
Online Algorithms for Covering and Packing
Problems with Convex Objectives

Yossi Azar∗, Niv Buchbinder†, T-H. Hubert Chan‡, Shahar Chen§, Ilan Reuven Cohen†, Anupam Gupta¶,
Zhiyi Huang‡, Ning Kang‡, Viswanath Nagarajan‖, Joseph (Seffi) Naor§, Debmalya Panigrahi∗∗

∗Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel.

Email: {azar@tau.ac.il, ilanrcohen@gmail.com}
†Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv, Israel.

Email: niv.buchbinder@gmail.com
‡Department of Computer Science, The University of Hong Kong, Hong Kong, China.

Email: {hubert,zhiyi,nkang}@cs.hku.hk
§Department of Computer Science, Technion - Israel Institute of Technology, Haifa, Israel.

Email:{shahar.chen11@gmail.com, naor@cs.technion.ac.il}
¶Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

Email: anupamg@cs.cmu.edu
‖Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI 48109, USA.

Email: viswa@umich.edu
∗∗Department of Computer Science, Duke University, Durham, NC 27708, USA.

Email: debmalya@cs.duke.edu

Abstract—We present online algorithms for covering and
packing problems with (non-linear) convex objectives. The convex
covering problem is defined as: minx∈R

n
+
f(x) s.t. Ax ≥ 1, where

f : Rn
+ → R+ is a monotone convex function, and A is an m×n

matrix with non-negative entries. In the online version, a new row
of the constraint matrix, representing a new covering constraint,
is revealed in each step and the algorithm is required to maintain
a feasible and monotonically non-decreasing assignment x over
time. We also consider a convex packing problem defined as:
maxy∈R

m
+

∑m
j=1 yj−g(AT y), where g : Rn

+ → R+ is a monotone
convex function. In the online version, each variable yj arrives
online and the algorithm must decide the value of yj on its arrival.
This represents the Fenchel dual of the convex covering program,
when g is the convex conjugate of f . We use a primal-dual
approach to give online algorithms for these generic problems,
and use them to simplify, unify, and improve upon previous
results for several applications.

Index Terms—online algorithm; convex optimization; primal-
dual algorithm

I. INTRODUCTION

In the area of online algorithms, the method of modeling a

problem as a linear program, obtaining a fractional solution via

This paper presents results independently obtained by Y. Azar, I. R. Cohen,
and D. Panigrahi [1], N. Buchbinder, S. Chen, A. Gupta, V. Nagarajan, and
J. Naor [2], and T.-H. H. Chan, Z. Huang, and N. Kang [3].

Y. Azar and I. R. Cohen are supported in part by the Israel Science
Foundation (grant No. 1506/16), by the I-CORE program (Center No. 4/11),
and by the Blavatnik Fund. N. Buchbinder is supported in part by ISF grant
1585/15 and by BSF grant 2014414. S. Chen and J. Naor are supported in
part by ISF grant 1585/15 and BSF grant 2014414. A. Gupta is supported in
part by NSF awards CCF-1319811, CCF-1536002, CCF-1540541 and CCF-
1617790. D. Panigrahi is supported in part by NSF Awards CCF-1527084 and
CCF-1535972. T-H. H. Chan is supported in part by the Hong Kong RGC
grant 17202715. Z. Huang is supported in part by the Hong Kong RGC grant
17202115.

a primal-dual algorithm, and then rounding it, has proved to be

a very powerful general technique (see [4] for a survey). This

framework is applicable to many central online problems, like

the classic ski rental problem, online set-cover [5], generalized

paging [6], [7], k-server and metrical task systems [8], [9],

graph connectivity [10], [11], routing [12], load balancing and

machine scheduling [13], [14], matching [15], and budgeted

allocation [16]. Via this approach, not only can we unify

previously known results, but we can also resolve important

open questions in competitive analysis. The use of the online

primal-dual method mirrors (and is inspired by) the use of

linear programming relaxations for approximation algorithms,

with one major difference. In the online setting, generic

linear programming solvers cannot be used for even obtaining

a fractional solution, since constraints are presented online.

Hence, new algorithms have been developed for solving linear

programs online [17], [18].

The basic setting of the online primal-dual framework is

grounded on the well-studied covering/packing framework for

combinatorial optimization problems. Covering/packing linear

formulations are a special class of linear formulations in which

all coefficients are non-negative. In a covering problem, the

goal is to minimize a non-negative cost function subject to

non-negative covering constraints. In a packing problem the

goal is to maximize a non-negative profit function subject to

non-negative packing constraints. Packing and covering form

a primal-dual pair – for consistency, we refer to the covering

problem as the primal problem and to the packing problem as

the dual problem, although in some cases, it is the dual packing

problem in which we are interested in. The covering/packing

framework captures a large class of (relaxations) of well-

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.24

147

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.24

148

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.24

148

studied combinatorial problems.

Although extremely successful, the online primal-dual ap-

proach has been mainly studied for linear objective functions.

Yet, what about convex optimization problems? In the offline

setting, the Ellipsoid and interior-point methods can solve

these problems with linear convergence rates. But, online, it

was not known how to solve convex optimization problems

in general prior to this work. In contrast, specific online

problems with non-linear convex/concave objectives have been

studied in recent years, in areas such as energy-efficient

scheduling [19], [20], [21], paging [22], network routing [23],

combinatorial auctions [24], [14], matching [25], and budgeted

allocation [26]. In this paper, we develop a general framework

for a broad class of covering/packing programs with convex

objective functions. The competitive ratios we obtain are

optimal. This already improves and substantially generalizes

previous results for problem classes such as mixed packing

covering LPs considered in [13]. We then show how to round

these fractional solutions online for specific optimization prob-

lems, obtaining improved results for non-linear optimization

problems considered recently in machine scheduling, network

routing, and combinatorial auctions.

A. The Convex Optimization Framework

The next convex covering problem is our primal problem.

min
x∈Rn

+

C(x) := f(x) subject to Ax ≥ 1. (I.1)

Here, f : R
n
+ → R is a convex function and Am×n is a

non-negative matrix. The rows of A, the covering constraints,

arrive online over time. At any point of time we must maintain

a feasible fractional solution x, non-decreasing over time.

This convex program captures, e.g., the mixed covering-

packing problem [13], the machine scheduling and online

routing problems from [23], [20], and the nested set cover

problem [27].

As in solving LPs online, we use a primal-dual technique

where we simultaneously obtain a solution to both primal and

dual programs. In the convex setting, the dual of (I.1) is the

following packing problem:

max
y∈Rm

+ ,z∈Rn
P (y) :=

∑
j∈[m] yj−f�(z) subject to AT y ≤ z.

(I.2)

Here f� is the Fenchel dual or conjugate function of f ,

which is always a convex function∗, and hence another convex

optimization problem. In the online setting, at each step a new

dual variable yi arrives along with its coefficients. The dual

values must be monotone: we fix a value of yi upon arrival

and cannot change it later, in particular in applications where

the dual problem is our focus.

