
Better Unrelated Machine Scheduling for Weighted Completion Time via Random
Offsets from Non-Uniform Distributions

[Extended Abstract]

Sungjin Im ∗
Electrical Engineering and Computer Science

University of California
5200 N. Lake Road, Merced, CA 95344, USA

sim3@ucmerced.edu

Shi Li †
Department of Computer Science and Engineering

University at Buffalo
1 White Road, Buffalo, NY 14260, USA

shil@buffalo.edu

Abstract—In this paper we consider the classic schedul-
ing problem of minimizing total weighted completion time
on unrelated machines when jobs have release times, i.e,
R|rij |∑j wjCj using the three-field notation. For this prob-
lem, a 2-approximation is known based on a novel convex
programming (J. ACM 2001 by Skutella). It has been a
long standing open problem if one can improve upon this
2-approximation (Open Problem 8 in J. of Sched. 1999 by
Schuurman and Woeginger). We answer this question in the
affirmative by giving a 1.8786-approximation. We achieve this
via a surprisingly simple linear programming, but a novel
rounding algorithm and analysis. A key ingredient of our
algorithm is the use of random offsets sampled from non-
uniform distributions.

We also consider the preemptive version of the problem,
i.e, R|rij , pmtn|∑j wjCj . We again use the idea of sampling
offsets from non-uniform distributions to give the first better
than 2-approximation for this problem. This improvement also
requires use of a configuration LP with variables for each
job’s complete schedules along with more careful analysis. For
both non-preemptive and preemptive versions, we break the
approximation barrier of 2 for the first time.

Keywords-scheduling; completion time; release times; ap-
proximation algorithms;

I. INTRODUCTION

Modern computing facilities serve a large number of jobs

with different characteristics. To cope with this challenge,

they are equipped with increasingly heterogeneous machines

that are clustered and connected in networks, so that each

job can be scheduled on a more suitable machine. Fur-

ther, the large number of machines of different generations

are deployed over a long period of time, increasing the

heterogeneity. The scheduling decision must factor in the

heterogeneity and communication overhead.

Unrelated machine scheduling is a widely studied classic

model that captures various scenarios including the above.

There is a set J of jobs to be scheduled on a set M of

unrelated machines. Each job j ∈ J can have an arbitrary

processing time/size pi,j depending on the machine i it gets

∗ Supported in part by NSF grants CCF-1409130 and CCF-1617653.† Supported in part by NSF grant CCF-1566356.

processed; if pi,j = ∞, then job j cannot be scheduled on

machine i. Furthermore, due to the communication delay,

job j is available for service only from time ri,j , which can

be also arbitrary depending on the job j and the machine i
the job gets assigned to. The parameter ri,j is often called as

job j’s arrival/release time.1 Another parameter wj is used

to capture job j’s importance.

Minimizing total (weighted) completion time is one of the

most popular scheduling objectives that has been extensively

studied, even dating back to 50’s [2]. The scheduler must as-

sign each job j to a machine i and complete it. We consider

two settings, preemptive and non-preemptive schedules. In

the non-preemptive setting, each job must be completed

without interruption once it starts getting processed. On the

other hand, in the preemptive setting, each job’s processing

can be interrupted to process other jobs and be resumed

later. In both cases, job j’s completion time is, if j is

assigned to machine i, defined as the first time when the

job gets processed for pi,j units of time. Then, the objective

is to minimize
∑

j∈J wjCj . These two non-preemptive and

preemptive versions can be described as R|rj |
∑

j wjCj

and R|rj , pmtn|∑j wjCj respectively, using the popular

three-field notation in scheduling literature. Both versions

of the problem are strongly NP-hard even in the single

machine setting [3], and are APX-hard even when all jobs

are available for schedule at time 0 [4], in which case

preemption does not help.

For the non-preemptive case, Skutella gave a 2-

approximation based on a novel convex programming [5],

which improved upon the (2 + ε)-approximation based on

linear programming [6]. It has been an outstanding open

problem if there exists a better than 2-approximation [5],

[7], [6], [8], [9]. In particular, it is listed in [7] as one

of the top 10 opens problems in the field of approximate

scheduling algorithms; see the Open Problem 8. When jobs

1For simplicity, we will mostly assume that job j’s release time ri,j is
the same for all machines. This will justify using a simpler notation rj in
place of ri,j . Like most of previous works, extending our result to release
dates with dependency on machines is straightforward.

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.23

137

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.23

138

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.23

138



have no arrival times, i.e. ri,j = 0 for all i, j, very recently

Bansal et al. [10] gave a better than 1.5-approximation in

a breakthrough result, improving upon the previous best

1.5-approximations due to Skutella [5] and Sethuraman and

Squillante [11]. In fact, the Open Problem 8 consists of two

parts depending on whether jobs have release times or not.

Bansal et al. [10] solved the first part of Open Problem 8,

and the second part still remained open.

A. Our Results

In this paper, we answer the second part of the open

problem in the affirmative by giving a better than 2-

approximation.

Theorem 1 (Section II). For a constant α < 1.8786, there
exists an α-approximation for R|rj |

∑
j wjCj .

Surprisingly, we give this result by rounding a very simple

and natural LP that has not been studied in previous works.

Our LP can be viewed as a stronger version of the time-

indexed LP in [6], by taking the non-preemption requirement

into consideration. However, even with this stronger LP,

the rounding algorithm in [6] does not yield a better than

2-approximation (see the discussion about use of uniform

distribution in Section II-A), and we believe this is why the

previous works overlooked this simple LP. Improving the

2-approximation ratio requires not only the stronger LP, but

also novel rounding algorithm and analysis.

Our result also gives a positive answer to the conjecture

made by Sviridenko and Wiese [9]. They considered a

configuration LP where there is a variable for every machine

i ∈M and subset of jobs S ⊆ J . The variable is associated

with the optimal total weighted completion time of the jobs

in S on machine i. They showed that one can solve their LP

within a factor of 1 + ε, but could not give a better than 2-

approximation, conjecturing that their LP have an integrality

gap strictly less than 2.

Indeed, one can show that the configuration LP of [9] is

the strongest among all convex programmings of the follow-

ing form: minimize
∑

i∈M fi(xi) subject to
∑

i∈M xi,j = 1
for every j ∈ J and xi,j ≥ 0 for every i ∈ M, j ∈ J ,

where xi = (xi,j)j∈J ∈ [0, 1]J and fi is some convex

function over [0, 1]J such that if xi ∈ {0, 1}J , then fi(xi)
is at most the total weighted completion time of scheduling

jobs {j : xi,j = 1} optimally on machine i. All results

mentioned in this paper (including our results) are based on

programmings of this form and thus the configuration LP is

the strongest among them. Hence, our result gives a 1.8786
upper bound on the integrality gap of the configuration LP.

With a solution to the configuration LP, one can derive

a natural independent rounding algorithm. For each job j,

independently assign j to a machine i with probability xi,j .

