {0, 1}n → {0, 1}m with
m = tΩ(1) and ε = n−Ω(1) such that for any (q, t, γ)
non-oblivious bit-fixing source X on n bits, we have

|BFExt(X)− Um| ≤ ε.

Subsequent work.: In a subsequent work, Meka

[31] constructed explicit resilient functions matching the

randomized construction by Ajtai and Linial [32]. His

construction also gives improved two-source extractors

which require min-entropy logC n for a smaller constant

C. Similarly, his construction can also be used to obtain

affine extractors for entropy logC n with a smaller con-

stant C. In another subsequent work by Chattopadhyay

and the author [33], the techniques of this paper were

used to construct explicit extractors for a new model

of weak sources called sumset sources, which also

give improved extractors for sources generated by small

space computation.

B. Zero-error dispersers and applications

We now extend our results to the case of zero-error

dispersers. We first have the following definition.

Definition I.11. (Zero-error dispersers and strongly

hitting dispersers) [34] Let C be a class of distributions

on a finite set Ω. A function D : Ω → {0, 1}m is a

disperser for C with entropy threshold k and error ε, if

for any weak source X ∈ C with entropy at least k,

|Supp(D(X))| ≥ (1− ε)2m.

The function D is called a zero-error disperser if ε = 0.

It is called a μ-strongly hitting disperser if in addition

for every z ∈ {0, 1}m, Pr[D(X) = z] ≥ μ.

Naturally, we consider both independent sources

and affine sources. Zero-error independent source dis-

persers are intimately connected to explicit construc-

tions of Ramsey graphs [16], [1], [35], and zero-error

affine dispersers for sub-linear entropy give explicit

Boolean functions with the best known general circuit

lower bounds of 3.01n [36]. Here we will be inter-

ested in zero-error dispersers with large output length

(say Ω(k)). Previously, such dispersers for independent

sources are only known when k ≥ δn (for two sources)

or k ≥ nδ (for O(1/δ) sources) [34]. The dispersers of

[1], [35], which work for k ≥ logC n, only output one

bit. For affine sources, such dispersers are only known

when k = Ω(n/
√
log logn). In this case Gabizon and

Shaltiel [37] achieved output length k−βn/
√
log logn

for some constant 0 < β < 1. All other known

zero-error dispersers, such as the one by Ben-Sasson

and Kopparty [24] which works for entropy Ω(n4/5),
and the one by Shaltiel [25] which works for entropy

2log
0.9 n, only output one bit.

Note that if the error of an extractor is small enough

compared to its output length, then the extractor is

automatically a strongly hitting disperser and zero error

disperser. For example, we have

Fact I.12. Let f : Ω → {0, 1}m be an extractor
for a class C of sources with entropy k and error
ε ≤ 2−(m+1). Then f is a 2−(m+1)-strongly hitting
disperser for the same class C and entropy k.

The error of our two-source extractors and affine

extractors can be made n−C for any constant C > 0, at

the price of slightly increasing the running time of the

extractors (but still polynomial in n). Thus we have the

following direct corollary.

Corollary I.13. There exists a constant C > 0 such
that for all n, k ∈ N with k ≥ logC n and any constant
C ′ > 0, there exist explicit constructions of strongly
2−(m+1)-hitting dispersers for two independent (n, k)
sources or affine sources on n bits with entropy k, with
output length m = C ′ log n.

Using a generic technique to increase the output

length in [34], we obtain the following:

Theorem I.14. There exist constants C > 0, η > 0
such that for all n, k ∈ N with k ≥ logC n and m =
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ηk, there exists an explicit construction of a 2−(m+3)-
strongly hitting disperser D′ : ({0, 1}n)2 → {0, 1}m
for two independent (n, k) sources.

Gabizon and Shaltiel [34] further showed that such

strongly hitting dispersers can be applied to the problem

of implicit probe search, which, informally speaking, is

to search for an element in a table with few probes,

while using no additional information beyond the stored

elements themselves.

Definition I.15. (Implicit probe search scheme) [34].

For integer parameters n, k, q, the implicit probe search

problem is as follows: Store a subset S ⊆ {0, 1}n of

size 2k in a table T of size 2k, (where every table entry

holds only a single element of S), such that given any

x ∈ {0, 1}n we can determine whether x ∈ S using q
queries to T . A solution to this problem is called an

implicit q-probe scheme with table size 2k and domain

size 2n.