Interestingly, the dual has a natural interpretation of its own,

as the problem of social-welfare maximization with production
costs. Consider a seller who produces and sells items of n
types in a combinatorial market with m buyers. The seller

∗The Fenchel dual function is formally defined in (II.3); see, e.g., [28] for
background and properties.

produces a quantity zj of each item j ∈ [n], at total cost

f�(z). Now, if yj denotes the value obtained from the bundle

of goods assigned to buyer j, and Ay ≤ z captures the

constraints that no item is sold in greater quantities than its

production, then we recover precisely the dual problem. This

social-welfare maximization problem was studied by Blum

et al. [24] and Huang et al. [14] for the “separable” special

case in which the production cost of each item is a univariate

convex function, and the total cost is the sum over the items:

f�(z) =
∑

i f
�
i (zi). This case is somewhat restrictive in that

it does not capture production costs such as energy that are

typically modeled as f�(z) = (
∑

zi)
α for some α > 1. This

is a non-separable function, and so not captured by previous

work, but it falls neatly into our framework.

B. Our Results

Our main theorem for the general online covering/packing

framework is for monotone convex functions with monotone

gradients† (we denote the gradient ∇f). Our primal-dual

approach simultaneously gives us solutions to both the primal

and dual convex programs.

Theorem 1 (Online Convex Covering/Packing Theorem). Let
f : Rn

+ → R+ be a function that is monotone, differentiable,
convex, and ∇f is monotone. Let p = supx≥0

〈∇f(x),x〉
f(x) . Then,

(a) There exists an O(p log d)p-competitive algorithm that
produces a monotone primal solution.

(b) There exists an O(p log(ρd))p-competitive algorithm that
produces a monotone dual solution.

Here d is the maximal row sparsity of the matrix and ρ is
maxj maxi,i′|ai,j �=0{ai′j

aij
}.

The conditions of the theorem are satisfied, for exam-

ple, by convex polynomials of degree p (with non-negative

coefficients). One such example is f(x) = 1
p‖x‖pp, whose

Fenchel conjugate function is f� = 1
q‖x‖qq where 1

p + 1
q = 1.

Intuitively, p bounds the growth of the objective around a given

point and shows the (necessary) effects of discretization of

the feasible region performed by the algorithm. In fact, our

competitive ratios are the best possible for all p: see §III-A.

Observe that the dual result of Theorem 1(b) makes as-

sumptions on the function f and then solves the dual problem

using f�. However, if our goal is to solve the dual problem,

e.g., for social-welfare maximization with production costs,

we can instead impose conditions on the dual cost function

f�, which may yield a better competitive ratio. Indeed, the

assumptions on the primal and the dual yield incomparable

families of convex functions.‡ Our general result in this setting

is the following:

†Function g : Rn → R is monotone if for all x′, x such that x′
i ≥ xi for

all i ∈ [n], g(x′) ≥ g(x). Monotonicity of the objective is clearly necessary,
but that of its gradient is a technical assumption that might be avoidable.

‡ For example, monotonicity of f and ∇f does not imply monotonicity
of ∇f�: e.g., if f(x) = (x1 + x2)2, then f�(z) = max(z21 , z

2
2) which has

non-monotone gradients. Hence, one can use Theorem 1 to solve the dual
problem for this f�, but not Theorem 2.

148149149

Theorem 2 (Online Convex Packing Theorem). Let f� :
R

n
+ → R+ be a convex polynomial function with non-negative

coefficients, zero constant term and maximum degree q. Then,
there exists an O(q)-competitive algorithm for the online
convex packing problem.

This competitive ratio is also optimal, even for the special

case where f� is “separable”, i.e., the sum of single-variate

convex functions f�(z) =
∑

j gj(zj); see [14].

Prior to this work, analogous results for online cover-

ing/packing were only known for linear objectives. Com-

petitive ratios of O(log n) for covering and O(log(ρd)) for

packing were obtained in [17], the covering ratio being sub-

sequently improved to O(log d) in [18]. For linear objec-

tives, Theorem 1 obtains ratios of O(log d) for covering and

O(log(ρd)) for packing, matching the best bounds.

C. Our Techniques

Our algorithm for convex covering and packing (Theorem 1)

is based on a clean unified approach, that significantly sim-

plifies even the well-studied linear case [18]. The value of

the primal variables grows exponentially proportional both to

their current value and their coefficient in the constraint, but

divided by the gradient of f at the current solution. The dual is

increased at a (carefully chosen) linear rate. This update rule

is enough for obtaining the second part of Theorem 1 (which

has a dependence on ρ, a parameter that depends on the matrix

A). But it does not prove the first part, which is independent

of the numbers. To obtain the improved primal result we keep

“shadow duals” that are used to bound the primal cost more

tightly. These dual variables are non-monotone and may be

decreased at certain times. Decreasing the dual variables may

potentially reduce the total dual value being used to bound

the primal cost. However, doing this carefully and maintaining

such “non-monotone” duals is crucial in obtaining the sharp

O(p log d)p competitive ratio.

The algorithm for convex packing (Theorem 2) achieves

a much better competitive ratio when parameterized by the

“smoothness parameter” of the dual cost function f�. This

parametrization is also natural in applications such as welfare

maximization. This algorithm increases duals linearly, while

maintaining primal variables as the gradient of f� at a scaled

dual solution. The primal/dual updates and their analysis are

quite different from those of Theorem 1: this is not surprising

since the two algorithms are intended to perform well for

(roughly) complementary classes of the function f . Moreover,

as noted earlier, there are functions f and f� for which the

guarantees in both Theorem 1 and Theorem 2 are tight.

D. Applications

The general framework captures many existing and new

applications. Due to space limitations, we only give an outline

of these applications here and defer a detailed discussion to

the full version of the paper.

(1) Mixed Covering and Packing LPs. Here we have an

online covering problem, along with K different objective

functions, and the goal is to minimize the p-norm of these

K objective functions. As a direct application of our general

covering framework (Theorem 1(a)), we obtain an O(p log d)-
competitive algorithm for this problem, where d ≤ n is the

row-sparsity of the covering constraint matrix A. This yields

an O(logK log d)-competitive algorithm for minimizing the

maximum constraint (the ∞-norm), improving upon the pre-

vious best bound of O(logK · log(dκγ)) [13], where γ and

κ are the max-to-min ratio of the entries in the covering and

packing constraints respectively. For p-norms of the objective

functions, no previous bound was known.

While our framework is designed for obtaining fractional

solutions, it also yields new results for discrete problems via

online rounding. Several examples follow.

(2) Social Welfare Maximization with Production Costs. As

an application of our packing framework, we consider social

welfare maximization in combinatorial auctions with produc-

tion costs. For the problem with arbitrary valuation functions

(assuming access via demand oracles), where the production

cost function is allowed to be any convex degree-q polynomial

production cost function with non-negative coefficients, we get

an algorithm which is O(q)-competitive, with an additive loss

in the social welfare that depends only on the production cost

functions (but is independent of the number of buyers). [14]

considered the separable case and characterized the optimal

competitive ratio of any given cost function via a differential

equation. For the special case of polynomial cost functions xq ,

[14] explicitly solved the differential equation and obtained a

competitive ratio of 4q. Our results in this paper, applying to

the special case of separable degree-q polynomial functions,

essentially gives the same algorithm and a competitive ratio of

O(q) §, matching the results of [14] asymptotically. We stress

that the results in this paper applies to the much more general

non-separable cost functions.

