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Abstract—We make progress in the following three
problems: 1. Constructing optimal seeded non-malleable
extractors; 2. Constructing optimal privacy amplification
protocols with an active adversary, for any possible secu-
rity parameter; 3. Constructing extractors for independent
weak random sources, when the min-entropy is extremely
small (i.e., near logarithmic).

For the first two problems, the best known non-
malleable extractors by Chattopadhyay, Goyal and Li, and
by Cohen all require seed length and min-entropy with
quadratic loss in parameters. As a result, the best known
explicit privacy amplification protocols with an active
adversary, which achieve two rounds of communication
and optimal entropy loss was sub-optimal in the min-
entropy of the source.

In this paper we give an explicit non-malleable extractor
that works for nearly optimal seed length and min-entropy,
and yields a two-round privacy amplification protocol with
optimal entropy loss for almost all ranges of the security
parameter.

For the third problem, we improve upon a very recent
result by Cohen and Schulman and give an explicit ex-
tractor that uses an absolute constant number of sources,
each with almost logarithmic min-entropy.

The key ingredient in all our constructions is a general-
ized, and much more efficient version of the independence
preserving merger introduced by Cohen, which we call
non-malleable independence preserving merger. Our con-
struction of the merger also simplifies that of Cohen and
Schulman, and may be of independent interest.

Keywords-privacy amplification; non-malleable extrac-
tors; independent source extractors;

I. INTRODUCTION

The theory of randomness extractors is a broad area

and a fundamental branch of the more general study of

pseudorandomness. Informally, randomness extractors

are functions that transform biased probability distri-

butions (weak random sources) into almost uniform

probability distributions. Here we measure the entropy

of a weak random source by the standard min-entropy.

The second author is partially supported by NSF Grant CCF-
1617713.

A source X is said to have min-entropy k if for any x,

Pr[X = x] ≤ 2−k. An (n, k)-source X is a distribution

on n bits with min-entropy at least k.

It is well known that it is impossible to construct

deterministic randomness extractors when the input is

just one (arbitrary) weak random source, even if the

min-entropy is as large as n−1. A natural relaxation is

then to give the extractor a short independent uniform

seed, and such extractors are called seeded extractors.

With this relaxation it is indeed possible to construct

extractors that work for any weak random source with

essentially any min-entropy. We now formally define

such extractors.

Definition I.1. The statistical distance between two dis-
tributions D1 and D2 over some universal set Ω is de-
fined as |D1−D2| = 1

2

∑
d∈Ω |Pr[D1 = d]−Pr[D2 =

d]|. We say D1 is ε-close to D2 if |D1 − D2| ≤ ε and
denote it by D1 ≈ε D2.

Definition I.2 ([41]). A function Ext : {0, 1}n × {0,
1}d → {0, 1}m is a seeded extractor for min-entropy
k and error ε if for any source X of min-entropy k,
|Ext(X,Ud) − Um| ≤ ε. Ext is strong if in addition
|(Ext(X,Ud),Ud) − (Um,Ud)| ≤ ε, where Um and
Ud are independent.

Through a long line of research we now have explicit

constructions of seeded extractors with almost optimal

parameters [25], [26], [37].

In recent years, there has been much interest in the

study of two other kinds of randomness extractors. The

first one, known as non-malleable extractors (introduced

by Dodis and Wichs [23]), is a generalization of strong

seeded extractors.

Definition I.3 (Non-malleable extractor). A function
nmExt : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-non-
malleable extractor if the following holds: For any (n,
k)-source X, an independent uniform seed Y on d bits
and any function A : {0, 1}d → {0, 1}d with no fixed
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points,1

|(nmExt(X,Y), nmExt(X,A(Y)),Y)−
(Um, nmExt(X,A(Y)),Y)| ≤ ε.

The second one, known as multi-source extractors
(first studied by Chor and Goldreich [12]), is another

natural relaxation of deterministic extractors for one

weak random source, in the sense that now the input

to the extractor are several (at least two) independent

weak random sources. Curiously, although this problem

was first studied around 30 years ago, it was not until

recently that significant progress has been achieved.

The above two kinds of extractors are closely related,

and in many cases techniques used for one can also be

used to improve the constructions of the other. These

connections have been demonstrated in a number of

works (e.g., [11], [30]–[32], [34]).

We now briefly discuss the motivations for these two

kinds of extractors.