The main goal for this problem is to give a scheme

that uses as few number of queries as possible (e.g.,

O(1) queries) and has table size as small as possi-

ble. Fiat and Naor [38] studied implicit O(1)-probe

schemes, where the number of queries is a constant that

does not depend on n or k. They showed that if n is

large enough compared to k, then no such schemes can

exist. This improves a previous bound by Yao [39]. They

also proved that non-explicitly, such schemes exist as

long as n ≤ 2poly(k). In addition, they gave an efficient

implicit O(1)-probe scheme in the case where k = δn
for any constant δ > 0. Gabizon and Shaltiel [34]

showed that zero-error dispersers for a constant number

of independent sources can be used to construct implicit

O(1)-probe schemes, and they achieved O(1/δ)-probe

schemes in the case where k = nδ for any constant

δ > 0. By using our improved zero-error disperser, we

obtain the following implicit O(1)-probe scheme, which

almost matches the non-explicit construction in [38].

Theorem I.16. There exists a constant C > 0 such that
for all n, k ∈ N with k = logC n there is an efficiently
computable implicit O(1)-probe scheme with table size
2k and domain size 2n.

Note that the construction crucially relies on a

strongly hitting disperser with output length Ω(k),
which is made possible only because our two-source

extractor has output length at least c log n for some

constant c > 1 and error n−c.

In the case of affine sources, Gabizon and Shaltiel

[37] also gave a generic method to transform a zero-

error affine disperser with c log n output bits into an-

other zero-error affine disperser which outputs almost all

entropy. Combining their transformation with our zero-

error disperser, we obtain the following theorem, which

improves the entropy requirement and output length of

previous zero-error affine dispersers.

Theorem I.17. There exists a constant C > 0 such that
for all n, k ∈ N with k ≥ logC n, there is an explicit
zero-error affine disperser D : {0, 1}n → {0, 1}m for
entropy k, where m = k − logC n.

Such zero-error affine dispersers can be applied to the

following problem of constructing schemes for defective

memory with stuck-at and adversarial errors, as shown

in [37]. The problem was first studied by Kuznetsov and

Tsybakov [40], where we have a memory of n cells

each storing a symbol from some finite alphabet (we

focus on the Boolean alphabet here). However, some

subset of at most s cells are stuck (e.g., fixed to some

particular string u) and cannot be modified. The goal

then is to store a string z ∈ {0, 1}m in the memory so

that later we can read the memory and retrieve z, even

without any information about which of the cells are

stuck. Tsybakov [41] extended this to a more general

model where besides the stuck-at errors, an adversary

can choose to corrupt few cells after the string is stored.

Formally, we have the following definition.

Definition I.18. [37]. An (n, s, e)-stuck-at noisy mem-

ory scheme consists of

• a (possibly randomized) encoding function E such

that given any S ⊂ [n] with |S| ≤ s, u ∈ {0, 1}|S|
and z ∈ {0, 1}m, E returns x ∈ {0, 1}n such that

x|S = u, and

• a decoding function D : {0, 1}n → {0, 1}m such

that for any x ∈ {0, 1}n produced by E with input

z (and any inputs S and u as above), and any ‘noise

vector’ ξ ∈ {0, 1}n of hamming weight at most e,

D(x+ ξ) = z.

The rate of the scheme is m/n, and the natural goal

here is to tolerate as many errors as possible while

making the rate (or equivalently, m) as large as possible.

While one can use standard error-correcting codes for

this problem, Gabizon and Shaltiel [37] showed that

by using “invertible” zero-error dispersers, one can do

much better. Specifically, they constructed an explicit

stuck-at noisy memory scheme that can tolerate s(n) =
pn stuck-at errors for p < 1/2 and e(n) = o(

√
n)

adversarial errors, with m = n − s(n) − e(n) log n −
O(n/

√
log logn) (which achieved rate 1 − p − o(1)

for the first time) and they left open the problem of

improving m to n− s(n)− e(n) log n− logO(1) n.
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As shown in [37], a longer output of the zero-error

affine disperser directly translates into a larger m in the

scheme. Using our improved disperser, we obtain the

following improved scheme.