(3) Unrelated Machine Scheduling with Startup Costs. In

this problem, a set of n jobs arriving online have to be

scheduled on m machines, where machine i has startup
cost ci and can run job j in processing time pij . The goal

is to assign each job to a machine so as to simultane-

ously minimize the p-norm of the overall machine loads

and the total startup cost of machines used. For this prob-

lem, we obtain an (O(logm log(mn)), O(p2 log1/p(mn)))
bicriteria competitive ratio,¶ which is almost tight. For

the special case of total load (the 1-norm), we obtain a

tighter bound of (O(logm log n), O(1)). For the special case

of the ∞-norm (maximum load or makespan), the best

competitive ratio previously obtained using tools specific

to this case was (O(logm log(mn)), O(logm)) [13] while

our general framework yields a slightly worse bound of

§We have not optimized the constants for specific polynomials, as our focus
has been on getting a general positive result for a large family of cost functions

¶A bi-criteria competitive ratio of (α, β) implies that the online algorithm
produces a schedule of expected startup cost at most αC and expected p-
norm of machine loads at most βL, if there exists a feasible solution with
startup cost C and p-norm of loads L.

149150150

(O(logm log(mn)), O(log2 m(log n)1/ logm)).‖ For all other

p-norms, including the 1-norm, no previous result was known,

not only in the online setting but also offline [29], [30], [31].

(4) Capacity Constrained Facility Location (CCFL). We

are given m potential facility locations, each with an opening

cost ci and a capacity ui. Now, n clients arrive online, each

client j ∈ [n] having an assignment cost aij and a demand

bij for each facility i ∈ [m]. The online algorithm must open

facilities (paying the opening costs ci) and assign each arriving

client j to an open facility i (paying the assignment cost aij ,

and incurring a load pij on facility i). The congestion of an

assignment is the maximum load on any facility. The objective

in CCFL is to simultaneously minimize the sum of opening

costs and assignment costs, and the maximum congestion

of any facility. We obtain an O(log2 m logmn)-competitive

randomized online algorithm. This competitive ratio is worse

by a logarithmic factor than the best result known [13], but

follows easily from our general framework.

(5) Capacitated Multicast Problem (CMC). This is a com-

mon generalization of CCFL and the online multicast prob-
lem [10]. There are m edge-disjoint rooted trees T1, · · · , Tm

corresponding to multicast trees in some network. Each tree Ti

has a capacity ui, and each edge e ∈ ∪m
i=1Ti has an opening

cost ce. A sequence of n clients arrive online, and each must

be assigned to one of these trees. Each client j has a tree-

dependent load of pij for tree Ti, and is connected to exactly

one vertex πij in tree Ti. Thus, if client j is assigned to tree

Ti then the load of Ti increases by pij , and all edges on the

path in Ti from πij to its root must be opened. The objective

is to minimize the total cost of opening the edges, subject

to the capacity constraints that the total load on tree Ti is at

most ui. Solving a natural fractional convex relaxation, and

then applying a suitable randomized rounding to it, we get an

O(log2 m logmn)-competitive randomized online algorithm

that violates each capacity by an O((d + log2 m) logmn)
factor; here d is the maximum depth of the trees {Ti}mi=1.

The capacitated multicast problem with depth d = 2 trees

generalizes the CCFL problem, in which case we recover the

above result for CCFL.

(6) Online Set Cover with Set Requests (SCSR). We are

given a universe U of n resources, and a collection of m
facilities, where each facility i ∈ [m] is specified by (i) a

subset Si ⊆ U of resources (ii) opening cost ci and (iii)

capacity ui. The resources and facilities are given up-front.

Now, a sequence of k requests arrive over time. Each request

j ∈ [k] requires some subset Rj ⊆ U of resources. The request

has to be served by assigning it to some collection Fj ⊆ [m] of

facilities whose sets collectively cover Rj , i.e., Rj ⊆ ∪i∈FjSi.

Note that these facilities have to be open, and we incur their

opening cost. Moreover, if facility i is used to serve client j,

this contributes to the load of facility i, and this total load

must be at most the capacity ui. This problem was considered

‖Note that the (logn)1/ logm is a superconstant only if n is super-
exponential in m. So, for polynomial instances, the competitive ratio is
(O(logm log(mn)), O(log2 m)), which only has an additional logm term
in the competitive ratio of the makespan compared to [13].

recently by Bhawalkar et al. [27]. Using an approach identical

to that for the CCFL problem, we get an O(log2 m logmnk)-
competitive randomized online algorithm that violates each

capacity by an O(log2 m logmnk) factor. Again this factor is

weaker than the best result known by a logarithmic factor, but

directly follows from our general framework.

II. PRELIMINARIES

For a positive integer n, we denote [n] := {1, 2, . . . , n}.
We use x to denote a column vector. For two vectors a and

b of the same dimension, we write a ≥ b if each coordinate

of a is at least the corresponding coordinate of b. We use

〈a, b〉 = aᵀb to denote the dot product of a and b. Let 0 and

1 denote the all zero’s and all one’s vectors, respectively. A

function g : Rn
+ → R

m
+ is monotone if a ≤ b implies that

g(a) ≤ g(b). For i ∈ [n], we use ei to denote the unit vector

whose ith coordinate is 1.

Fenchel Conjugate: Given a function f : Rn
+ → R+, its

Fenchel conjugate f� : Rn
+ → R+ is defined as

f�(z) = sup
x∈Rn

+

{〈x, z〉 − f(x)
}
. (II.3)

It is well known (e.g., [28]) that the supremum is achieved at

a gradient of f , and thus 〈x, z〉 − f(x) is the negative of the

y-intercept of a hyperplane that passes through point x and has

gradient z. The Fenchel conjugate can also be interpreted as

representing f by a function that relates slopes of tangents to

their y-intercept. As an example, if f(x) = 1
px

p is a degree-p

polynomial (p > 1), then f�(z) = (1 − 1
p)z

p
p−1 is a degree-

p
p−1 polynomial. For the rest of this paper, we will focus on

the following type of functions f .

Assumption 3 (Nice function). Function f : Rn
+ → R+ is

convex, monotone, differentiable, and f(0) = 0.

In this case, the conjugate function f� satisfies the following

properties:

1) The conjugate f� is non-negative, monotone, convex, and

f�(0) = 0.

2) If f is lower semi-continuous, f�� = f .

We will use the following properties of nice functions.

Lemma 4 (Bounded Growth). Suppose that function f sat-
isfies Assumption 3 and there is some p ≥ 1 such that
〈∇f(x), x〉 ≤ p · f(x) for all x ∈ R

n
+. Then, the following

statements hold.
(a) For δ ≥ 1, for x ∈ R

n
+, f(δx) ≤ δpf(x).

(b) For all x ∈ R
n
+, f�(∇f(x)) = 〈x,∇f(x)〉 − f(x) ≤

(p− 1) · f(x).
(c) If p > 1 then for any 0 < γ ≤ 1, z ∈ R

n
+, f�(γz) ≤

γ
p

p−1 · f�(z) and f�(γ · ∇f(z)) ≤ γ
p

p−1 · (p− 1) · f(z).
(d) If p = 1 then for any 0 < γ ≤ 1, z ∈ R

n
+, f�(γ ·

∇f(z)) ≤ 0.