A. Non-malleable extractors and privacy amplification

The initial motivation for non-malleable extractors

comes from the problem of privacy amplification with

an active adversary [6], [7], [39]. As a basic problem

in information theoretic cryptography, privacy amplifi-

cation deals with the case where two parties want to

communicate with each other to convert their shared

secret weak random source X into shared secret nearly

uniform random bits. On the other hand, the commu-

nication channel is watched by an adversary Eve, who

has unlimited computational power. To make this task

possible, we assume two parties have local (non-shared)

uniform random bits.

If Eve is passive (i.e., can only see the messages

but cannot change them), this problem can be solved

easily by applying the aforementioned strong seeded

extractors. However, in the case where Eve is active (i.e.,

can arbitrarily change, delete and reorder messages), the

problem becomes much more complicated. The major

challenge here is to design a protocol that uses as

few number of interactions as possible, and outputs a

uniform random string R that has length as close to

H∞(X) as possible (the difference is called entropy
loss). A bit more formally, we pick a security parameter

s, and if the adversary Eve remains passive during the

protocol then the two parties should achieve shared

secret random bits that are 2−s-close to uniform. On

the other hand, if Eve is active, then the probability

that Eve can successfully make the two parties output

two different strings without being detected should be

1i.e., for any x, A(x) �= x
at most 2−s. We refer the readers to [22] for a formal

definition.

There has been a long line of work on this problem

[1], [9], [19], [21]–[23], [27], [29], [30], [33], [38],

[45]. When the entropy rate of X is large, i.e., bigger

than 1/2, there are known protocols that take only one

round (e.g., [21], [38]). However these protocols all

have very large entropy loss. When the entropy rate of

X is smaller than 1/2, [23] showed that no one round

protocol exists; furthermore the length of R has to be at

least O(s) smaller than H∞(X). Thus, the natural goal

is to design a two-round protocol with such optimal

entropy loss. However, all protocols before the work of

[22] either need to use O(s) rounds, or need to incur

an entropy loss of O(s2).

In [23], Dodis and Wichs showed that explicit con-

structions of the aforementioned non-malleable extrac-

tors can be used to give two-round privacy amplification

protocols with optimal entropy loss. Using the prob-

abilistic method, they also showed that non-malleable

extractors exist when k > 2m+ 2 log(1/ε) + log d+ 6
and d > log(n − k + 1) + 2 log(1/ε) + 5. However,

they were not able to give explicit constructions even

for min-entropy k = n− 1. The first explicit construc-

tion of non-malleable extractors appeared in [22], with

subsequent improvements in [1], [19], [24], [29], [30].

All these constructions require the min-entropy of the

weak source to be bigger than 0.49n, and thus only give

two-round privacy amplification protocols with optimal

entropy loss for such min-entropy. Together with some

other ideas, [22] also gives poly(1/δ) round protocols

with optimal entropy loss for min-entropy k ≥ δn,

any constant δ > 0. This was subsequently improved

by one of the authors in [30] to obtain a two-round

protocol with optimal entropy loss for min-entropy

k ≥ δn, any constant δ > 0. In the general case,

using a relaxation of non-malleable extractors called

non-malleable condensers, one of the authors [33] also

obtained a two-round protocol with optimal entropy loss

for min-entropy k ≥ C log2 n, some constant C > 1,

as long as the security parameter s satisfies k ≥ Cs2.

For larger security parameter, the best known protocol

with optimal entropy loss in [30] still takes O(s/
√
k)

rounds.

In a recent work, Chattopadhyay, Goyal and Li [10]

constructed explicit non-malleable extractors with error

ε, for min-entropy k = Ω(log2 (n/ε)) and seed-length

d = O(log2(n/ε)). This gives an alternative protocol

matching that of [30]. Subsequently, Cohen [15] im-

proved this result, and constructed non-malleable extrac-

tors with seed length d = O(log(n/ε) log((log n)/ε))
and min-entropy k = Ω(log(n/ε) log((log n)/ε)). In

this work, he also gave another construction that worked

for k = n/(log n)O(1) with seed-length O(log n). In
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a follow up, Cohen [16] constructed non-malleable

extractors with seed length d = O(log n + log3(1/ε))
and min-entropy k = Ω(d). However, in terms of the

general error parameter ε, all of these results require

min-entropy and seed length at least log2(1/ε), thus

none of them can be used to improve the privacy

amplification protocols in [33].

A recent work by Aggarwal, Hosseini and Lovett [2]

obtained some conditional results. In particular, they

used a weaker variant of non-malleable extractors to

construct privacy amplification protocols with optimal

entropy loss for k = Ω(log(1/ε) log n) assuming a

conjecture in additive combinatorics.