Then for every machine i, we schedule all jobs assigned

to i; this can be done optimally if all release times are

0 [2], and nearly optimally (within (1 + ε) factor) in

general [12], [13]. When all jobs have release time 0, the

algorithm gives a 1.5-approximation. However, [10] showed

this independent rounding algorithm can not give a better

than 1.5-approximation, which motivated them to develop a

clever dependent rounding algorithm.

For R|rj |
∑

j wjCj , the independent rounding algorithm

is known to give a 2-approximation [6], [5]. In contrast to

the status for R||∑j wjCj , no matching lower bound was

known for this algorithm. Our result indirectly shows that the

independent rounding can achieve 1.8786-approximation.

Thus we do not need to apply the sophisticated dependence

rounding scheme of [10], which only led to a tiny im-

provement on the approximation ratio for R||∑j wjCj . We

complement our positive result by showing that the indepen-

dent rounding algorithm can not give an approximation ratio

better than e/(e− 1) ≈ 1.581. Due to the space limitation,

the proof is deferred to the full version of this paper.

Theorem 2. There is an instance for which the independent
rounding gives an approximation ratio worse than e/(e −
1)− ε ≥ 1.581− ε for any ε > 0.

We continue to study the preemptive case. In the pre-

emptive case, two variants were considered in the literature

depending on whether jobs can migrate across machines

or must be completed scheduled on one of the machines.

If migration is not allowed, the work in [6] still gives a

(2 + ε)-approximation since the LP therein is a relaxation

for preemptive schedules but the rounding outputs a non-

preemptive schedule. If migration is allowed, [5] gives a

3-approximation. Our main result for the preemptive case is

the first better than 2-approximation when migration is not

allowed.

Theorem 3 (Section III). For a constant α < 1.99971, there
exists an α-approximation for R|rj , pmtn|∑j wjCj .

We note that our algorithm is based on a stronger linear

programming relaxation. The configuration LP of [9] is for

non-preemptive schedules hence not usable for preemptive

schedules. Our LP is a different type of configuration LP

where there are variables for each job’s complete schedules.

While we use an LP for preemptive schedules, we output a

non-preemptive schedule.

B. Our Techniques

As mentioned before, we give a better than 2-

approximation for the non-preemptive case based on a very

simple LP. In this LP, we have an indicator variable yi,j,s
which is 1 if job j starts at time s on machine i. Then, we

add an obvious constraint that no more than one job can

be processed at any time on any machine. This LP has a

pseudo-polynomial size but can be reduced to a polynomial

size using standard techniques with a loss of (1 + ε) factor

in approximation.

138139139



As mentioned earlier, our algorithm falls into the indepen-

dent rounding framework: we assign each job j to machine

i with probability xi,j =
∑

s yi,j,s independently following

the optimal LP solution. Then, it remains to schedule jobs

assigned to each machine.2 Any solution to our LP is also

a solution to the LP in [6]. When restricted to a solution to

our LP, the rounding algorithm of [6] works as follows. For

every j that is assigned to i, we choose sj = s randomly

with probability proportional to yi,j,s. Then we choose τj
uniformly at random from [sj , sj+pi,j ]; here τj−sj can be

viewed as a random extra offset applied to j. We schedule

jobs assigned to i non-preemptively in increasing order of

τj values. While this gives a 2-approximation, this is the

best one can obtain using their LP since it has a matching

integrality gap. Even with our stronger LP, the algorithm

only gives a 2-approximation.

We use a more sophisticated distribution to sample τj for

individual jobs. Discovering such a distribution and showing

how it helps improve the approximation ratio requires a

novel analysis. We are not the first that use non-uniform

distributions for scheduling problems. Goemans et al. [14]

used non-uniform distributions in their α-point rounding

for the single machine scheduling, i.e. 1|rj |
∑

j wjCj to

give a 1.6853-approximation. However, their analysis does

not lend itself to multiple machines. The LP objective

considered in [14] uses the notion of fractional completion

time, which views a job j of size pj as consisting of pj
unit pieces with weight wj/pj . In this view, the optimal

schedule trivially follows from the simple greedy Smith

rule. [14] heavily uses this special structure to get a better

than 2 approximation. However, this relaxation inherently

loses a factor 2 when applied to multiple machines even

with some correction terms [6], [5]. Hence to overcome

the 2-approximation barrier, one has to deviate from this

relaxation and the special structure used in [14], which calls

for use of a stronger LP along with new algorithms and/or

analysis. Intuitions on the effect of non-uniform distributions

can be found in Section II, particularly in discussion of the

limitations of uniform distributions.

As mentioned before, the preemptive result requires an

even stronger LP where there is a variable for each job’s

complete schedule. Since preemption is allowed, even when

all parameters are polynomially bounded, the LP has ex-

ponentially many variables. We solve this LP by solving its

dual with help of a separation oracle. While the algorithm for

the non-preemptive case naturally extends to the preemptive

case, the analysis doesn’t. At a high level, the analysis for

both cases needs to carefully handle the interaction between

busy times and idle times which both can contribute jobs

delays. Non-preemptive schedules possess better structural

2Since 1|rj |
∑

j wjCj admits a PTAS, given the set of jobs assigned to

i, one can find a (1 + ε)-approximately optimal schedule on i. However,
it is hard to directly relate this schedule to the fractional solution.

properties which allow us to break down the analysis into

that for each time step. However, preemptive schedules

lack such properties and require a different analysis of a

somewhat amortized flavor.

C. Other Related Work

The first non-trivial O(log2 n)-approximation for

R|rij |
∑

j wjCj was given by Stein et al. [15] using

a hypergraph matching. Then, subsequent works [13],

[6], [5] gave constant approximations, culminating in a

2-approximation [5] which was the best known prior to

our work. The work in [13] uses the celebrated rounding

for the generalized assignment problem [16] to round

an LP with intervals of doubling lengths, thereby giving

a 16/3-approximation. As mentioned before, [6] gives a

(2 + ε)-approximation, and there is an easy instance of

matching integrality gap for their LP. Subsequently, Skutella

gave a 2-approximation using a convex programming [5],

which is tight since the CP has an integrality gap of 2.

When machines are identical, uniformly related, or a special

case of unrelated machines, PTASes are known [12], [17],

[18].

Minimizing makespan or equivalently the maximum com-

pletion time is a closely related objective. For this problem

when all jobs arrive at time 0, Lensta et al. gave a 2-

approximation and showed it does not admit a better than

1.5 approximation unless P = NP [19]. Reducing this gap

remains open. Svensson showed that one can estimate the

optimal makespan within a factor of 33/17+ε for the special

case of restricted assignment [20]. For the dual objective of

maximizing the minimum load on any machine, see [21],

[22], [23]. For the minimizing �p norms of completion times,

see [24], [25].

For the objective of minimizing total flow time, i.e.∑
j(Cj − rj), a poly-logarithmic approximation is known

[26]. For earlier works for the restricted assignment case,

see [27], [28]. Due to the vast literature on scheduling, our

discussion on related work is necessarily incomplete. For a

nice survey and more pointers, see [29].