Proof. For statement (a), define the function g : [1,+∞)→ R

by g(θ) := ln f(θx). Then, g′(θ) = 〈∇f(θx),x〉
f(θx) ≤ p

θ , where

the last inequality follows because 〈f(θx), θx〉 ≤ pf(θx).

150151151

Integrating over θ ∈ [1, δ] gives g(δ) − g(1) ≤ p ln δ, which

is equivalent to f(δx) ≤ δpf(x).
For statement (b), observe that f�(∇f(x)) =

supw∈Rn
+
h(w), where h(w) := 〈w,∇f(x)〉 − f(w).

Hence, ∇h(w) = ∇f(x) − ∇f(w). Since f is a convex

function, h is a concave function. Also ∇h(x) = 0. It

follows that the (global) supremum of h is at w = x, and so

f�(∇f(x)) = 〈x,∇f(x)〉−f(x). This is at most (p−1)·f(x)
from the assumption on f .

For statement (c), for 0 < γ ≤ 1, let δ := (1γ)
1

p−1 ≥ 1,

f�(γz) = sup
x∈Rn

+

{〈x, γz〉 − f(x)}

= γ
p

p−1 sup
x∈Rn

+

{〈δx, z〉 − δpf(x)}

≤ γ
p

p−1 sup
x∈Rn

+

{〈δx, z〉 − f(δx)}

= γ
p

p−1 f�(z) ,

where the inequality follows from statement (a). This proves

the first part of (c). The second part follows by combining this

with (b).

For statement (d), we have p = 1 and:

f�(γ · ∇f(z)) = sup
x∈Rn

+

{〈x, γ · ∇f(z)〉 − f(x)}

≤ γ · sup
x∈Rn

+

{〈x,∇f(z)〉 − f(x)}

= γ · f�(∇f(z)) ≤ 0

The first inequality is since f ≥ 0 and γ ≤ 1, and the second

inequality is by part (b).

Convex Covering/Packing Framework: We consider the

following convex covering problem:

min
x∈Rn

+

C(x) := f(x) subject to Ax ≥ 1. (II.4)

Above, f : R
n
+ → R is a monotone convex function and

Am×n is non-negative. Let f� be the Fenchel dual function

of f . The (Fenchel) dual problem of (II.4) is the following

packing problem∗∗:

max
y∈Rm

+

P (y) :=
∑

j∈[m] yj − f�
(
AT y

)
. (II.5)

For definitions of the online versions of the pack-

ing/covering problems, see the Introduction. The following

lemma is a standard weak duality result.

Lemma 5 (Weak Duality). For any x ∈ R
n
+ such that Ax ≥ 1

and any y ∈ R
m
+ , we have C(x) ≥ P (y), which holds even if

f is not convex.

Proof. Let x, y be feasible solutions to problems (II.4) and

(II.5) respectively. Then,

f(x) ≥ f(x) + yt (1−Ax)

∗∗Variable z appearing in (I.2) is redundant here.

=
∑
j∈[m]

yj −
(
xtAT y − f(x)

)
≥

∑
j∈[m]

yj − sup
x∈Rn

+

(
xtAT y − f(x)

)
=

∑
j∈[m]

yj − f�
(
AT y

)
.

The first inequality follows by the feasibility of x and since

y ≥ 0. The second inequality follows as x ≥ 0.

III. ONLINE COVERING FRAMEWORK

We give here a primal-dual algorithm for the online convex

packing/covering problem, and prove Theorem 1. The algo-

rithm is presented in Figure III and is very simple; in fact, even

simpler than the optimal algorithm for the linear case [18].

Let x denote the primal solution and y the dual solution.

The algorithm is presented in Figure III. The primal update

rule is particularly simple (see the first three steps): effectively,

it is a multiplicative increase in the primal variables, where

the rate of increase of xi is inversely proportional to the ith

coordinate of the gradient at x. The dual update in Step 4 is

just as simple: it increases the current dual variable at constant

rate; here 0 < δ < 1 is a parameter which we optimize later.

The monotonicity of the dual is immediate.

Finally, we also maintain “shadow dual” variables denoted

by z in Step 5 which are used only for the primal analysis.††

Note that this step both increases some shadow duals and

decreases others. This non-monotonicity of the shadow dual

is essential for proving the primal bound in Theorem 1(a).

For the analysis, we denote by xτ , yτ , · · · the values of

the variables at time τ . Let x be the final value of x at the

end of the execution. We first analyze the algorithm with the

more complex update step 5 and then state the minor changes

required to analyze the dual.

Observation 6 (Feasible Solutions). The algorithm maintains
a feasible monotonically non-decreasing primal solution x.
Also, the duals y and z are both feasible.

To analyze the competitive ratio we first state the following

claim whose proof is deferred to the full version of the paper.

Claim 7 (Lower-bounding x variables). For a variable xi, let
Ti = {j | aji > 0} and let Si be any subset of Ti. If the
current dual variable zk increases at rate r (and other dual
variables may decrease), then

xτ
i ≥

1

maxj∈Si{aji} · d

⎛⎝exp

⎛⎝ 1

r · ∇if(x)

∑
j∈Si

ajiz
τ
j

⎞⎠− 1

⎞⎠ .

(III.7)

Proof of Theorem 1. First, we prove the competitive ratio of

the primal algorithm. For this, we first claim that for any time

τ , the variables z satisfy Atz ≤ δ∇f(x), i.e. for each i,∑k
j=1 ajiz

τ
j ≤ δ∇if(x). Indeed, while processing constraint

††The shadow variables z are unrelated to the z-variables in (I.2).

151152152

Fractional Algorithm: When the kth request
∑n

i=1 akixi ≥ 1 arrives:

1) Let τ be a continuous variable denoting the current time.

2) While the new constraint is unsatisfied, i.e.,
∑n

i=1 akixi < 1, increase τ at rate 1 and:

3) Change primal variables:
• For each i with aki > 0, increase each xi at rate

∂xi

∂τ
=

aki xi +
1
d

∇if(x)
. (III.6)

Here d is an upper bound on the row sparsity of the matrix and ∇if(x) is the ith-coordinate of the gradient ∇f(x).
4) Change dual variables:

• Increase yk at rate w = δ
log(1+d·ρ) . Here ρ is an upper bound on the maximum-to-minimum ratio of positive entries in

any column of A.

5) Change “shadow” dual variables (only for primal analysis):
• Increase zk at rate r = δ

log(1+2d2) .

• If for variable xi we have
∑k

j=1 ajizj = δ · ∇if(x), then

– Let m�
i = argmaxkj=1{aji | zj > 0}.

– Increase zm�
i

at rate − aki

am�
i
i
· r. (Note: this change occurs only if aki is strictly positive.)