B. Multi-source extractors for independent sources

As mentioned before, Chor and Goldreich [12] in-

troduced the problem of designing extractors for two

or more independent sources. Explicit constructions of

such extractors can also be used in explicit constructions

of Ramsey graphs ([5], [11], [17]). A simple prob-

abilistic argument shows the existence of two-source

extractors for min-entropy k ≥ log n+O(1). However,

explicit constructions of such functions are extremely

challenging.

Chor and Goldreich [12] proved that the inner-

product function is a two-source extractor for min-

entropy greather than n/2. It was not until 20 years

later when Bourgain [8] broke the entropy rate 1/2
barrier and constructed a two-source extractor for min-

entropy 0.49n. Raz [44] obtained another construction

which requires one source with min-entropy more than

n/2 and the other source with min-entropy O(log n).
Recently, Chattopadhyay and Zuckerman [11] improved

the situation substantially by constructing two-source

extractors for min-entropy k ≥ polylog(n), with subse-

quent improvements obtained by Li [36] and Meka [40].

The ultimate goal here is to obtain two-source extractors

matching the entropy bound given by the probabilistic

method.

If we allow the extractor to have a constant num-

ber of sources instead of just two sources, then an

exciting line of work [3]–[5], [13], [28], [31], [32],

[34], [42], [43] constructed extractors with excellent

parameters. However, the smallest entropy these con-

structions can achieve is log2+δ n for any constant δ > 0
[31], which uses O(1/δ) + O(1) sources. In a very

recent work, Cohen and Schulman [20] managed to

break this “quadratic” barrier, and constructed extractors

for O(1/δ) + O(1) sources, each with min-entropy

log1+δ n.

C. Our results

Non-Malleable Extractors Our first result is a new

construction of non-malleable extractors that breaks

the log2(1/ε) barrier for min-entropy and seed length.

Specifically, we have the following theorem.

Theorem 1. There exists a constant C > 0 s.t
for all n, k ∈ N and any ε > 0, with k ≥
log(n/ε)2C

√
log log(n/ε), there exists an explicit (k, ε)-

non-malleable extractor nmExt : {0, 1}n × {0, 1}d →
{0, 1}m, where d = log(n/ε)2C

√
log log(n/ε) and m =

k/2
√

log log(n/ε).

We also construct a non-malleable extractor with

seed-length O(log n) for min-entropy k = Ω(log n) and

ε ≥ 2− log1−β(n) for any β > 0. Prior to this, explicit

non-malleable extractors with seed-length O(log n) ei-

ther requires min-entropy at least n/poly(log n) [15] or

requires ε ≥ 2− log1/3(n) [16].

Theorem 2. There exists a constant C > 0 s.t for and
all n, k ∈ N with k ≥ C log n, any constant 0 < β < 1,
and any ε ≥ 2− log1−β(n), there exists an explicit (k, ε)-
non-malleable extractor nmExt : {0, 1}n × {0, 1}d →
{0, 1}m, where d = O(log n) and m = Ω(log(1/ε)).

Remark I.4. A careful examination reveals that our
seed length and min-entropy requirement are better than
those of [15], [16] in all cases except the case that ε is
large enough (e.g., ε ≥ 2− log1/3(n)), where both [16]
and our results require seed length and min-entropy
O(log n).

Note that given any error parameter ε, our non-

malleable extractor in Theorem 1 only requires min-

entropy and seed length log1+o(1)(n/ε).

We also show how to further lower the min-entropy

requirement of the non-malleable extractor in Theorem

1 at the expense of using a larger seed. We comple-

ment this result by constructing another non-malleable

extractor with shorter seed-length than in Theorem 1 at

the expense of larger entropy. We now state these results

more formally.

Theorem 3. There exists a constant C > 0 such
that for all n, k ∈ N and any ε > 0, with k ≥
log(n/ε)22

C
√

log log log(n/ε)

, there exists an explicit (k, ε)-
non-malleable extractor nmExt : {0, 1}n × {0, 1}d →
{0, 1}m, where d = (log(n/ε))32(log log log(n/ε))O(1)

,
m = Ω(k).

Theorem 4. There exists a constant C > 0 such
that for all n, k ∈ N and any ε > 0, with k ≥
(log(n/ε))32(log log log(n/ε))C , there exists an explicit (k,
ε)-non-malleable extractor nmExt : {0, 1}n×{0, 1}d →
{0, 1}m, where d = log(n/ε)22

O(
√

log log log(n/ε))

,m =
k

log(n/ε)2(log log log(n/ε))O(1) −O((log(n/ε))2).
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Table II-E summarizes our new non-malleable extrac-

tors compared to previous results.