II. NON-PREEMPTIVE SCHEDULING

We begin by giving an LP for the non-preemptive case. To

present our algorithm and analysis more transparently, we

assume that all parameters are polynomially bounded, i.e.

all wj , rj , pi,j are poly(|J |, |M |). Although we can also

handle the case when pij = ∞ by not allowing j to be

scheduled on machine i, we assume such a case does not

happen since the extension is straightforward. Due to the

space constraints, in this paper we omit how one can remove

these simplifying assumptions.

Define T :=
∑

i,j pi,j +maxj rj so that any ‘reasonable’

scheduler can complete all jobs by the time T . Throughout

this section, s is always an integer.

139140140



min
∑

i∈M, j∈J, s∈[0,T )

wjyi,j,s(s+ pi,j) (LPinterval)

s.t.
∑

s∈[0,T )

yi,j,s = xi,j , ∀i ∈M, j ∈ J (1)

∑
i∈M

xi,j = 1, ∀j ∈ J (2)

∑
j∈J, s∈[max{0,t−pi,j},t)

yi,j,s ≤ 1, ∀i ∈M, t ∈ [T ] (3)

yi,j,s ≥ 0, ∀i ∈M, j ∈ J, s ∈ [0, T )

yi,j,s = 0, ∀i ∈M, j ∈ J, s < rj or s > T − pi,j

To see this is a valid LP relaxation for non-preemptive

schedules, assume that all variables can only take integer

values. Then, the first two constraints require that each job j
must be assigned to exactly one machine, which is captured

by the indicator variable xi,j . The variable yi,j,s = 1 if and

only if j starts getting processed at time s on machine i.
The constraints (3) ensure that only one job gets processed

at a time on any machine. The last constraint prohibits jobs

from getting processed before their arrival times. We obtain

a valid LP relaxation by allowing variables to have fractional

values.

Rounding. We now describe how to round the LP, which

consists of two steps. The first step is to define a ‘pseudo’

arrival time τj ≥ rj for each job j. For each job j, we can

view {yi,j,s}i,s as a probability distribution over pairs (i, s)
due to Constraint (1), and choose a pair (ij , sj) according to

the distribution randomly and independently. Job j will be

scheduled on machine ij . Let Θ be some distribution over

real numbers in [0, 1] where no number in the distribution

occurs with positive probability; Θ will be fixed later. We

randomly and independently choose a number θj from Θ.

Define τj = sj + θj · pij ,j . We assume w.l.o.g. that all

jobs have different τj values since this event happens almost

surely.

In the second step, we finalize each machine’s schedule.

For each i ∈ M , let Ji = {j ∈ J : ij = i} be the set

of jobs that are assigned to i. Let π be the ordering of Ji
according to increasing order of τj values. We schedule jobs

in Ji on machine i according to π, pretending that τj is job

j’s actual arrival time. That is, job j ∈ Ji starts when all

jobs in Ji ahead of j in the ordering of π complete, or at

time τj , whichever comes later.

Notice that if we use the actual arrival times rj instead of

the pseudo ones for scheduling, we can obtain the optimum

schedule on i respecting the ordering π – that is, each

job j ∈ Ji starts when all jobs in Ji before j according

to π complete, or at time rj , whichever comes later. The

schedule given by our algorithm might be worse than this

optimum schedule respecting π. However, for the sake of

analysis, it is more convenient to use our schedule, rather

than the optimum one. Our schedule on machine i might

have fractional starting times, but it is not an issue since we

can convert the schedule to the optimum one respecting π,

in which all starting times are integral.

A. Analysis

It will be convenient to think of the LP solution as a set

Ri of rectangles for each machine i. For each pair of j and s
with yi,j,s > 0, we have a rectangle Ri,j,s of length pi,j and

height yi,j,s in Ri. Horizontally, the rectangle Ri,j,s covers

the time interval (s, s + pi,j ]. For any machine i, the total

height of rectangles in Ri covering any time point t ∈ (0, T ]
is at most 1.

We will analyze the expected completion time of each

job j and upper bound it by the corresponding LP quantity,∑
i,s yi,j,s(s + pi,j). Towards this end, henceforth we fix

a job j ∈ J , the machine i ∈ M job j is assigned to,

and a value of τ ∈ (0, T ] job j is given. We consider

E[Cj |ij = i, τj = τ ], i.e, the expected completion time of j,

conditioned on the event that ij = i and τj = τ . For nota-

tional convenience, we use Ê[·] to denote E[·|ij = i, τj = τ ]

and P̂r[·] to denote Pr[·|ij = i, τj = τ ]. After bounding

Ê[Cj ] by τ and pi,j , we will get the desired bound on E[Cj ]
by deconditioning.

The key issue we have to handle when jobs have arrival

times is that there can be idle times before job j starts. Hence

we have to consider not only the volume of jobs scheduled

before job j, but also the total length of idle times.

Definition 4. For a time point t ∈ (0, T ], we say that t is
idle, if there are no jobs scheduled at time t on machine i
in our schedule. Let idle(t) indicate whether the time point
t is idle or not.

With this definition, we are ready to formally break down

Cj into several quantities of different characteristics.

Cj =
∑

j′∈Ji:τj′<τj

pi,j′ +

∫ τj

0

idle(t)dt+ pi,j . (4)

The first term is the total length of jobs scheduled before j
on machine i and the second is the total length of idle times

before τj . Notice that there are no idle points in [τj , Cj)
since all jobs j′ ∈ Ji scheduled before j have τj′ < τj .

Uniform Distribution and its Limitations. Before we

present a better than 2-approximation, we take a short detour

to discuss how we recover a simple 2-approximation by

setting Θ to be the uniform distribution over [0, 1]. To

compute Ê[Cj ], we first consider Ê
[∑

j′∈Ji,τj′<τ pi,j′
]
. If

some j′ ∈ Ji has τj′ < τ = τj , we say that the pair (j′, sj′)
contributed pi,j′ to the sum. For each j′ 	= j and integer

s < τ , the expected contribution of the pair (j′, s) to the sum

is P̂r
[
ij′ = i, sj′ = s

]
P̂r

[
τj′ < τ |ij′ = i, sj′ = s

]
pi,j′ =

140141141



yi,j′,s ·min{1, (τ−s)/pi,j′}·pi,j′ = yi,j′,s ·min{pi,j′ , τ−s}.
This is exactly the area of the portion of the rectangle Ri,j′,s
before time point τ . Summing up over all pairs (j′ 	= j, s <
τ), Ê

[∑
j′∈Ji,τj′<τ pi,j′

]
is at most the total area of the

portions of Ri before τ , which is at most τ . The total

length of idle slots before τ is obviously at most τ . Thus,

Ê[Cj ] ≤ 2τ + pi,j . Since E[τj |ij = i, sj = s] = s+ pi,j/2,

we have E[Cj |ij = i, sj = s] ≤ 2(s + pi,j/2) + pi,j =
2(s + pi,j). Since Pr[ij = i, sj = s] = yi,j,s, we have

that E[Cj ] ≤ 2
∑

i,s yi,j,s(s + pi,j), which is exactly twice

the unweighted contribution of j to the LPinterval objective.

Thus, we obtain a 2-approximation for the problem.