Fig. III.1. Algorithm for Convex Covering

k, if
∑k

j=1 ajiz
τ
j < δ · ∇if(x) for column i we are trivially

satisfied. Suppose that during the processing of constraint k,

we have
∑k

j=1 ajiz
τ
j = δ∇if(x) for some dual constraint i

and time τ . Now the dual decrease part of the algorithm kicks

in, and the rate of increase in the left-hand side of the dual

constraint is at most:

d

dτ

⎛⎝ k∑
j=1

ajiz
τ
j

⎞⎠ = aki · r − am�
i i
· aki
am�

i i
· r = 0.

Now consider the update when primal constraint k arrives

and τ is the current time. Let U(τ) denote the set of indices i
for which we have aki > 0 and

∑k
j=1 ajiz

τ
i = δ∇if(x). So

|U(τ)| ≤ d, the row-sparsity of A. Moreover, define Si := {j |
aji > 0, zτj > 0} for every i ∈ U(τ). Clearly,

∑
j∈Si

ajiz
τ
j =∑k

j=1 ajiz
τ
j = δ · ∇if(x). Plugging in r = δ

ln(1+2d2) into

Claim 7, and using the fact that
∑

i akix
τ
i < 1, we get for

every i ∈ U(τ),

1

aki
> xτ

i ≥
1

maxj∈Si{aji} · d
(
exp

(
ln(1 + 2d2)

)− 1
)
,

and after simplifying we get aki

am�
i
i
= aki

maxj∈Si
{aji} ≤ 1

2d . As a

result, we can bound the rate of change in the dual expression∑k
j=1 zj at any time τ :

d
(∑k

j=1 zj

)
dτ

= r −
∑

i∈U(τ)

aki
am�

i i
· r

≥ r

⎛⎝1−
∑

i∈U(τ)

1

2d

⎞⎠ ≥ 1

2
r (III.8)

where the last inequality follows as |U(τ)| ≤ d. On the other

hand, when processing constraint k during the execution of

the algorithm, the rate of increase of the primal objective f
is:

df(xτ)

dτ
=

∑
i

∇if(x
τ)

∂xτ
i

∂τ
=

∑
i|aki>0

∇if(x
τ)

(
akix

τ
i + 1

d

∇if(xτ)

)

=
∑

i|aki>0

(
akix

τ
i +

1

d

)
≤ 2. (III.9)

The final inequality uses the fact that the covering constraint

is unsatisfied, and that d is at least the number of non-zeroes

in the vector ak. From (III.8) and (III.9) we can now bound

the following primal-dual ratio:

d
(∑k

j=1 z
τ
j

)
df(xτ)

≥ r

4
=

δ

4 ln (1 + 2d2)
. (III.10)

Thus, if z is the final dual solution we get,
m∑
i=1

zi ≥ δ

4 ln (1 + 2d2)
· f(x). (III.11)

To complete the proof of Theorem 1, we use Lemma 4. We

have for any 0 ≤ δ ≤ 1:

f∗(Atz) ≤ f∗(δ·∇f(x)) ≤
{

δ
p

p−1 · (p− 1) · f(x) if p > 1
0 if p = 1

The first inequality is by monotonicity of f� and our claim

that Atz ≤ δ∇f(x). The second inequality is by Lemma 4

parts (c-d). Combining with (III.11), D =
m∑
i=1

zi−f∗(Atz) ≥
(

δ

4 ln (1 + 2d2)
− δ

p
p−1 · (p− 1)

)
·f(x)

if p > 1, and D ≥ δ
4 ln(1+2d2)f(x) if p = 1. The optimal

choice of δ is 1
(4p ln(1+2d2))p−1 . Plugging in this value we get:

f(x) ≤ (
4p ln

(
1 + 2d2

))p
D ≤ (

4p ln
(
1 + 2d2

))p
f(OPT).

152153153

Hence the proof of the primal algorithm.

Next, we prove the primal-dual competitive ratio using the

monotone dual update in step 4. Applying Claim 7 with w =
δ

ln(1+dρ) (instead of r) with the final (feasible) primal and dual

solutions x, y and with Si := {j | aji > 0} to get

xi ≥ 1

maxj∈Si{aji} · d

⎛⎝exp

⎛⎝ ln (1 + dρ)

δ · ∇if(x)

∑
j∈Si

ajiyj

⎞⎠− 1

⎞⎠
.

Note that xi ≤ 1
minj∈Si

{aji} (since all constraints that contain

xi would be satisfied at the upper bound). Simplifying and

using that ρ ≥ maxj∈Si
{aji}

minj∈Si
{aji} we get,

∑
j∈Si

ajiyj ≤ δ·∇if(x),

or equivalently Aty ≤ δ · ∇f(x). Using the same arguments

as above we get,
∑m

i=1 yi ≥ δ
2 ln(1+dρ) · f(x). Plugging it in

we get,

D =

m∑
i=1

yi − f∗(Aty)

≥
(

δ

2 ln (1 + d · ρ) − δ
p

p−1 · (p− 1)

)
· f(x).

Optimizing, we get δ = 1
(2p ln(1+d·ρ))p−1 yielding a competi-

tive ratio O(p log(dρ))p for the dual.

A. A Lower Bound for Online Convex Covering

In this section we adapt the example in Azar et al. [13]

for the �∞ norm to the �p norm and showing that our

competitive ratio for the convex covering problem is optimal

up to constants.

Theorem 8 (Lower bound for �pp-norm objective function).
There exists an instance of the online covering problem with an
�pp-norm objective function f for which any online algorithm
is Ω(p log d)p-competitive, where d is the maximal sparsity of
the covering matrix.

Proof. For parameters p and d, the example has 2p+1 − 2
pairwise disjoint sets (blocks) of d variables each. We use

Bi to refer to the ith block. The objective function f is a

polynomial of degree p composed of 2p sums of variables

each raised to the power of p. To define the sums let us

consider a complete binary tree of depth p. Each node in this

tree except the root corresponds to a unique block. Each term

in f corresponds to a path from the root to a leaf node k,

and is of the form
(∑

x∈∪i∈Qk
Bi

x
)p

where Qk is the set of

blocks encountered on the path (excluding the root, which is

not a block).

In [13], there is a procedure for revealing covering con-

straints of sparsity at most 2d of two blocks such that:

• the sum of variables in the online algorithm for one of

the blocks is at least Hd/2, where Hd refers to the dth

harmonic number, and

• there is a feasible solution that sets a single variable in

the other block to 1.

First, we apply the procedure to the two children of the root.

Next, the procedure is applied to the children of the block

with the larger sum of variables (≥ Hd/2) in the algorithmic

solution. This continues until we reach one of the leaves. Then,

there is path from root to leaf where p blocks each have a total

variable value of at least Hd/2 in the algorithmic solution. On

the other hand, the optimal solution only sets one variable to

1 in each root to leaf path. Therefore, the competitive ratio of

the algorithm is at least

(
p

Hd
2

)p

2p = Ω(p log d)p.

B. An Application: �p-norm Set Cover

In this section we consider a generalization of the online set-

cover problem introduced in [5]. In our problem we are given

n sets {Sj}nj=1 over some ground set U . Apart from the set

system, we are also given K cost functions bk : [n]→ R+ for

k ∈ [K]. Elements from U arrive online and must be covered

by some set upon arrival; the decision to select a set into the

solution is irrevocable. The goal is to maintain a set-cover

that minimizes the �p norm of the K cost functions. We use

the above fractional online algorithm along with a rounding

scheme (similar to [23]) to obtain the following.