Independent and Subsequent Work: Independent

of our work, Cohen [14] also obtained similar re-

sults, where he constructed a non-malleable ex-

tractor with seed length and entropy O(log n) +

log(1/ε)2O(
√

log log(1/ε)). Subsequently, Cohen [18] and

Li [35] further improved this result, and achieve non-

malleable extractors with seed length and entropy

O(log n)+ log(1/ε)poly(log log(1/ε)), and O(log n)+
O(log(1/ε) log log(1/ε)) respectively.

Privacy Amplification Using Theorem 1 and the pro-

tocol in [23], we immediately obtain a two-round pri-

vacy amplification protocol with optimal entropy loss,

for almost all possible security parameters.

Theorem 5. There exists a constant C > 0 such
that for any security parameter s with k ≥ (s +

log n)2C
√

log(s+logn), there exists an explicit 2-round
privacy amplification protocol for (n, k)-sources with
entropy loss O(log n+s) and communication complexity
(s+log n)2O(

√
log(s+logn)), in the presence of an active

adversary.

In particular, this gives us two-round privacy ampli-

fication protocols with optimal entropy loss for security

parameter s ≤ k1−α for any constant α > 0.

Instead if we use the non-malleable extractor from

Theorem 3, we obtain a two-round privacy amplification

protocol with optimal entropy loss, for even smaller

min-entropy (at the expense of larger communication

complexity). More formally, we have the following

theorem.

Theorem 6. There exists a constant C > 0 such
that for any security parameter s with k ≥ (s +

log n)22
C
√

log log(s+log n)

, there exists an explicit 2-round
privacy amplification protocol for (n, k)-sources with
entropy loss O(log n+s) and communication complexity
(s + log n)32(log log(s+logn))O(1)

, in the presence of an
active adversary.

t-Non-Malleable Extractors and 2-Source Extractors
Our techniques for constructing non-malleable extrac-

tors can be generalized directly to construct t-non-

malleable extractors (non-malleable extractors with t
tampering functions, see the full version of the paper

for more details). Such t-non-malleable extractors were

used in [11] to construct two-source extractors. With

subsequent improvements [36], [40], the best known 2-

source extractor for constant error requires min-entropy

C(log n)10, and for polynomially small error requires

min-entropy C(log n)18. By plugging in our improved

t-non-malleable extractor, we obtain two-source ex-

tractors that require min-entropy (log n)8 for constant

error, and (log n)14 for polynomially small error. By

a well-known connection to Ramsey graphs (see [5]),

the constant error 2-source extractor implies an explicit

2(log logn)8 -Ramsey graph on n vertices.

Multi-Source Extractors Next, we improve the en-

tropy requirement in extractors for a constant number

of independent sources. In particular, we give explicit

extractors for O(1) sources, each having min-entropy

log1+o(1)(n). More formally, we have the following

theorem.

Theorem 7. There exist constants C > 0, C ′ > 0

s.t for all n, k ∈ N with k ≥ log n2C
′√log log(n) and

any constant ε > 0,2 there exists an explicit function
Ext : ({0, 1}n)C → {0, 1}, such that if X1, . . . ,XC

are independent (n, k) sources, then

|Ext(X1, . . . ,XC)−U1| ≤ ε.

D. Non-malleable independence preserving merger

The barrier of log2(1/ε) in seed length and min-

entropy requirement of non-malleable extractors, as well

as the barrier of log2 n in min-entropy requirement of

multi-source extractors mainly come from the fact that

the previous constructions rely heavily on the “alternat-

ing extraction” based techniques. In [20], Cohen and

Schulman introduced a new object called independence
preserving merger (IPM for short). This is the key com-

ponent in their construction, which helps them to obtain

the O(1/δ) + O(1) source extractor for min-entropy

k ≥ log1+δ n. The construction of the independence

preserving merger in [20] is fairly complicated and takes

up a bulk of work.

A key component in all of our constructions is a

generalized, and much more efficient version of the

independence preserving merger in [20], which we call

non-malleable independence preserving merger (NIPM

for short). In addition, we believe that our construction

of NIPM is simpler than the construction of IPM in

[20]. We now define this object below.