However, uniform distribution does not yield a better than

2-approximation. To see this, consider the following instance

and LP solution. There are 1/ε + 1 machines indexed by

1, 2, ..., 1/ε+ 1. There is one unit-sized job j∗ with arrival

time r and it is scheduled on each of machines 1, 2, ..., 1/ε
by ε fraction during (r, r + 1]; j∗ is not allowed to be

scheduled on machine 1/ε + 1. There are 1/ε big jobs of

sizes p 
 r with arrival time 0, which are indexed by

j1, j2, ..., j1/ε. Each big job jk can be assigned to either

machine k or machine 1/ε+1. The job jk starts on machine

k at time 0 by 1 − ε fraction, and on machine 1/ε + 1
by ε fraction. For simplicity, say the unit-sized job has a

unit weight and the big jobs have zero (or infinitesimally

small) weights so that the objective is essentially dominated

by the unit sized job j∗’s completion time. Clearly, j∗ has

completion time r + 1 in the LP solution.

We now show that the above rounding makes j∗’s com-

pletion time arbitrarily close to 2r in expectation. Fix the

machine j∗ is assigned to by the above algorithm; w.l.o.g.

assume that the machine is 1. With 1 − ε probability, job

j1 is assigned to machine 1; under this event, j1 has a

smaller τ value than j∗ with probability r/p. Hence j∗

starts at time p with probability (1 − ε)r/p, otherwise at

time r, meaning that j∗’s expected starting time is at least

(1− ε)(r/p)× p+ (1− (1− ε)r/p)× r which tends to 2r
as ε → 0 and p → ∞. This shows one cannot get a better

than 2-approximation using uniform distribution.

Finding a Better Distribution. The above example is

simple yet illuminating. We first observe that pushing back

the small job a lot due to big job might be a sub-optimal

choice. Intuitively, a bigger job is less sensitive to delay

since the delay can be charged to the job’s processing time.

We could try to shift mass in the distribution Θ to the right.

Then, big jobs will be less likely to have smaller τ values

than the small job. However, this could increase τj values

in expectation, thereby increasing the objective. We would

like to avoid increasing the offset added to τj which was

pi,j/2 (assuming that job j goes to machine i). To satisfy

both requirements, we shall shift the mass from both ends

to the middle. In the above example, the job j∗ overlaps the

left-end of the big job j1. Shifting the mass from the left

to the middle will decrease the probability that τj1 < τj∗ .

On the other hand, shifting the mass from the right to the

middle will decrease the expectation of τj∗ .

The remainder of this section is devoted to studying the

effect of using different distributions on the approximation

ratio. Let f : [0, 1] → R≥0 be the probability density

function (PDF) of Θ and F (t) =
∫ t

0
f(t′)dt′ be the cu-

mulative distribution function (CDF) of Θ. Recall that we

fixed a job j ∈ J , the machine i ∈ M job j is assigned

to, and a value of τ ∈ [0, T ) job j is given. For every

j′ ∈ J \ j, t ∈ (0, T ] and integer s, we shall use s �j′ t
to indicate that s ∈ [max{0, t− pi,j′}, t). In other words,

s�j′ t means that if j′ starts at s, then it must get processed

at time t. For every t ∈ (0, T ], define

g(t) =
∑

j′∈J\j, s�j′ t

yi,j′,s · f
(
t− s

pi,j′

)

and h(t) =
∑

j′∈J\j, s�j′ t

yi,j′,s · F
(
t− s

pi,j′

)
.

It is worth mentioning that
∑

s�j′ t
yi,j′,s·f

(
t−s
pi,j′

)
1

pi,j′
is

the density of the probability that τj′ = t. Thus, integrating

g(t) from time 0 to τ = τj will give the expected volume

of work done before job j, which is the first term of (4) in

expectation. The usefulness of h(t) will be discussed shortly.

Lemma 5. Ê

⎡⎣ ∑
j′∈Ji:τj′<τ

pi,j′

⎤⎦ =

∫ τ

0

g(t)dt.

Proof: LHS =
∑

j′∈J\j
pi,j′ · P̂r[ij′ = i, τj′ < τ ]

=
∑

j′∈J\j
pi,j′

∑
s∈[0,τ)

yi,j′,s · P̂r
[
τj′ < τ |ij′ = i, sj′ = s

]
=

∑
j′∈J\j

pi,j′
∑

s∈[0,τ)
yi,j′,s ·

∫ min{(τ−s)/pi,j′ ,1}

0

f(θ)dθ

=
∑

j′∈J\j
pi,j′

∑
s∈[0,τ)

yi,j′,s
pi,j′

∫ min{τ,s+pi,j′}

s

f

(
t− s

pi,j′

)
dt

=

∫ τ

t=0

∑
j′∈J\j

∑
s�j′ t

yi,j′,s · f
(
t− s

pi,j′

)
dt

=

∫ τ

0

g(t)dt. �

We now shift our attention to bounding the second term

in (4) using the function h(t). As we observed when

using uniform distributions, the obvious upper bound on

the second term is τ . To improve upon this, we need to

show a considerable fraction of times are not idle. We note

that
∑

s�j′ t
yi,j′,s · F

(
t−s
pi,j′

)
is the probability that job j′

is processed at time t when starting at τj′ . If such an event

141142142



occurs, then time t will be shown to be non-idle, hence we

get some credits.

Claim 6. h(t) ≤ 1 for every t ∈ [0, T ).

Proof: Since F is a CDF, we have F (t′) ≤ 1 for

every t′ ∈ [0, 1]. Thus, h(t) ≤ ∑
j′∈J\j, s�j′ t

yi,j′,s ≤ 1

by Constraint (3).

Lemma 7. For every t ∈ (0, τ ], we have Ê[idle(t)] ≤
e−h(t).

Proof: We say t′ is empty if there are no jobs j′ ∈ Ji
such that t′ ∈ (τj′ , τj′ + pi,j′ ]; let empty(t′) denote the

indicator variable that is 1 iff t′ is empty. We first observe

that if some t′ ∈ (0, T ] is not empty, then t′ is not idle.

This is because a job j′ such that t′ ∈ (τj′ , τj′ +pi,j′ ] is not

processed at time t′ only when other jobs are. Thus,

Ê[idle(t)] ≤ Ê[empty(t)]

=
∏

j′∈J\j

(
1− P̂r

[
ij′ = i, t ∈ (τj′ , τj′ + pi,j′ ]

])

≤ exp
(
−

∑
j′∈J\j

P̂r
[
ij′ = i, t ∈ (τj′ , τj′ + pi,j′ ]

])

≤ exp
(
−
∑

j′∈J\j
P̂r

[
ij′ = i, t ∈ (sj′ , sj′ + pi,j′ ], θj′ <

t− sj′

pi,j′

])

= exp
(
−
∑

j′∈J\j

∑
s�j′ t

yi,j′,s · F
(
t− s

pi,j′

))

= e−h(t).

Lemma 8.
∫ τ

0

Ê[idle(t)]dt ≤ τ −
(
1− 1

e

)∫ τ

0

h(t)dt.