Theorem 9 (�p-norm Set Cover). There is an
O
(

p3

log p log d log r
)

-competitive randomized online algorithm
for set cover minimizing the �p-norm of multiple cost-
functions. Here d is the maximum number of sets containing
any element, and r = |U | is the number of elements.

Proof. We use the following convex relaxation. There is a

variable xj for each set j ∈ [n] which denotes whether this

set is chosen.

min f(x) =
K∑

k=1

(n∑
j=1

bkj · xj

)p

+
n∑

j=1

(K∑
k=1

bpkj

)
· xj

s.t.
∑

j:e∈Sj

xj ≥ 1, ∀e ∈ U

x ≥ 0.

Since f satisfies 〈∇f(x), x〉 ≤ p f(x), we can use our frame-

work to solve this fractional convex covering problem online,

with a cost at most O(p log d)p times the optimal fractional

solution. Moreover, if C� denotes the pth power of the optimal

value of the objective of the given set cover instance, then the

optimal value of the above fractional relaxation is at most

2C�, and hence the value of our fractional online solution x
is f(x) = O(p log d)p · C�.

To get an integer solution, we use a simple online ran-

domized rounding algorithm. For each set j ∈ [n], define

Xj to be a {0, 1}-random variable with Pr[Xj = 1] =
min{4p log r · xj , 1}. This can easily be implemented online.

It is easy to see by a Chernoff bound that for each element e,

it is not covered with probability at most 1
r2p . If an element e

is not covered by this rounding, we choose the set minimizing

minnj=1{
∑K

k=1 b
p
kj : e ∈ Sj}; let e ∈ [n] index this set and

Ce =
∑K

k=1 b
p
ke. Observe that Ce ≤ C� for all e ∈ U .

To bound the �p-norm of the cost, let Ck =
∑n

j=1 bkj ·Xj

be the cost of the randomly rounded solution under the kth

153154154

cost function, and let C :=
∑K

k=1 C
p
k . Also, for each element

e ∈ U and k ∈ [K], define:

Dek =

{
bke If e is not covered

0 Otherwise.

De =

{
Ce If e is not covered

0 Otherwise.

Note that De =
∑K

k=1 D
p
ek. The pth power of the objective

function is:

C =

K∑
k=1

(
Ck +

∑
e∈U

Dek

)p

≤ 2p
K∑

k=1

Cp
k + 2p

K∑
k=1

(∑
e∈U

Dek

)p

≤ 2p · C + 2p
K∑

k=1

rp
∑
e∈U

Dp
ek

= 2p · C + (2r)p
∑
e∈U

De (III.12)

We now bound E[C] using (III.12). Observe that E[Ck] ≤
4p log r ·∑n

j=1 bkj · xj . Since each Ck is the sum of inde-

pendent non-negative random variables, we can bound E[Cp
k]

using a concentration inequality involving pth moments [32]:

E[Cp
k] ≤ Kp ·

(
E[Ck]

p +
n∑

j=1

E[bpkj ·Xp
j]

)

≤ Kp ·
(
(4p log r)p

(n∑
j=1

bkj · xj

)p

+ 4p log r
n∑

j=1

bpkj · xj

)
.

Above Kp = O(p/ log p)p. By linearity of expectation,

E[C] =

K∑
k=1

E[Cp
k]

≤ Kp(4p log r)
p

K∑
k=1

((n∑
j=1

bkj · xj

)p

+
n∑

j=1

bpkj · xj

)
= Kp(4p log r)

p · f(x).

Thus we have E[C] = O
(

p3

log p · log d · log r
)p

· C�.

Observe that E
[∑

e∈U De

]
=

∑
e∈U Pr[e uncovered] ·

Ce ≤ r−2p ·∑e∈U C� = r1−2p · C�. Using these bounds

in (III.12), we have E[C] ≤ 2p ·E[C] + (2r)p
∑

e∈U E[De] =

O
(

p3

log p · log d · log r
)p

· C�.

IV. ONLINE PACKING FRAMEWORK

In this section, we consider the convex online packing

problem. We consider the case that f� is a convex multi-variate

polynomial with non-negative coefficients, zero constant term

and maximum degree q. We shall state exactly what properties

of f� are needed for our proofs. Although there are more

Fractional Packing Algorithm: Initialize x := z := 0. When

the kth constraint vector ak = (ak1, . . . , akn) arrives in round

k:

1) Set yk := 0.

2) While
∑n

i=1 akixi < 1, do:

• Continuously increase yk.

• Simultaneously for each i ∈ [n], increase zi at rate
dzi
dyk

= aki.
• Increase x according to x = ∇f∗(ρz).

Fig. IV.2. Algorithm for super-linear f�

general objective functions for which our packing algorithm

can work (for instance f�(z) =
∑n

i=1 z
1.5
i), we think that for

ease of exposition, it is simpler to restrict ourselves to the case

of polynomials (with integral degrees).

The reader can check that the special class of polynomials

we describe above satisfy the first two conditions in the

following Assumption 10.

Assumption 10 (Nice function f�). 1) The function f� is
convex, monotone, and f�(0) = 0.

2) The function f� is differentiable, and the gradient ∇f�

is monotone. Moreover, there is some q > 0 such that for
all z ∈ R

n
+, 〈∇f�(z), z〉 ≤ q · f�(z)

3) The offline convex packing problem has bounded optimal
objective. ‡‡

We first obtain an algorithm for the special case when f�

is “super-linear”, which means, in addition to Assumption 10,

suppose the packing cost function f� satisfies the following

condition. There exists some λ > 1 such that for all ρ ≥ 1,

for all z ∈ R
n
+, ∇f�(ρz) ≥ ρλ−1 · ∇f�(z).

Here, the vector x plays an auxiliary role and is initialized

to 0. Throughout the algorithm, we maintain the invariant

z = AT y and x = ∇f�(ρz) for some parameter ρ > 1
to be determined later. In round k ∈ [m], the vector ak =
(ak1, ak2, . . . , akn) is given. The variable yk is initialized to

0, and is continuously increased while
∑

i∈[n] akixi < 1. To

maintain z = AT y, for each i ∈ [n], zi is increased at rate
dz
dyk

= aki. As the coordinates of z are increased, the vector

x is increased according to the invariant x = ∇f�(ρz). Since

∇f� is monotone, as yk increases, both z and z increase mono-

tonically. We show in Lemma 11 that unless the offline packing

problem is unbounded, eventually
∑

i∈[n] akixi reaches 1, at

which moment yk stops increasing and round k finishes.

Observe that the coordinates of x are increased monotoni-

cally throughout the algorithm. Below we show that at the end

of the process, the constraints
∑

i∈[n] ajixi ≥ 1 are satisfied

‡‡Note that there are instances for which the offline convex packing
problem whose objective can be arbitrarily large. Consider, for example, a
convex packing problem with a linear cost function f�(z) = 1

2n

∑
i∈[n] zi

and the first request is a1 = 1. Then, by letting y1 to be arbitrarily large,
we can get a feasible packing assignment with arbitrarily large objective.
Obviously, such instances are not interesting for practical purposes. Hence,
we will assume that the offline optimal is bounded.