Theorem I.19. There exists a constant C > 0 such
that for any p < 1/2, e(n) = o(

√
n) and s(n) ≤ pn,

there is an explicit (n, s(n), e(n))-stuck-at noisy mem-
ory scheme with m = n− s(n)− e(n) log n− logC n.

II. OVERVIEW OF THE CONSTRUCTIONS

A. Improved two-source extractor

Here we give a brief overview of our improved

two-source extractor. Since it follows easily from the

extractor for non-oblivious bit-fixing sources, we first

describe our new extractor for the (q, t, γ) non-oblivious

bit-fixing source on n bits with q ≤ n1−δ for any

constant δ > 0, and γ ≤ 1/nt+1. Our starting point

is the one-bit deterministic extractor for such sources

in [1], which we will call BitExt. We note that from

the construction of [1], (by setting the parameters ap-

propriately) this function has the following properties.

First, it is a depth-4 AC0 circuit with size nO(1). Second,

since it’s an extractor, for any (q, t, γ) non-oblivious

bit-fixing source X , we have BitExt(X) is n−Ω(1)-

close to uniform. Third, it’s a resilient function, in the

sense that any coalition of q bits has influence1 at most

q/n1− δ
2 , even when the rest of the bits are only (t, γ)-

wise independent.

We now describe how to extract more than one bit.

One natural idea is to divide the source X into many

blocks and then apply BitExt to each block. Indeed this

is our first step. In the source X , we denote the “bad

bits” by Q, and the “good bits” by Q. To ensure that no

block consists of only bad bits, we will divide X into

nα blocks for some constant α < δ (it suffices to take

α = δ/4). Thus we get � = nα blocks {Xi, i ∈ [�]}
with each block containing n′ = n1−α bits. We now

apply BitExt to each block to obtain a bit Yi. Of course,

we will set up the parameters such that BitExt is an

extractor for (q, t, γ) non-oblivious bit-fixing source on

n1−α bits.

Now consider any block. Our observation is that since

each block can contain at most q ≤ n1−δ bits from Q,

the coalition of the bad bits in this block still has small

influence. In particular, a simple calculation shows that

q < n′1−
3δ
4 and thus for each block the influence of the

bad bits is bounded by q/n′1−
3δ
8 < n−

3δ
8 . This means

that with probability at least 1−n−
3δ
8 over the fixing of

1Informally, the influence of a set of bits is the probability over the
rest of the bits such that the function is not fixed.

Xi∩Q, we have that Yi is fixed. Thus, by a simple union

bound, with probability at least 1−nαn−
3δ
8 = 1−n−

δ
8

over the fixing of Q, we have that all {Yi, i ∈ [�]} are

fixed.

Now consider another distribution X ′, which has the

same distribution as X for the bits in Q, while the bits

in Q are fixed to 0 independent of the bits in Q. We let

Y ′i , i ∈ [�] be the corresponding Yi’s obtained from X ′

instead of X . By the above argument, with probability

at least 1 − n−
δ
8 over the fixing of Q, {Yi} and {Y ′i }

are the same. Thus the joint distribution of {Yi} and

{Y ′i } are within statistical distance n−
δ
8 . Moreover, the

bits in Q are (t, γ)-wise independent and thus they

are ntγ ≤ 1/n-close to a truly t-wise independent

distribution. From now on we will treat Q as being truly

t-wise independent, since this only adds 1/n to the final

error.

We will now choose a parameter m = tΩ(1) for the

output length. In addition, we take the generating matrix

G of an asymptotically good linear binary code with

message length m, codeword length r = O(m) and

distance d = Ω(m). It is well known how to construct

such codes (and thus the generating matrix) explicitly.

Note that G is an m× r matrix and any codeword can

be generated by w = vG for some vector v ∈ {0, 1}m,

where all operations are in F2. We choose m so that

r = O(m) ≤ � and now we let Y = (Y1, · · · , Yr) be

the random vector in F
r
2 obtained from {Yi, i ∈ [�]}.

Similarly, we have Y ′ = (Y ′1 , · · · , Y ′r ). The output of

our extractor will now be Z = (Z1, · · · , Zm) = GY ,

where all operations are in F2.