Definition I.5. A (L, t, d′, ε, ε′)-NIPM : {0, 1}Lm ×
{0, 1}d → {0, 1}m1 satisfies the following property.
Suppose

• X,X1, . . . ,Xt are r.v’s, each supported on
boolean L × m matrices s.t for any i ∈ [L],
|Xi −Um| ≤ ε,

• {Y,Y1, . . . ,Yt} is independent of {X,X1, . . . ,
Xt}, s.t Y,Y1, . . . ,Yt are each supported on
{0, 1}d and H∞(Y) ≥ d− d′,

• there exists an h ∈ [L] such that |(Xh,X
1
h, . . . ,

Xt
h)− (Um,X1

h, . . . ,X
t
h)| ≤ ε,

2As in [20], the error can actually be slightly sub-constant.
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then

|(L, t, d′, ε, ε′)-NIPM((X,Y), (L, t, d′, ε, ε′)-NIPM

(X1,Y1), . . . , (L, t, d′, ε, ε′)-NIPM(Xt,Yt)

−Um1 , (L, t, d
′, ε, ε′)-NIPM(X1,Y1), . . . ,

(L, t, d′, ε, ε′)-NIPM(Xt,Yt)| ≤ ε′.

We present an explicit construction of an NIPM

which requires seed length d = log(m/ε)Lo(1) for the

case t = 1. More formally, we have the following

theorem.

Theorem 8. For all integers m,L > 0, any ε > 0, there
exists an explicit (L, 1, 0, ε, ε′)-NIPM : {0, 1}mL ×
{0, 1}d → {0, 1}m′ , where d = 2O(

√
logL) log(m/ε),

m′ = m
2
√

log L − 2O(
√
logL) log(m/ε) and ε′ = O(εL).

We have a more general version of the above theorem,

for which we refer the reader to the full version, that

works for general t. This is crucial for us to obtain our

results on t-non malleable extractors and extractors for

independent sources with near logarithmic min-entropy.

Using our NIPM, we construct a standard IPM in-

troduced in the work of Cohen and Schulman [20]. We

first define an IPM.

Definition I.6. A (L, k, t, ε, ε′)-IPM : {0, 1}Lm ×
{0, 1}n → {0, 1}m1 satisfies the following property.
Suppose

• X,X1, . . . ,Xt are r.v’s, each supported on
boolean L × m matrices s.t for any i ∈ [L],
|Xi −Um| ≤ ε,

• Y is an (n, k)-source, independent of {X,X1, . . . ,
Xt}.

• there exists an h ∈ [L] such that |(Xh,X
1
h, . . . ,

Xt
h)− (Um,X1

h, . . . ,X
t
h)| ≤ ε,

then

|(L, k, t, ε, ε′)-IPM(X,Y), (L, k, t, ε, ε′)-IPM(X1,Y),

. . . , (L, k, t, ε, ε′)-NIPM(Xt,Y)

−Um1 , (L, k, t, ε, ε
′)-IPM(X1,Y), . . . ,

(L, k, t, ε, ε′)-IPM(Xt,Y)| ≤ ε′

Theorem 9. There exists a constant C > 0 such that
for all integers m,L > 0, any ε > 0, and any k ≥
2C
√
logL log(m/ε), there exists an explicit (L, k, 1, ε,

ε′)-IPM : {0, 1}mL × {0, 1}n → {0, 1}m′ , with m′ =
1

2
√

log L (m − O(log(n/ε))) − 2O(
√
logL) log(m/ε) and

ε′ = O(εL).

As in the case of NIPM, we in fact construct an

IPM for general t. The construction of IPM from NIPM

is relatively straightforward, and using this explicit

IPM we derive our improved results on extractors for

independent sources.

We note that there are several important differences

between our IPM and the construction in [20]. First,

we only require that there exists at least one “good”

row Xh in the matrix (i.e., Xh is uniform even given

X1
h, . . . ,X

t
h). In contrast, the IPM in [20] requires

that 0.99 fraction of the rows are good. Second, the

construction of IPM in [20] offers a trade-off between

the number of additional sources required and the

min-entropy requirement of each source. In particu-

lar, they construct an IPM using b additional sources,

each having min-entropy k = Ω(L1/b log(n/ε)). In

contrast, we use just one additional source with min-

entropy k = Ω(Lo(1) log(m/ε)), and works as long

as m ≥ O(log(n/ε)) + Lo(1) log(m/ε). In typical

applications, we will have m ≈ k < n, so it suffices

to set k = Lo(1) log(n/ε). For all applications in this

paper, we will choose L = O(log(n/ε)) and thus we

get k = log1+o(1)(n/ε). The fact that our IPM uses

only one additional source improves significantly upon

the IPM in [20] and is crucial for us to obtain an O(1)
source extractor for min-entropy k = log1+o(1) n.