154155155

for all j ∈ [m]. Hence, the vector x is feasible for the covering

problem.

In the rest of the section, for k ∈ [m], we let z(k) denote

the vector z at the end of round k, where z(0) := 0.

Lemma 11 (Dual Feasibility). Recall our assumption that the
offline optimal packing objective is bounded. Then, in each
round k ∈ [m], eventually we have

∑
i∈[n] akixi ≥ 1, and yk

will stop increasing.

Proof. During round k ∈ [m], the algorithm increases yk only

when
∑n

i=1 akixi < 1. Therefore, recalling z = AT y, when

the algorithm increases yk, it also increases each zi at rate
dzi
dyk

= aki.
Hence, we have

∂P (y)
∂yk

= 1− 〈ak,∇f�(z)〉 ≥ 1− 1
ρλ−1 · 〈ak,∇f�(ρz)〉

= 1− 1
ρλ−1 · 〈ak, x〉 ≥ 1− 1

ρλ−1 ,

where the first inequality follows from the assumption

∇f�(ρz) ≥ ρλ−1 · ∇f�(z), and the last inequality follows

because 〈ak, x〉 < 1 when yk is increased.

Therefore, suppose for contrary that 〈ak, x〉 never reaches

1, then the objective function P (y) increases at least at some

positive rate 1 − 1
ρλ−1 (recalling ρ > 1 and λ ≥ 2) as

yk increases, which means the offline packing problem is

unbounded, contradicting our assumption.

Lemma 12 (Bounding Increase in y). For k ∈ [m], let z(k)

denote the vector z at the end of round k, where z(0) := 0.
Then, at the end of round k when yk stops increasing (by
Lemma 11)

yk ≥ 1
ρ ·

(
f�(ρz(k))− f�(z(k−1))

)
.

In particular, since f�(0) = 0, this implies that at the end of
the algorithm, ∑

k∈[m]

yk ≥ 1
ρ · f�(ρz(m)) .

Proof. Recall again that yk increases only when 〈ak, x〉 < 1,

we have

1 ≥
∑
i∈[n]

akixi =
∑
i∈[n]

xi · dzi
dyk

.

Hence, integrating this with respect to yk throughout round k,

and observing that x = ∇f�(ρz), we have

yk ≥
∫ z(k)

z=z(k−1)

〈∇f�(ρz), dz〉 = 1

ρ
·(f�(ρz(k))−f�(z(k−1))) ,

where the last equality comes from the fundamental theorem

of calculus for path integrals of vector fields.

Lemma 13 (Super-linear f�). For a super-linear function f�,
by setting ρ := λ

1
λ−1 in the Fractional Packing Algorithm, we

obtain an O
(

qλ
λ−1

)
-competitive online algorithm for the online

convex packing problem.

Proof. Suppose z(m) = AT y is the vector at the end of the

algorithm, and x(m) = ∇f�(ρz(m)). Then, we have

C(x(m)) = f(∇f�(ρz(m))) ≤ (q − 1) · f�(ρz(m)) ,

where the inequality follows from applying Lemma 4(c) with

the roles of f and f� reversed.

On the other hand,

P (y) =
∑

k∈[m] yk − f�(z(m)) ≥ 1
ρ · f�(ρz(m))− f�(z(m)) .

(IV.13)

Hence, it follows that

C(x)

P (y)
≤ (p− 1) · f∗(ρz(m))

1
ρ · f∗(ρz(m))− f∗(z(m))

(IV.14)

≤ (p− 1) · ρλ · f∗(z(m))
1
ρ · ρλ · f∗(z(m))− f∗(z(m))

(IV.15)

= (p− 1) · ρλ

ρλ−1 − 1
(IV.16)

where the penultimate inequality follows because the assump-

tion ∇f�(ρz) ≥ ρλ−1 · ∇f�(z) implies that f�(ρz(m)) =

ρ
∫ z(m)

z=0
〈∇f�(ρz), dz〉 ≥ ρλ

∫ z(m)

z=0
〈∇f�(z), dz〉 = ρλ ·

f�(z(m))), and the function t �→ t
t
ρ−f�(z(m))

is decreasing.

Choosing ρ := λ
1

λ−1 and observing that x(m) is feasible for

the covering problem, we have

P opt

P (y)
≤ Copt

P (y)
≤ C(x(m))

P (y)
≤ (q − 1) · λ

λ
λ−1

λ− 1
.

The result then follows because λ
1

λ−1 =
(
1 + (λ− 1)

) 1
λ−1 ≤

e.

Then we discuss the a general function f� that satisfies

Assumption 10. Recall that we consider a polynomial f� with

non-negative coefficients and zero constant term. Hence, we

apply the following transformation f�(z) = 〈c, z〉 + f̂�(z),
where c = ∇f�(0). Observe that f̂�(z) no longer has linear

terms, thus the second condition of Lemma 13 always holds

with λ = 2 (and hence ρ = 2).

Lemma 14 (f̂∗ has bounded growth and is superlinear.). We
have the following.
• For all z ∈ R

n
+, 〈∇f̂∗(z), z〉 ≤ q · f̂∗(z).

• For all ρ ≥ 1 and z ≥ 0, ∇f̂�(ρz) ≥ ρ · ∇f̂�(z).

Proof. To prove the first statement, we can pick any non-zero

term M in f̂∗. Since the coefficient of M is positive and its

degree is at most q, it follows that 〈∇M(z), z〉 ≤ q ·M(z).
Therefore, summing up all the terms, we get 〈∇f̂∗(z), z〉 ≤
q · f̂∗(z).

For the second statement, if f̂∗ is the zero function,

then the statement trivially holds. Otherwise, observe that

in f̂∗(x), only terms with degree at least 2 can have non-

zero coefficients. Therefore, for z ≥ 0 and ρ ≥ 1, we have

∇f̂�(ρz) ≥ ρ · ∇f̂�(z), i.e., the condition in Lemma 13 is

satisfied with λ = 2.

155156156

In terms of f̂∗, the objective function becomes

P (y) = 〈1, y〉 − f�(AT y) = 〈1−Ac, y〉 − f̂�(AT y) .

Moreover, the corresponding covering problem becomes

minx≥0 f̂(x) subject to Ax ≥ 1 − Ac. In other words, in

round k ∈ [m], as the vector ak arrives, the covering constraint

becomes 〈ak, x〉 ≥ bk, where bk := 1−〈ak, c〉. If bk ≤ 0, then

the constraint is automatically satisfied, and we set yk = 0
such that round k finishes immediately. Otherwise, we can

run the Fractional Packing Algorithm using the function f̂�

and the constraint vector ak

bk
in round k.

Next, we present a proof of Theorem 2 based on the above

discussion.

Proof of Theorem 2: As discussed above, we write c :=
∇f�(0) and f̂�(x) := f�(x)− 〈c, x〉 as the convex function.

(Observe that if f� is a polynomial function containing only

linear terms, then the problem is trivial because the objective

is unbounded when there is some round k ∈ [m] such that

bk > 0.)