For the analysis let us consider Z ′ =
(Z ′1, · · · , Z ′m) = GY ′. We will show that Z ′ is

close to uniform and then it follows that Z is also

close to uniform since they are within statistical

distance n−Ω(1) (as they are deterministic functions

of Y and Y ′ respectively). To show this, we will

use the XOR lemma. Consider any non-empty subset

S ⊆ [m] and V ′S =
⊕

i∈S Z ′i. Note that this is just

(
∑

i∈S Gi)Y
′ where Gi stands for the i’th row of G.

Note that
∑

i∈S Gi is a codeword and thus has at least

d = Ω(m) 1’s. On the other hand, it can have at most

r = O(m) 1’s.

Note that the parity of up to r bits can be computed

by a depth-2 AC0 circuit of size 2O(r) = 2O(m). Recall

that each input bit Yi can be computed by a depth-4

AC0 circuit of size nO(1). Thus we see that each V ′S
can be computed by a depth-6 AC0 circuit of size at

most 2O(m)nO(1) = 2O(m) if we choose m > log n.2

2We can get rid of the intermediate negation gates with only a
constant factor of blow-up in the circuit size, by standard tricks.
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Note that all bits in Q are fixed to 0. Thus the inputs

of the circuits are only from Q.

Now our goal is to ensure that V ′S can be fooled by t-
wise independent distributions with error ε = 2−m. By

the results of Braverman [42] and Tal [43], it suffices

to take t = O(log(2O(m)/ε)21) = O(m21). Thus we

can take m = Ω(t
1
21 ) and it follows that V ′S cannot

distinguish between t-wise independent distributions

and uniform distribution. On the other hand, if Q is

the uniform distribution, then V ′S is the XOR of at least

d = Ω(m) independent random variables, with each

being n−Ω(1)-close to uniform. Thus in this case V ′S
is (n−Ω(1))d = 2−Ω(m logn)-close to uniform. Together

this means that V ′S is 2−Ω(m logn)+2−m < 21−m close

to uniform. Since this is true for any non-empty subset

S, by a standard XOR lemma it now follows that Z ′

is 2−Ω(m)-close to uniform. Adding back the errors we

see that Z is n−Ω(1)-close to uniform.

We can now apply the reduction from two indepen-

dent sources to a non-oblivious bit-fixing source, which

was implicit in [19] and explicit in [1]. This reduction

reduces two independent (n, k) sources to a (q, t, γ)-
non-oblivious bit-fixing source with t = kΩ(1),3 thus by

applying the above extractor we also get an improved

two-source extractor with output length kΩ(1).

B. Affine extractor

On the high level, our construction of affine extractors

follows the framework of the recent two-source extrac-

tor construction by Chattopadhyay and Zuckerman [1].

Specifically, we will first reduce an affine source to a

(q, t, γ)-non-oblivious bit-fixing source, and then apply

our improved deterministic extractor for such sources.

We now describe our reduction. We will mainly

adapt techniques from previous work on extractors for

independent sources. Specifically, by using ideas from

alternating extraction (Figure ??) [44], [45], [18], [5],

one of the author’s previous work [19] obtained a some-

where random source with N = poly(n) rows from

two independent (n, k) sources with k ≥ polylog(n).
The somewhere random source is a random matrix, with

the additional property that except for a small fraction

of “bad” rows, the rest of the rows are almost t-wise

independent for t = kΩ(1) in the sense that any t of

these rows are γ = 2−kΩ(1)

-close to uniform. Thus,

these rows (or, say, taking one bit each row) form

exactly a (q, t, γ)-non-oblivious bit-fixing source.

Now we need to adapt that construction to affine

sources. Of course we now only have one affine source

3The original reduction in [19] only gives q = Ω(n), but a simple
modification can also give q ≤ n1−δ for any constant δ > 0.

instead of two independent sources. However, due to

the special structure of affine sources we can still apply

similar ideas as in [5], [19]. Specifically, we will use

a special kind of strong seeded extractors called linear
seeded extractors. These extractors have the property

that for any fixed seed, the output is a linear function

of the source. We take such a seeded extractor with seed

length O(log n) and error ε, and use every possible seed

to extract from the affine source X . This gives us a

matrix (or somewhere random source) of N = poly(n)
rows, where each row corresponds to the output of

the extractor on a particular seed. A standard argument

shows that if X is affine, then at least 1−2ε fraction of

the rows are truly uniform, although they may depend

on each other in arbitrary ways. Note that this is

even better for our purpose than in the case of two

independent general weak random sources, since there

we have to use some other ideas to reduce the error,

while here the error in the somewhere random source

is essentially zero. We further restrict the size of each

row, so that the length is much smaller than the entropy

of X .