We also present a more involved construction of a

NIPM that uses a shorter seed in comparison to the

NIPM in Theorem 8, but requires matrices with larger

rows (i.e., m is required to be larger). More formally,

we have the following result.

Theorem 10. For all integers m,L > 0, any
ε > 0, there exists an explicit (L, 1, 0, ε, ε′)-
NIPM : {0, 1}mL × {0, 1}d → {0, 1}m′ , where
d = 2O(

√
log logL) log(m/ε),m′ = m

L2(log log L)O(1) −
O(L log(m/ε)) and ε′ = 2O(

√
log logL)Lε.

We use the NIPM from the above theorem in ob-

taining the non-malleable extractors in Theorem 3 and

Theorem 4.

II. OUTLINE OF CONSTRUCTIONS

Here we give an informal and high level description

of our constructions. Due to lack of space, we refer the

reader to the full version of the paper for formal proofs

of the results discussed in this section. We start with our

non-malleable independence preserving merger (NIPM)

with a uniform (or high entropy rate) seed.

A. Non-malleable independence preserving merger with
uniform seed

For simplicity we start by describing the case of only

one tampering adversary. Here, we have two correlated

random variables X = (X1, . . . ,XL) and X′ = (X′1,
. . . ,X′L), each of them is an L ×m matrix. We have

another two correlated random variables Y,Y′. We
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assume the following conditions: (X,X′) is indepen-

dent of (Y,Y′), each Xi is uniform and there exists

a j ∈ [L] such that Xj is uniform even conditioned

on X′j , and Y is uniform. Our goal is to construct

a function NIPM such that NIPM(X,Y) is uniform

conditioned on NIPM(X′,Y′), i.e., using Y we can

merge X into a uniform random string which keeps the

independence property over X′ even with a tampered

seed Y′.
Our starting point is the following simple observation.

Let (X,X′) be two correlated weak sources and (R,
R′) be two correlated random variables such that (X,
X′) is independent of (R,R′). Let R be uniform

and take any strong seeded extractor Ext, consider

Z = Ext(X,R) and Z′ = Ext(X′,R′). Assume the

length of the output of Ext is small enough. Then Z
is close to uniform given Z′ if either of the following

two conditions holds: R is uniform given R′ or X has

sufficient min-entropy conditioned on X′. Indeed, in the

first case, we can first fix R′, and argue that conditioned

on this fixing, Z′ is a deterministic function of X′. We

can now further fix Z′, and conditioned on this fixing, X
still has enough entropy left (since the length of Z′ is

small). Note that at this point R is still uniform and

independent of X, thus Z = Ext(X,R) is close to

uniform given Z′. In the second case, we can first fix

X′, and conditioned on this fixing X still has enough

entropy left. Now since Ext is a strong extractor, we

know that Z = Ext(X,R) is close to uniform even

given R. Since we have already fixed X′ and (R,R′)
is independent of (X,X′), this means that Z is also

close to uniform even given R′ and X′, which gives us

Z′ = Ext(X′,R′).
Now we can describe our basic NIPM. The construc-

tion is actually simple in the sense that it is essentially

an alternating extraction process between X and Y,

except that in each alternation we use a new row from

X. Specifically, we first take a small slice S1 from

X1, and apply a strong seeded extractor to obtain

R1 = Ext(Y,S1); we then use R1 to extract from

X2 and obtain S2 = Ext(X2,R1). Now we continue

and obtain R2 = Ext(Y,S2) and S3 = Ext(X3,R2)...
.The final output of our merger will be SL = Ext(XL,
RL−1).

To see why this construction works, first assume that

the length of each Si,Ri is small enough. Let j be

the first index in [L] such that Xj is uniform even

conditioned on X′j . Then, we can fix all the inter-

mediate random variables S1,S
′
1,R1,R

′
1,S2,S

′
2,R2,

R′2 . . .Sj−1,S
′
j−1, and conditioned on these fixings we

know that: 1. (Rj−1,R
′
j−1) are deterministic functions

of (Y,Y′), and thus independent of (X,X′); 2. Rj−1

is close to uniform; 3. Xj still has enough entropy
conditioned on X′j . Now, by the first case we discussed

above, this implies that Sj is close to uniform given

S′j . From this point on, by using the second case we

discussed above and an inductive approach, we can

argue that for all subsequent t ≥ j, we have that Rt

is close to uniform given R′t and St is close to uniform

given S′t. Thus the final output SL is close to uniform

given S′L.