For ease of exposition, we can assume that for each k ∈ [m],
bk := 1 − 〈ak, c〉 > 0. Otherwise, we can essentially ignore

the variable yk by setting it to 0. We denote B as the diagonal

matrix whose (k, k)-th entry is bk. By writing w := By, the

objective function can be expressed in terms of w as P̂ (w) :=
〈1, w〉 − f̂�((B−1A)Tw).

Hence, we can run the Fractional Packing Algorithm using

function f̂� such that in round k ∈ [m], when the vector ak
arrives, we can transform it by dividing each coordinate by bk
before passing it to the algorithm.

By Lemmas 13 and 14, using λ = 2, it follows that the

algorithm has competitive ratio O(q).
As an application of the above fractional solver (with some

additional ideas to ensure integral allocation), we can obtain

a competitive algorithm for a generalized version of combi-

natorial auction where the seller may produce any number of

copies of each item subject to a production cost function f�.

Theorem 15 (Combinatorial Auction with Production Cost).
Suppose the production cost function f� satisfies the con-
ditions in Theorem 2. Then, there is an O(q)-competitive
online algorithm for the online combinatorial auction problem
with production cost f�, with an additive error that depends
on f� (but does not depends on the number of buyers).
Specifically, the algorithm returns a solution with value at least
Ω(OPT

q)−V (f�), where V (f�) := 1
ρ ·(f�(ρ(q+1)1)−f�(ρ1))

and ρ = 2.

REFERENCES

[1] Y. Azar, I. R. Cohen, and D. Panigrahi, “Online covering with convex
objectives and applications,” arXiv preprint arXiv:1412.3507, 2014.

[2] N. Buchbinder, S. Chen, A. Gupta, V. Nagarajan, and J. S. Naor, “Online
packing and covering framework with convex objectives,” arXiv preprint
arXiv:1412.8347, 2014.

[3] T. H. Chan, Z. Huang, and N. Kang, “Online convex covering and
packing problems,” CoRR, vol. abs/1502.01802, 2015.

[4] N. Buchbinder and J. S. Naor, “The design of competitive online
algorithms via a primal-dual approach,” Found. Trends Theor. Comput.
Sci., vol. 3, no. 2-3, pp. 93–263, 2007. [Online]. Available:
http://dx.doi.org/10.1561/0400000024

[5] N. Alon, B. Awerbuch, Y. Azar, N. Buchbinder, and J. Naor, “The online
set cover problem,” SIAM J. Comput., vol. 39, no. 2, pp. 361–370, 2009.

[6] N. Bansal, N. Buchbinder, and J. Naor, “A primal-dual randomized
algorithm for weighted paging,” J. ACM, vol. 59, no. 4, p. 19, 2012.

[7] ——, “Randomized competitive algorithms for generalized caching,”
SIAM J. Comput., vol. 41, no. 2, pp. 391–414, 2012.

[8] ——, “Towards the randomized k-server conjecture: A primal-dual
approach,” in SODA, 2010, pp. 40–55.

[9] N. Bansal, N. Buchbinder, A. Madry, and J. Naor, “A polylogarithmic-
competitive algorithm for the k-server problem,” J. ACM, vol. 62, no. 5,
p. 40, 2015.

[10] N. Alon, B. Awerbuch, Y. Azar, N. Buchbinder, and J. S. Naor, “A
general approach to online network optimization problems,” ACM Trans.
Algorithms, vol. 2, no. 4, pp. 640–660, 2006.

[11] A. Ene, D. Chakrabarty, R. Krishnaswamy, and D. Panigrahi, “Online
buy-at-bulk network design,” in FOCS, 2015, pp. 545–562.

[12] N. Buchbinder and J. Naor, “Improved bounds for online routing and
packing via a primal-dual approach,” in FOCS, 2006, pp. 293–304.

[13] Y. Azar, U. Bhaskar, L. Fleischer, and D. Panigrahi, “Online mixed
packing and covering,” in SODA, 2013, pp. 85–100.

[14] Z. Huang and A. Kim, “Welfare maximization with production costs: A
primal dual approach,” in SODA. SIAM, 2015, pp. 59–72.

[15] N. R. Devanur, K. Jain, and R. D. Kleinberg, “Randomized primal-dual
analysis of ranking for online bipartite matching,” in SODA, 2013, pp.
101–107.

[16] N. Buchbinder, K. Jain, and J. Naor, “Online primal-dual algorithms for
maximizing ad-auctions revenue,” in ESA, 2007, pp. 253–264.

[17] N. Buchbinder and J. S. Naor, “Online primal-dual algorithms for
covering and packing,” Math. Oper. Res., vol. 34, no. 2, pp. 270–286,
2009. [Online]. Available: http://dx.doi.org/10.1287/moor.1080.0363

[18] A. Gupta and V. Nagarajan, “Approximating sparse covering integer
programs online,” Math. Oper. Res., vol. 39, no. 4, pp. 998–1011, 2014.

[19] N. Bansal, K. Pruhs, and C. Stein, “Speed scaling for weighted flow
time,” SIAM J. Comput., vol. 39, no. 4, pp. 1294–1308, 2009.

[20] N. R. Devanur and Z. Huang, “Primal dual gives almost optimal energy
efficient online algorithms.” in SODA. SIAM, 2014, pp. 1123–1140.

[21] Y. Azar, N. R. Devanur, Z. Huang, and D. Panigrahi, “Speed scaling in
the non-clairvoyant model,” in SPAA, 2015, pp. 133–142.

[22] I. Menache and M. Singh, “Online caching with convex costs: Extended
abstract,” in SPAA, 2015, pp. 46–54.

[23] A. Gupta, R. Krishnaswamy, and K. Pruhs, “Online primal-dual for non-
linear optimization with applications to speed scaling,” in WAOA, 2012,
pp. 173–186.

[24] A. Blum, A. Gupta, Y. Mansour, and A. Sharma, “Welfare and profit
maximization with production costs,” in FOCS, Nov 2011, pp. 77–86.

[25] N. R. Devanur and K. Jain, “Online matching with concave returns,” in
Proceedings of the forty-fourth annual ACM symposium on Theory of
computing. ACM, 2012, pp. 137–144.

[26] S. Agrawal and N. R. Devanur, “Fast algorithms for online stochastic
convex programming,” in SODA, 2015, pp. 1405–1424.

[27] K. Bhawalkar, S. Gollapudi, and D. Panigrahi, “Online set cover with
set requests,” in APPROX/RANDOM, 2014, pp. 64–79.

[28] J. Borwein and A. Lewis, Convex analysis and and Nonlinear Optimiza-
tion. Springer, 2006.

[29] S. Khuller, J. Li, and B. Saha, “Energy efficient scheduling via partial
shutdown,” in SODA, 2010, pp. 1360–1372.

[30] L. Fleischer, “Data center scheduling, generalized flows, and submodu-
larity,” in ANALCO, 2010, pp. 56–65.

[31] J. Li and S. Khuller, “Generalized machine activation problems,” in
SODA, 2011, pp. 80–94.

[32] R. Latała, “Estimation of moments of sums of independent real random
variables,” Ann. Probab., vol. 25, no. 3, pp. 1502–1513, 1997. [Online].
Available: http://dx.doi.org/10.1214/aop/1024404522

156157157