We can now use these rows and the source X itself

to do the same alternating extraction protocol as in [5],

[19] to make the “good” rows almost t-wise independent

for t = kΩ(1), with error γ = 2−kΩ(1)

. To see why

alternating extraction works in this case, consider one

particular uniform row Y . Note that Y is a linear

function of X , so Y is also an affine source. Recall that

the length of Y is much smaller than the entropy of X .

A standard argument shows that X can be decomposed

into X = A + B where both A,B are affine sources,

A = L(Y ) for some linear bijection L, and B is inde-

pendent of Y . Thus, to do the alternating extraction, we

can first take a small slice of Y to be S1, and use a linear

seeded extractor Ext to compute R1 = Ext(X,S1). Note

that R1 = Ext(X,S1) = Ext(A,S1) + Ext(B,S1).
By the property of a strong extractor we know that

with high probability over the fixing of S1, Ext(B,S1)
is close to uniform (since S1 is independent of B).

Note that S1 is a deterministic function of A and A is

independent of B, thus R1 = Ext(A,S1) + Ext(B,S1)
is also uniform conditioned on the fixing of S1.

Next, suppose the length of R1 is much smaller than

the length of Y ,we can then use R1 and apply Ext back

to Y to extract S2 = Ext(Y,R1). The reason is that

we can first fix Ext(A,S1). Note that we have already

fixed S1 so this is a deterministic function of A (or

Y ). Therefore after fixing it, Ext(B,S1) is still uniform

and independent of Y (since now it is a deterministic

function of B), and now R1 = Ext(A,S1)+Ext(B,S1)
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is independent of Y . Since the length of R1 is small,

conditioned on this fixing Y still has a lot of entropy

left. Therefore we can now extract S2 = Ext(Y,R1).
After this we can further fix Ext(B,S1) and thus also

R1. We know that with high probability over this fixing,

S2 is still close to uniform. Moreover conditioned on

this fixing, B still has a lot of entropy left, and is still

independent of Y . Now S2 is a deterministic function

of Y . Continue doing this, we can see that alternating

extraction works as long as we always use a strong

linear seeded extractor and keep the size of each Ri, Si

to be small. Intuitively, it’s like alternating extraction

between the two independent affine sources Y and B.

Now we can use similar arguments as in [5] to make the

somewhere random source almost t-wise independent.4

However, there are a few subtle technical prob-

lems we need to deal with. First, when we gener-

alize the above alternating extraction to run for t
rows Y 1, Y 2, · · · , Y t simultaneously, we will need to

consider the concatenation Y = Y 1 ◦ Y 2 ◦ · · · ◦ Y t

and decompose X into X = A + B = L(Y ) + B.

This ensures that we can condition on the fixing of

all the intermediate random variables obtained from

Y 1, Y 2, · · · , Y t without affecting B. We can do this

if we choose the parameters appropriately so that both

t = kΩ(1) and the size of Y i are small compared to the

entropy of X . Thus in the decomposition B still has

sufficient entropy. Another subtlety arises in the analysis

as follows. The alternating extraction will take some

b < logn rounds, with each round consisting of some

kΩ(1) steps. In each round j, we start the alternating

extraction using a random variable Y ij obtained from

Y i, and at the end we obtain a random variable Rij from

X . Our goal is to show that these {Rij} will gradually

become independent of each other, until at the end they

become all independent, thus achieving t-wise indepen-

dent. Towards this, at the end of round j, for each Y i we

need to use Rij to extract Y i(j+1) from Y i to start the

next round. Here we would like to argue that for those

{R�j} that have already become independent of Rij ,

we can first fix all {Y �(j+1)} and all the R variables

produced in round j + 1, and Y i(j+1) is still uniform.