Note that this construction can work even if Y is

a very weak random source instead of being uniform

or having high min-entropy rate. However this basic

approach will require the min-entropy of Y to be at least

O(L log(m/ε)), which is pretty large if L is large. We

next describe a way to reduce this entropy requirement,

in the case where Y is uniform or has high min-entropy

rate.

The idea is that, rather than merging the L rows in

one step, we merge them in a sequence of steps, with

each step merging all the blocks of some � rows. Thus,

it will take us roughly logL
log � steps to merge the entire

matrix. Now first assume that Y is uniform, then in each

step we will not use the entire Y to do the alternating

extraction and merging, but just use a small slice of Y
for this purpose. That is, we will first take a small slice

Y1 and use this slice to merge L/� blocks of X, where

each block has � rows; we then take another slice Y2 of

Y and use this slice to merge L/�2 new blocks, where

each block has � rows, and so on. The advantage of

this approach is that now the entropy consumed in each

merging step is contained in the slice Yi (and Y′i), and

won’t affect the rest of Y much.

As we discussed before, we need to make sure that

each slice Yi has min-entropy O(� log(m/ε)) condi-

tioned on the fixing of all previous (Yj ,Y
′
j). As a re-

sult, we need to set |Yi+1| ≥ 2|Yi|+O(� log(m/ε)). It

suffices to take |Yi| = ci� log(m/ε) for some constant

c > 2. We know that the whole merging process is

going to take roughly logL
log � steps, so the total length (or

min-entropy) of Y is something like c
log L
log � � log(m/ε).

We just need to choose a proper � to minimize this

quantity. A simple calculation shows that the best � is

roughly such that log � =
√
logL, which gives us a seed

length of 2O(
√
logL) log(m/ε). This gives us the NIPM

in Theorem 8.

It is not difficult to see that this argument also extends

to the case where Y is not perfectly uniform but has

high min-entropy rate (e.g., 1 − o(1)) where we can

still start with a small slice of Y, and the case where

we have t+1 correlated matrices X,X1, . . . ,Xt and t
tampered seeds Y1, . . . ,Yt of Y.
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B. Non-malleable extractor with almost optimal seed

The NIPM in Theorem 8 is already enough to yield

our construction of a non-malleable extractor with al-

most optimal seed length. Specifically, given an (n, k)
source X, an independent seed Y, and a tampered seed

Y′, we follow the approach of one of the authors’

previous work [10] by first obtaining an advice of length

L = O(log(n/ε)). Let the advice generated by (X,Y)
be S and the advice generated by X,Y′ be S′. We have

that with probability 1−ε, S �= S′. Further, conditioned

on (S,S′) and some other random variables, we have

that X is still independent of (Y,Y′) and Y has high

min-entropy rate.

Now we take a small slice Y1 of Y, and use X and

Y1 to generate a random matrix V with L rows, where

the i’th row is obtained by doing a flip-flop alternating

extraction (introduced in [13]) using the i’th bit of S.

Similarly a matrix V′ is generated using X′ and Y1.

The flip-flop alternating extraction guarantees that each

row in V is close to uniform, and moreover if the i’th
bit of S and S′ are different, then Vi is close to uniform

even given V′i. Note that conditioned on the fixing

of (Y1,Y
′
1), we have that (V,V′) are deterministic

functions of X, and are thus independent of (Y,Y′).
Furthermore Y still has high min-entropy rate.

At this point we can just use our NIPM and Y to

merge V into a uniform string Z, which is guaranteed

to be close to uniform given Z′ (obtained from (V′,
Y′)). The seed length of Y will be O(log(n/ε)) +

2O(
√

log log(n/ε)) log(k/ε). A careful analysis shows

that the final error will be O(ε log(n/ε)). Thus we

need to set the error parameter ε slightly smaller in

order to achieve a desired final error ε′, but that

does not affect the seed length much. Altogether this

gives us a seed length and entropy requirement of

2O(
√

log log(n/ε)) log(n/ε), as in Theorem 1.

C. Further improvements in various aspects

We can further improve the non-malleable indepen-

dence preserving merger and non-malleable extractor in

various aspects. For this purpose, we observe that our

NIPM starts with a basic merger for � rows and then

use roughly logL
log � steps to merge the entire L rows.