Proof: By Lemma 7, we have
∫ τ

0
Ê[idle(t)]dt ≤∫ τ

0
e−h(t)dt. Notice that h(t) ∈ [0, 1] for every t ∈ [0, 1] by

Claim 6. Thus by the convexity of the function e−x, we have

that e−h(t) ≤ (1− h(t))e0 + h(t)e−1 = 1− (1− 1/e)h(t).
Taking the integral from t = 0 to τ gives the lemma.

Lemma 9. Let ρ = supφ∈(0,1]
1
φ

(
F (φ)− (

1− 1
e

) ∫ φ

0
F (θ)dθ

)
,

β =
∫ 1

0
f(θ)θdθ and α = 1 +max{ρ, (1 + ρ)β}. Then our

algorithm is an α-approximation algorithm.

To prove Lemma 9, we first upper bound Ê[Cj ] in terms

of τ = τj and pi,j , then obtain an upper bound on E[Cj ] by

deconditioning.

Lemma 10. Ê[Cj ] ≤ (1 + ρ)τ + pi,j .

Proof: By applying the bounds in Lemmas 5 and 8 to
Eq. (4), we have

Ê[Cj ]− τ − pi,j ≤
∫ τ

0

g(t)dt−
(
1− 1

e

)∫ τ

0

h(t)dt

=

∫ τ

0

∑
j′ �=j,s�j′ t

yi,j′,s

(
f

(
t− s

pi,j′

)
−

(
1− 1

e

)
F

(
t− s

pi,j′

))
dt

=
∑

j′ �=j,s∈[0,τ)
yi,j′,s

·
∫ min{τ,s+pi,j′}

s

(
f

(
t− s

pi,j′

)
−

(
1− 1

e

)
F

(
t− s

pi,j′

))
dt

=
∑

j′ �=j,s∈[0,τ)
yi,j′,s · pi,j′

·
∫ min{(τ−s)/pi,j′ ,1}

0

(
f (θ)−

(
1− 1

e

)
F (θ)

)
dθ.

By the definition of ρ and that
∫ φ

0
f(θ)dθ = F (φ) for

φ ∈ [0, 1], we have

Ê[Cj ] ≤
∑

j′ �=j,s∈[0,τ)
yi,j′,s · pi,j′ · ρ ·min{(τ − s)/pi,j , 1}+ τ + pi,j

= ρ
∑

j′ �=j,s∈[0,τ)
yi,j′,s ·min{τ − s, pi,j′}+ τ + pi,j

≤ ρτ + τ + pi,j = (1 + ρ)τ + pi,j ,

where the last inequality holds because the sum is the total

area of the portions of rectangles in Ri before time τ .

Lemma 11. E[Cj ] ≤ α
∑

i∈M,s∈[0,T ) yi,j,s(s+ pi,j).

Proof: Now, we consider all machines i ∈ M . Then
E[Cj ] equals to∑

i∈M,s∈[0,T )

Pr[ij = i, sj = s]

·
∫ 1

0

f(θ)E[Cj |ij = i, sj = s, τj = s+ θpi,j ]dθ

≤
∑

i∈M,s∈[0,T )

yi,j,s

∫ 1

0

f(θ) ((1 + ρ)(s+ θpi,j) + pi,j) dθ

=
∑

i∈M,s∈[0,T )

yi,j,s
(∫

1

0

f(θ)((1 + ρ)s+ pi,j)dθ +

∫
1

0

f(θ)(1 + ρ)θpi,jdθ
)

≤
∑

i∈M,s∈[0,T )

yi,j,s max{1 + ρ, 1 + (1 + ρ)β}(s+ pi,j)

= α
∑

i∈M,s∈[0,T )

yi,j,s(s+ pi,j).

We are now ready to complete the proof of Lemma 9.

Summing up E[wjCj ] over all jobs j ∈ J , we have

E

[∑
j∈J

wjCj

]
≤ α

∑
i∈M,j∈J,s∈[0,T )

wjyi,j,s(s+ pi,j).

Notice that the right-hand-side is exactly α times the cost of

the LP solution. Thus, our algorithm is an α-approximation.

To complete the proof of Theorem 1, we only need to

find a distribution Θ whose α value is no greater than

the approximation ratio claimed in the theorem. We note

that we first used a factor revealing LP to find out the

best distribution that minimizes α. Then we discovered a

truncated quadratic function is the best fit for the obtained

discretized PDF. To find the best coefficients, we ran another

program and obtained a distribution that yields a slightly

better approximation ratio than one we could using the factor

revealing LP. We set the PDF f as follows:

f(θ) =

{
0.1702θ2 + 0.5768θ + 0.8746 0 ≤ θ ≤ 0.85897

0 otherwise
.

142143143



Notice that f(θ) increases as θ goes from 0 to 0.85897
and becomes 0 when θ > 0.85897. This is consistent with

the previous discussion that we shift the probability mass

from both ends to the middle. Then, by easy calculation

one can show that β < 0.46767 and ρ < 0.8785. Thus

α = 1 +max {ρ, (1 + ρ)β} < 1.8786.

III. PREEMPTIVE SCHEDULING

This section is devoted to proving Theorem 3, which

claims a better than 2-approximation for the preemptive case.

Note that migration is not allowed, i.e. each job must be

processed on only one of the machines. In the preemptive

setting, a job’s processing may be interrupted, so we need to

choose pi,j unit-length time slots on machine i to schedule

job j on machine i. This motivates the following definition.

Definition 12 (Chains). A chain A for job j ∈ J on machine
i ∈M is a sequence (t1, t2, · · · , tpi,j

) of integers such that
rj < t1 < t2 < · · · < tpi,j

≤ T . Equivalently, we may
view A as the set {t1, t2, · · · , tpi,j}, or as a function from
(0, pi,j ] to (0, T ] such that A(ϑ) = t�ϑ� + ϑ − �ϑ for all
ϑ ∈ (0, pi,j ]. For all t ∈ (0, T ], let A−1(t) = sup{ϑ ∈
(0, pi,j ] : A(ϑ) ≤ t}.

A chain A = (t1, t2, · · · , tpi,j
) completely describes

j’s schedule on machine i: we schedule j on slots (t1 −
1, t1], (t2 − 1, t2], · · · , (tpi,j

− 1, tpi,j
]. Thus, A(ϑ) is the

time at which we have run j for ϑ units of time. In

particular, A(pi,j) is the completion time of j. We may

use CA := A(pi,j) to denote j’s completion time under the

schedule A of job j. Notice that A−1(t) is the amount of

time in which j is processed before t in A. Let Ai,j denote

the set of all chains for job j on machine i.