This ensures that whatever is already independent will

remain independent. While this is true in the case of

two independent sources, it is no longer true in the case

of an affine source. The reason is that, as explained

above, when we fix R = Ext(A,S) + Ext(B,S), the

part of Ext(A,S) is a function of A (and Y ). Thus

4We remark that we can also use the flip-flop alternating extraction
developed in [20], which may result in an improvement in the
constants. However in this paper we do not try to optimize the constant
C in our final result where k ≥ logC n.

this fixing may cause Y i(j+1) to lose entropy (note that

fixing Ext(B,S) will not since B is independent of Y ).

Fortunately, we can get around this by restricting the

length of the R variables to be much smaller than the

length of Y i(j+1). We note that if we take a seeded

extractor with error ε, and use a seed that loses � bits

of entropy, then the extractor still works with error

increased to 2�ε. Thus by appropriately choosing the

parameters (making � small enough compared to the

seed length of the seeded extractor), we can still use

Y i(j+1) to start the next round of alternating extraction,

and the whole construction goes through.

One final point is that the extractor for non-oblivious

bit-fixing source in [1], as well as our improved

extractor can only handle the case where q ≤ N1−δ

for any constant δ > 0. This means that to convert

the affine source X into a somewhere random source

in the first step, we need to take a strong linear

seeded extractor with seed length O(log n) and error

ε = 1/poly(n), i.e., an extractor with optimal seed

length. Previously, such a linear seeded extractor was

not known. In this paper we construct such a strong

linear seeded extractor by combining the lossless

condenser in [9] and another strong linear seeded

extractor in [46]. We note that the condenser in [9]

itself may not be linear, but can be made linear with the

same parameters by a careful instantiation, following a

result in [47]. Thus in this step we can use O(log n)
bits to condense the source into a (n′ = O(k), k)
source with error 1/poly(n). We then use the linear

seeded extractor in [46], which has seed length

d = O
(
log n′ + logn′

log k log
(
1
ε

))
. Note that n′ = O(k).

Thus if we take ε = 1/poly(n) we get d = O(log n).
Altogether we get a strong seeded extractor with seed

length O(log n) and error ε = 1/poly(n). Since both

the condenser and the extractor are linear, the combined

extractor is also linear.

III. CONCLUSIONS AND OPEN PROBLEMS

Constructing explicit two-source extractors and

affine extractors are two related challenging problems.

Through a long line of research, the recent breakthrough

result of Chattopadhyay and Zuckerman [1] has finally

brought us close to the optimal two-source extractor.

In this paper we managed to improve the output length

of the two-source extractors in [1] from 1 to kΩ(1) in

the strong case, and to k in the non-strong case. We

also construct the first explicit affine extractor for poly-

logarithmic entropy, thus bringing affine extractors close

to optimal. However, in both cases the error remains
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n−Ω(1). The most obvious open problem is to improve

the error (say to exponentially small).
This seems challenging and requiring new ideas.

Specifically, the current approach is to first reduce the

sources to a (q, t, γ) non-oblivious bit-fixing source, and

then apply a deterministic extractor for such sources.

The analysis is done by bounding the influence of a

coalition of variables. If the non-oblivious bit-fixing

source has length nO(1) (to ensure polynomial time

computability), then even one bit can have influence

Ω(logn/nO(1)) by the result of [28]. Thus we cannot

hope to get error n−ω(1) through this approach alone.
Another related open problem is to increase the

output length of our affine extractor, which is currently

kΩ(1). We note that we can use a general technique

by Shaltiel [48] to try to improve the output length.

However for that purpose we need to use a linear seeded

extractor with seed length O(log n), since the error will

be increased by a factor of 2d where d is the seed length.

A linear seeded extractor with such seed length can

possibly achieve output length k0.9 [46], but we are not

aware of any construction with output length Ω(k). On

the other hand, if we can make the error smaller, then

we can afford a larger seed length (such as O(log2 n)),
which is enough to output almost all the entropy.

In the case of NC0 and AC0 sources, there is still

much room for improvement. Currently it is not known

how to extract from sources with min-entropy smaller

than n1/2, even if the source is generated by a circuit

where each output bit depends on at most 2 input bits.
Finally, an interesting observation of our work is

that actually the bias of the one bit extractor in [1] is

not very important (in [1] it has bias n−Ω(1)). Indeed,

even if it only has constant bias, after the step of using

the generating matrix G, we can see that the XOR of

Ω(m) copies will have bias 2−Ω(m). However, at this

moment this observation doesn’t seem to help improve

the parameters.
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