If the basic merger uses a seed length of d, then the

whole merger roughly uses seed length c
log L
log � d. In our

basic and simple merger, we have d = O(� log(m/ε)).
However, now that we have our improved NIPM, we can

certainly use the more involved construction to replace

the basic merger, where we only need seed length d =
2O(

√
log �) log(m/ε). Now we can choose another � to

optimize c
log L
log � d, which roughly gives log � = log2/3 L

and the new seed length is 2O(log1/3 L) log(m/ε). We

can now again use this merger to replace the basic

merger. By doing this recursively, we can get smaller

and smaller seed length. On the other hand, the entropy

requirement becomes larger. We can also switch the

roles of the seed and source, and achieve smaller

entropy requirement at the price of a larger seed.

Eventually, we can get d = 2O(
√
log logL) log(m/ε)

and m = O(L22(log logL)O(1)

) log(m/ε), or vice versa.

This gives us Theorem 10. Applying these NIPMs

to non-malleable extractors as outlined above, we get

Theorem 3 and Theorem 4.

D. Independence preserving merger with weak random
seed

We now use our NIPM from Theorem 8 to construct

a standard independence preserving merger with weak

random seed, an object introduced in [20]. Suppose we

are given (X,X′) as described above and an indepen-

dent random variable Y. Here Y can be a very weak

source, so our first step is to convert it to a uniform (or

high min-entropy rate) seed.

To do this, our observation is that since we know

that each row in X is uniform, we can just take a small

slice W of the first row X1, and apply a strong seeded

extractor to Y to obtain Z = Ext(Y,W), which is

guaranteed to be close to uniform. However by doing

this we also created a correlated Z′ = Ext(Y,W′)
where W′ is a slice of X′1. Note that conditioned on

the fixing of (W,W′) we have (X,X′) is independent

of (Z,Z′), each row of X still has high min-entropy,

and the “good” row Xj still has high min-entropy even

given X′j . We now take a small slice V of Z, and use it

to extract from each row of X to obtain another matrix

X. Similarly we also have a slice V′ from Z′ and obtain

X′. We can now argue that conditioned on the fixing of

(V,V′), (X,X′) is independent of (Z,Z′), each row

of X is close to uniform, and the “good” row Xj is

close to uniform even given X′j . Moreover Z still has

high min-entropy rate.

Thus, we have reduced this case to the case of

an independence preserving merger with a tampered

high min-entropy rate seed. We can therefore apply our

NIPM to finish the construction. It is also not difficult

to see that our construction can be extended to the case

where we have X,X1, . . . ,Xt instead of having just X
and X′.

E. Improved multi-source extractor

We can now apply our independence preserving

merger with weak random seed to improve the multi-

source extractor construction in [20]. Our construction

follows the framework of that in [20], except that we

replace their independence preserving merger with ours.
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Essentially, the key step in the construction of [20],

and the only step which takes O(1/δ) independent (n,
log1+δ n) sources (if we only aim at achieving constant

or slightly sub-constant error) is to merge a matrix

with O(log n) rows using (n, log1+δ n) sources. For

this purpose and since the error of the merger needs

to be 1/poly(n), the independence preserving merger

in [20] uses two additional sources in each step to

reduce the number of rows by a factor of logδ n.

Thus altogether it takes 2/δ sources. Our merger as

described above, in contrast, only requires one extra

independent source with min-entropy at least O(log n)+
2O(

√
log logn) log n = log1+o(1) n. Therefore, we obtain

a multi-source extractor for an absolute constant number

of (n, log1+o(1) n) sources, which outputs one bit with

constant (or slightly sub-constant) error.

The improved two-source extractors are obtained

directly by plugging in our improved t-non-malleable

extractors to the constructions in [11], [40].
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Reference Min-Entropy Seed Length

[23] (non-constructive) > 2m+ 2 log(1/ε) + log d+ 6 > log(n− k + 1) + 2 log(1/ε) + 5

[22] > n/2 n

[19], [24], [29] > n/2 O(log(n/ε))

[30] 0.49n n

[10] Ω((log(n/ε))2) O((log(n/ε))2)

[15] Ω(log(n/ε) log((logn)/ε)) O(log(n/ε) log((logn)/ε))

[16] Ω(logn+ (log(1/ε))3) O(logn+ (log(1/ε))3)

Theorem 1 log(n/ε)2Ω(
√

log log(n/ε)) log(n/ε)2O(
√

log log(n/ε))

Theorem 4 log(n/ε)22
Ω(

√
log log log(n/ε)) (log(n/ε))3+o(1)

Theorem 3 (log(n/ε))3+o(1)
log(n/ε)22

O(
√

log log log(n/ε))

Table I
A SUMMARY OF RESULTS ON NON-MALLEABLE EXTRACTORS
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