Linear Programming. We are now ready to present our

LP using the notion of chains. For notational convenience,

when we refer to a chain A, we assume it is associated with

a machine i and a job j satisfying A ∈ Ai,j .

min
∑

i∈M,j∈J

∑
A∈Ai,j

wjCA · zA (LPchain)

s.t
∑
i∈M

∑
A∈Ai,j

zA ≥ 1 ∀j ∈ J (5)∑
j∈J

∑
A∈Ai,j :t∈A

zA ≤ 1 ∀i ∈M, t ∈ [T ] (6)

zA ≥ 0 ∀i ∈M, j ∈ J,A ∈ Ai,j

To see LPchain is a valid relaxation, assume that variables

can only take integer values. In LPchain we have an indicator

variable zA for every possible chain A ∈ Ai,j for all i and j,

which is 1 if and only if j is scheduled following the chain

description A. The first constraint requires that every job

must complete; note that we do not need equality here since

the optimal solution will satisfy equality. It is also worth

mentioning that job j never gets processed before its arrival

time rj since j’s chains don’t allow it. Finally, the second

constraint ensures that every machine is used by at most

one job at any point in time – there is at most one chain

that schedules a job at any time. Thus we get a valid LP

relaxation by allowing variables to have fractional values.

Although the LP has exponentially many variables, we

can solve it using standard techniques – we solve the dual

using the Ellipsoid method with a separation oracle. Due to

the space constraints, we omit the details.

Algorithm. Our rounding is a natural generalization of

the rounding for non-preemptive scheduling. To see this,

suppose that a chain A ∈ Ai,j is a sequence of pi,j
consecutive integers. Then A corresponds to an interval. If

every chain in the support of z corresponds to an interval,

then the fractional solution is a valid solution to LPinterval for

non-preemptive scheduling. In this scenario, our rounding

works exactly in the same way as that for non-preemptive

scheduling. Thus, we can generalize the former rounding by

generalizing intervals to chains.

More specifically, our rounding algorithm works as fol-

lows. Let Θ be some distribution over [0, 1]. For every

j ∈ J , we randomly and independently choose a pair

(ij , Aj) such that Pr[(ij , Aj) = (i, A)] = zA for every

i ∈ M,A ∈ Ai,j . As
∑

i∈M,A∈Ai,j zA = 1 for every

j, the random procedure is well-defined. For each j, we

randomly and independently choose a number θj from Θ.

Let τj = Aj(θj · pij ,j). We assume that all jobs have

different τj values since the event happens almost surely.

As in the algorithm for the non-preemptive scheduling, we

let Ji = {j ∈ J : ij = i} and schedule all jobs in Ji
on machine i in increasing order of τj . We schedule the

jobs as early as possible, maintaining the property that job

j starts no earlier than τj . Notice that the schedule our

algorithm constructed is non-preemptive, even though the

problem allows preemption.

Overview of the Analysis. The analysis is more involved

than the one for the non-preemptive case. To see this, let’s

recall how we gave a better than 2-approximation for the

non-preemptive case. We can still break down a job’s com-

pletion time as in Eq. (4) where job j’s completion time is

decomposed into three quantities: total volume of jobs with

smaller τ values, total length of idle times before τj , and

the size of job j itself. As we observed, if we use a uniform

distribution for Θ, it is easy to get a 2-approximation by

showing that both quantities are bounded by τj , which is

j’s starting time plus half of its size in expectation. Then,

by using a non-uniform distribution Θ with more mass

around the center, we could have the following benefits:

(i) if a job j′ 	= j is processed a little before τj , it is

less likely to have a smaller τ value; and (ii) otherwise,

a considerable fraction of job j′ is processed before τj , thus

contributes to reducing the number of idle times. Then, using

the non-preemptive structure of the schedule, we were able

to analyze each time’s contribution to the first and second

143144144



quantities in Eq. (4).

While the high-level idea is the same, we have to take a

different analysis route for the preemptive case since each

job’s schedule is scattered over time, which keeps us from

defining h. Note that many jobs may contribute to making

a time t busy since we don’t have a nice structural property

given by the intervals but not by the chains. In particular,

when a lot of jobs are partially processed around time t, the

time will highly likely to become non-idle. This create an

issue for the analysis since we don’t get enough idle times

compared to the volume of jobs we used.

Hence we have to bound Cj by taking a more global

view of the schedule. In the analysis, we will consider two

cases. Let W denote the volume of work done by LP before

τj . If W mostly comes from jobs that are processed very

little before τj , we can reduce the first quantity in (4) using

the non-uniform distribution. Otherwise, we can show that

a large fraction of W comes from jobs that are processed

a lot by the LP by time (9/10)τj . Then, either a lot of

jobs complete by time τj or the entire interval [(9/10)τj , τj ]
becomes non-idle. In either case, we can have a better

bound on the second quantity in Eq. (4) than the trivial τj .

Somewhat subtle definitions are needed for the analysis, but

this is a high-level overview.

A. Analysis

We fix j ∈ J, i ∈M and τ ∈ (0, T ] and condition on the

event that ij = i and τj = τ . Using the same notations as

before, let Ê[·] denote E[·|ij = i, τj = τ ] and P̂r[·] denote

Pr[·|ij = i, τj = τ ]. For any t ∈ (0, T ], we say t is idle if

there are no jobs scheduled at time t on machine i, and use

idle(t) to indicate whether t is idle or not. We will again

use Eq. (4) for the analysis of ECj .

We do not try to optimize the approximation ratio. Rather

we will use a distribution Θ that is very close to the uniform

distribution to make the analysis more transparent. The prob-

ability density function (PDF) of Θ is f(θ) = 1/(1−2λ) if

θ ∈ (λ, 1−λ) and f(θ) = 0 otherwise, where λ ∈ (0, 0.005)
is some constant to be decided later. Let F (t) =

∫ t

0
f(θ)dθ

be its cumulative distribution function (CDF). Note that this

is a uniform distribution with small portion of both ends

clipped out. It is not hard to show that if λ = 0 then we can

still obtain a 2-approximation. The following claims easily

follow from elementary algebra.

Claim 13. For any θ, θ′ such that λ ≤ θ ≤ θ′ ≤ 1, we have
F (θ)
θ ≤ θ′−λ

θ′(1−2λ) .

Claim 14. For any θ, θ′ such that λ ≤ θ′ ≤ 1/2 and θ′ ≤
θ ≤ 1, we have F (θ)

θ ≥ θ′−λ
θ′(1−2λ) .

We start by defining heavy and light chains. Roughly

speaking, a chain A ∈ Ai,j is said to be heavy if a

considerable fraction of the corresponding job j is processed

before τj = τ , otherwise light.

Definition 15. Given a chain A ∈ Ai,j′ for some job j′ 	= j,
we say A is heavy if A−1(τ) ≥ pi,j′/15 and light otherwise.
Let Ai,j′

h and Ai,j′
l be the sets of heavy and light chains in

Ai,j′ , respectively.

Let Wh =
∑

j′ �=j,A∈Ai,j′
h

zAA
−1(τ) and Wl =∑

j′ �=j,A∈Ai,j′
l

zAA
−1(τ). Let W = Wh + Wl =∑

j′ �=j,A∈Ai,j′ zAA
−1(τ). Then, W is the total area of the

portions of the rectangle chains before τ ; here we view zA
fraction of chain A as a chain of rectangles with height zA
on times in A. In the light of this view, we immediately

have W ≤ τ .

We continue our analysis by considering two cases de-

pending on how much light/heavy chains contribute to W .

1) Case 1: Wl ≥ W/3.: In this case, we focus on the

expected total length of jobs scheduled on machine i before

j. For a light chain, a large portion is after τ . Since the non-

uniform distribution Θ moves the mass to the middle, it will

give smaller expected total length if many chains are light.

In the following, the first inequality is due to Claim 13 with

θ′ = 1/15 and θ = A−1(τ)
pi,j′

.

Ê

[ ∑
j′∈Ji:τj′<τ

pi,j′
]
=

∑
j′ �=j,A∈Ai,j′

zAF

(
A−1(τ)

pi,j′

)
pi,j′

≤ 1

1− 2λ

∑
j′ �=j,A∈Ai,j′

h

zA

(
A−1(τ)

pi,j′

)
pi,j′

+
(1/15− λ)

(1/15)(1− 2λ)

∑
j′ �=j,A∈Ai,j′

l

zA

(
A−1(τ)

pi,j′

)
pi,j′

=
1

1− 2λ

∑
j′ �=j,A∈Ai,j′

zAA
−1(τ)−

(
1

1− 2λ
− 1− 15λ

1− 2λ

)∑
j′ �=j,A∈Ai,j′

l

zAA
−1(τ)

=
W

1− 2λ
− 15λ

1− 2λ
Wl ≤ 1− 5λ

1− 2λ
W ≤ 1− 5λ

1− 2λ
τ.

Thus, we have:

Ê[Cj ] ≤
(
2− 3λ

1− 2λ

)
τ + pi,j . (7)

2) Case 2: Wh ≥ 2W/3.: In this case, we shall further

divide heavy chains into good and bad ones. Roughly

speaking, a good chain doesn’t process the corresponding

job too much very close to τ . Intuitively, good chains will

likely lead to the job being processed considerably before

time τ . We will show that there are ‘enough’ good chains

that will make a lot of times before τ non-idle. Due to the

space constraints, we omit most of the proofs.

Definition 16. We say a heavy chain A ∈ Ai,j′ for some
j′ 	= j is good, if A−1(9τ/10) ≥ A−1(τ)/2, and bad
otherwise. Let Ai,j′

hg and Ai,j′
hb be the sets of good and bad

heavy chains in Ai,j′
h , respectively.

Let Whg =
∑

j′ �=j,A∈Ai,j′
hg

zAA
−1(τ) and Whb =

144145145



∑
j′ �=j,A∈Ai,j′

hb

zAA
−1(τ) respectively. So, Wh = Whg +

Whb. Next we show that there are not many bad chains.

Claim 17. Whb ≤ τ/5.

Thus, we have secured lots of good chains, precisely

Whg ≥ 2W/3− τ/5.

Lemma 18.
∫ τ

0

(1− idle(t))dt ≥ min
{
τ/10,

∑
j′∈Ji:τj′<9τ/10

pi,j′
}

.

We will lower bound the expected value of the RHS in

Lemma 18 as follows. Note that we only use jobs j′ that

have good chains since other jobs are not very useful for

deriving a lower bound. The proof is somewhat technical,

so we first derive an upper bound on ÊCj assuming that the

bound is true.

Lemma 19. Q := Êmin

{
τ
10 ,

∑
j′∈Ji:Aj′∈Ai,j′

hg ,τj′<9τ/10
pi,j′

}
≥ γWhg

10 where γ =
(
1− 1

e

) (1−30λ)
30(1−2λ) .

Lemmas 18 and 19 will give us an upper bound on the

length of idle times before τ . To bound the total expected

volume of jobs with smaller τ values than job j, we use the

following obvious bound.

Ê

[ ∑
j′∈Ji:τj′<τ

pi,j′
]
=

∑
j′ �=j,A∈Ai,j′

zAF

(
A−1(τ)

pi,j′

)
pi,j′

≤ 1

1− 2λ

∑
j′ �=j,A∈Ai,j′

zA

(
A−1(τ)

pi,j′

)
pi,j′ =

1

1− 2λ
W.

Applying these two bound to Eq. (4) and using the fact

that W ≤ τ , we have

Ê[Cj ] ≤ 1

1− 2λ
W +

(
τ − γWhg

10

)
+ pi,j

≤ 1

1− 2λ
W + τ − γ

10

(
2W

3
− τ

5

)
+ pi,j

≤ 1

1− 2λ
τ + τ − γ

10
· 7τ
15

+ pi,j

=
2− 2λ− (1− 1/e)(1/30− λ)(7/150)

1− 2λ
τ + pi,j .

(8)

This bound (8) will be combined with (7) for Case 1 in

the following section to complete the analysis.

The remainder of this section is devoted to proving

Lemma 19. The main difficulty in lower bounding Q is no

matter how big the second term in Q is, the quantity is

capped at τ/10. Hence if jobs are very large compared to the

cap, Q can be very small. Fortunately, we have found lots of

good chains. Good chains process their corresponding jobs

considerably before τ . This implies that such jobs cannot be

very large compared to τ .

For formal proof, we define a random function Ψ(α, p′)
over a vector α ∈ [0, 1]J\j and p′ ∈ R

J\j
≥0 as follows.

Initially let S ← 0. Then for every j′ 	= j, with probability

αj′ , we let S = S+pj′ . Then let Ψ(α, p′) = min{τ/10, S}.
We define α∗j′ = P̂r[j′ ∈ Ji, Aj′ ∈ Ai,j′

hg , τj′ < 9τ/10] and

p∗j′ = pi,j′ for every j′ 	= j. Then Q is exactly EΨ(α∗, p∗).
The following lemma will allow us to increase job sizes

while keeping their expected contribution to S the same.

Lemma 20. If for some job j′ 	= j and some real number
a ≥ 1, we update αj′ to αj′/a and p′j′ to ap′j′ , then
EΨ(α, p′) can only decrease.

The next step is to show that a large fraction of the second

quantity in Q (or
∑

j′ �=j α
∗
j′p
∗
j′ ) comes from good chains.

Lemma 21.
∑

j′ �=j α
∗
j′p
∗
j′ ≥ 1−30λ

2(1−2λ)Whg.

Notice if α∗j′ > 0 then Ai,j
hb 	= ∅. Thus, taking an

arbitrary A ∈ Ai,j
hb , we have p∗j′ = pi,j′ ≤ 15A−1(τ) ≤

15τ . Initially let α = α∗ and p′ = p∗. Then we apply

Lemma 20: for every j′ such that αj′ > 0, we scale

down αj′ and scale up p′j′ by the same factor so that p′j′
becomes 15τ . After the update, we have EΨ(α, p′) ≤ Q.

Moreover,
∑

j′ �=j αj′p
′
j′ ≥ 1−30λ

2(1−2λ)Whg as the operations

maintained the left-hand-side in the bound of Lemma 21.

Thus,
∑

j′ �=j αj′ ≥ 1−30λ
30(1−2λ)

Whg

τ . Now, consider the process

for computing Ψ(α, p′). The probability that we add some

p′j′ = 15τ to S is

1−
∏
j′ �=j

(1− αj′) ≥ 1−
∏
j′ �=j

e−αj′

= 1− exp
(
−

∑
j′ �=j

αj′
)
≥ 1− exp

(
− (1− 30λ)Whg

30(1− 2λ)τ

)
≥

(
1− 1

e

)
(1− 30λ)Whg

30(1− 2λ)τ
= γ

Whg

τ
.

Thus, EΨ(α, p′) ≥ γWhg

τ · τ
10 =

γWhg

10 . Note that the

expectation is lower bounded by the probability multiplied

by τ/10 since the total size of S is capped at τ/10 in Ψ.

This completes the proof of Lemma 19.

3) Wrapping up: Combining the Two Cases: We set

λ = 1/5100, then in both cases (Eq. (7) and (8)), we

have Ê[Cj ] < 1.99942τ + pi,j . For a chain A ∈ Ai,j ,

E[τj |ij = i, Aj = A] is at most A(pi,j) − pi,j/2; this is

where LPchain with each chain’s cost associated with the

corresponding job’s completion time plays a crucial role.

E[Cj ] <
∑

i∈M,A∈Ai,j

zA (1.99942(CA − pi,j/2) + pi,j)

=
∑

i∈M,A∈Ai,j

zA(1.99942CA + 0.00029pi,j)

≤ 1.99971
∑

i∈M,A∈Ai,j

zACA.

This is exactly 1.99971 times the (unweighted) contri-

bution of j to the LP solution. Thus, our algorithm is a

1.99971-approximation, implying Theorem 3.

145146146



REFERENCES

[1] S. Im and S. Li, “Better unrelated machine scheduling for
weighted completion time via random offsets from non-
uniform distributions,” CoRR, vol. abs/1606.08817, 2016.
[Online]. Available: http://arxiv.org/abs/1606.08817

[2] W. E. Smith, “Various optimizers for single-stage production,”
Naval Research Logistics Quarterly, vol. 3, no. 1-2, pp. 59–
66, 1956.

[3] J. K. Lenstra, A. R. Kan, and P. Brucker, “Complexity of ma-
chine scheduling problems,” Annals of discrete mathematics,
vol. 1, pp. 343–362, 1977.

[4] H. Hoogeveen, P. Schuurman, and G. J. Woeginger, “Non-
approximability results for scheduling problems with minsum
criteria,” INFORMS Journal on Computing, vol. 13, no. 2, pp.
157–168, 2001.

[5] M. Skutella, “Convex quadratic and semidefinite
programming relaxations in scheduling,” J. ACM, vol. 48,
no. 2, pp. 206–242, Mar. 2001. [Online]. Available:
http://doi.acm.org/10.1145/375827.375840

[6] A. S. Schulz and M. Skutella, “Scheduling unrelated ma-
chines by randomized rounding,” SIAM J Discrete Math,
vol. 15, no. 4, pp. 450–469, 2002.

[7] P. Schuurman and G. J. Woeginger, “Polynomial time ap-
proximation algorithms for machine scheduling: Ten open
problems,” J. Scheduling, vol. 2, no. 5, pp. 203–213, 1999.

[8] V. A. Kumar, M. V. Marathe, S. Parthasarathy, and A. Srini-
vasan, “Minimum weighted completion time,” in Encyclope-
dia of Algorithms. Springer, 2008, pp. 544–546.

[9] M. Sviridenko and A. Wiese, “Approximating the
configuration-lp for minimizing weighted sum of completion
times on unrelated machines,” in Integer Programming and
Combinatorial Optimization. Springer, 2013, pp. 387–398.

[10] N. Bansal, A. Srinivasan, and O. Svensson, “Lift-and-round
to improve weighted completion time on unrelated machines,”
in STOC, 2016, pp. 156–167.

[11] J. Sethuraman and M. S. Squillante, “Optimal scheduling of
multiclass parallel machines,” in SODA, 1999, pp. 963–964.

[12] F. Afrati, E. Bampis, C. Chekuri, D. Karger, C. Kenyon,
S. Khanna, I. Milis, M. Queyranne, M. Skutella, C. Stein
et al., “Approximation schemes for minimizing average
weighted completion time with release dates,” in FOCS.
IEEE, 1999, pp. 32–43.

[13] L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein,
“Scheduling to minimize average completion time: Off-line
and on-line approximation algorithms,” Mathematics of oper-
ations research, vol. 22, no. 3, pp. 513–544, 1997.

[14] M. X. Goemans, M. Queyranne, A. S. Schulz, M. Skutella,
and Y. Wang, “Single machine scheduling with release dates,”
SIAM J Discrete Math, vol. 15, no. 2, pp. 165–192, 2002.

[15] C. Phillips, C. Stein, and J. Wein, “Task scheduling in
networks,” SIAM J Discrete Math, vol. 10, no. 4, pp. 573–598,
1997.

[16] D. B. Shmoys and É. Tardos, “An approximation algorithm
for the generalized assignment problem,” Math program,
vol. 62, no. 1-3, pp. 461–474, 1993.

[17] M. Skutella and G. J. Woeginger, “A ptas for minimizing
the total weighted completion time on identical parallel ma-
chines,” Mathematics of Operations Research, vol. 25, no. 1,
pp. 63–75, 2000.

[18] C. Chekuri and S. Khanna, “A ptas for minimizing weighted
completion time on uniformly related machines,” in ICALP.
Springer, 2001, pp. 848–861.

[19] J. K. Lenstra, D. B. Shmoys, and É. Tardos, “Approximation
algorithms for scheduling unrelated parallel machines,” Math
program, vol. 46, no. 1-3, pp. 259–271, 1990.

[20] O. Svensson, “Santa claus schedules jobs on unrelated ma-
chines,” SIAM Journal on Computing, vol. 41, no. 5, pp.
1318–1341, 2012.

[21] N. Bansal and M. Sviridenko, “The santa claus problem,” in
STOC. ACM, 2006, pp. 31–40.

[22] D. Chakrabarty, J. Chuzhoy, and S. Khanna, “On allocating
goods to maximize fairness,” in FOCS, 2009, pp. 107–116.

[23] B. Haeupler, B. Saha, and A. Srinivasan, “New
constructive aspects of the lovász local lemma,” J.
ACM, vol. 58, no. 6, p. 28, 2011. [Online]. Available:
http://doi.acm.org/10.1145/2049697.2049702

[24] Y. Azar and A. Epstein, “Convex programming for scheduling
unrelated parallel machines,” in STOC, 2005, pp. 331–337.

[25] V. Kumar, M. V. Marathe, S. Parthasarathy, and A. Srinivasan,
“A unified approach to scheduling on unrelated parallel ma-
chines,” J. of ACM, vol. 56, no. 5, p. 28, 2009.

[26] N. Bansal and J. Kulkarni, “Minimizing flow-time on unre-
lated machines,” in STOC, 2015, pp. 851–860.

[27] N. Garg and A. Kumar, “Minimizing average flow-time :
Upper and lower bounds,” in FOCS, 2007, pp. 603–613.

[28] N. Garg, A. Kumar, and V. N. Muralidhara, “Minimizing total
flow-time: The unrelated case,” in ISAAC, 2008, pp. 424–435.

[29] C. Chekuri and S. Khanna, “Approximation algorithms for
minimizing average weighted completion time,” 2004.

146147147


