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Abstract—A (β, ε)-hopset for a weighted undirected n-vertex
graph G = (V,E) is a set of edges, whose addition to the graph
guarantees that every pair of vertices has a path between them
that contains at most β edges, whose length is within 1 + ε
of the shortest path. In her seminal paper, Cohen [8, JACM
2000] introduced the notion of hopsets in the context of parallel
computation of approximate shortest paths, and since then it
has found numerous applications in various other settings, such
as dynamic graph algorithms, distributed computing, and the
streaming model.

Cohen [8] devised efficient algorithms for constructing
hopsets with polylogarithmic in n number of hops. Her con-
structions remain the state-of-the–art since the publication of
her paper in STOC’94, i.e., for more than two decades.

In this paper we exhibit the first construction of sparse
hopsets with a constant number of hops. We also find efficient
algorithms for hopsets in various computational settings, im-
proving the best known constructions. Generally, our hopsets
strictly outperform the hopsets of [8], both in terms of their
parameters, and in terms of the resources required to construct
them.

We demonstrate the applicability of our results for the
fundamental problem of computing approximate shortest paths
from s sources. Our results improve the running time for this
problem in the parallel, distributed and streaming models, for
a vast range of s.
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I. INTRODUCTION

A. Hopsets, Setting and Main Results

We are given an n-vertex weighted undirected graph G =
(V,E, ω). Consider another graph GH = (V,H, ωH) on the

same vertex set V . Define the union graph G′ = G ∪ GH ,

G′ = (V,E′ = E∪H,ω′), where ω′(e) = ωH(e) for e ∈ H ,

and ω′(e) = ω(e) for e ∈ E \ H . For a positive integer

parameter β, and a pair u, v ∈ V of distinct vertices, a β-
limited distance between u and v in G′, denoted d

(β)
G′ (u, v),

is the length of the shortest u-v path in G′ that contains

at most β edges (aka hops). For a parameter ε > 0, and

a positive integer β as above, a graph GH = (V,H, ωH)
is called a (β, ε)-hopset for the graph G, if for every pair

u, v ∈ V of vertices, we have dG(u, v) ≤ d
(β)
G′ (u, v) ≤

(1 + ε) · dG(u, v). (Here dG(u, v) stands for the distance

between u and v in G.) We often refer to the edge set H of

GH as the hopset. The parameter β is called the hopbound
of the hopset.

Hopsets are a fundamental graph-algorithmic construct.

They turn out to be extremely useful for computing approx-

imate shortest paths, distances, and for routing problems

in numerous computational settings, in which computing

shortest paths with a limited number of hops is significantly

easier than computing shortest paths with no limitation

on the number of hops. A partial list of these settings

includes distributed, parallel, streaming and centralized dy-

namic models.

Hopsets were explicitly introduced in Cohen’s seminal

STOC’94 paper [8]. Implicit constructions of hopsets were

given already in the beginning of the 1990’s by Ullman and

Yannakakis [23], Klein and Sairam [16], Cohen [7], and Shi

and Spencer [20]. Cohen [8] showed that for any parameters

ε > 0 and κ = 1, 2, . . ., and any n-vertex graph G, there

exists a (β, ε)-hopset H with |H| = Õ(n1+1/κ) edges,1

where the hopbound β is polylogarithmic in n. Specifically,

it is given by β =
(

logn
ε

)O(log κ)

. Algorithmically, she

showed that given an additional parameter ρ > 0, (β, ε)-
hopsets with

βCoh =

(
log n

ε

)O((log κ)/ρ)

(1)

can be computed in O(|E|·nρ) time in the centralized model

of computation, and in O(β) ·polylog(n) PRAM time, with

O(|E| · nρ) work. She used these hopsets’ constructions to

devise efficient parallel algorithms for computing S × V
(1+ε)-approximate shortest paths (henceforth, (1+ε)-ASP).

Her results for these problems remained the state-of-the-art

in this context up until now, for over two decades.

Despite being a major breakthrough, Cohen’s hopsets

leave much to be desired. Indeed, the only general lower

bound applicable to them is that of [5] (based on [24],

[1]), asserting that there exist n-vertex graphs for which

any (β, ε)-hopset requires Ω(n · log(�β/2�) n) edges, where

log(t) n stands for a t-iterated logarithm. Cohen [8] herself

wrote in the introduction of her paper (the italics are in [8]):

“One intriguing issue is the existence question of sparse

hop sets with certain attributes. In addition, we would like

to construct them efficiently.”

The same motif repeats itself in the concluding section of

her paper, where she writes:

1The notation Õ(f(n)) stands for O(f(n) · logO(1) f(n)).
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“We find the existence of good hop sets to be an

intriguing research problem on its own right.”

In the more than twenty years that passed since Cohen’s [8]

paper was published (in STOC’94), numerous additional

applications of hopsets were discovered, and also some

new constructions of hopsets were presented. Most notably,

Bernstein [4] and Henzinger et al. [14] devised new

constructions of hopsets, and used them for maintaining

approximate shortest paths in dynamic centralized setting.

Nanongkai [19] and Henzinger et al. [15] used hopsets for

computing approximate shortest paths in distributed and

streaming settings. Lenzen and Patt-Shamir [17] and the

authors of the current paper [11] used them for compact

routing. Miller et al. [18] devised new constructions of

hopsets, and used them for approximate shortest paths in

PRAM setting. The hopsets of [4], [14], [19], [15] have

hopbound 2Õ(
√
logn), and size n · 2Õ(

√
logn) · log Λ, where

Λ is the aspect ratio of the graph.2 The hopsets of Miller

et al. [18] have hopbound at least Ω(nα), for a constant

α > 0, and linear size.

We will discuss these results of [4], [14], [19], [15], [18]

in greater detail in the sequel. However, they all fail to

address the fundamental challenge of Cohen [8], concern-

ing the existence and efficient constructability of hopsets

that are strictly and substantially superior to those devised

in [8]. In this paper we build such hopsets. Specifically,

for any ε > 0, κ = 1, 2 . . ., and any n-vertex graph

G = (V,E), we show that there exists a (β, ε)-hopset with

β =
(

log κ
ε

)log κ

, and O(n1+1/κ · log n) edges. Hence, these

hopsets simultaneously exhibit arbitrarily small constant

approximation factor 1 + ε, arbitrarily close to 1 constant

exponent 1+1/κ of the hopset’s size, and constant hopbound

β. In all previous hopsets’ constructions, the hopbound was

at least polylogarithmic in n, in all regimes. Moreover, we

devise efficient algorithms to build our hopsets in various

computational models. Specifically, given a parameter ρ > 0
that controls the running time, our centralized algorithm

constructs a (β, ε)-hopset with O(n1+1/κ · log n) edges in

expected O(|E| · nρ) time, with

β = O

(
1

ε
· (log κ+ 1/ρ)

)log κ+O(1/ρ)

. (2)

Again, we can simultaneously have arbitrarily small constant

approximation 1 + ε, arbitrarily close to 1 hopset’s size

exponent 1 + 1/κ, arbitrarily close to O(|E|) running time

(in the sense O(|E| · nρ), for an arbitrarily small constant

ρ > 0), and still the hopbound β of the constructed hopset

remains constant!

2The aspect ratio of a graph G is defined by the ratio of the largest
distance to the smallest distance in G.

As was mentioned above, in [8] (the previous state-of-

the-art), with the same approximation factor, hopset size and

running time, the hopbound behaves as given in (1). Hence

our result is stronger than that of [8] in a number of senses.

First, the hopbound βCoh is at least polylogarithmic, while

ours is constant. Second, the exponent O((log κ)/ρ) of βCoh

is substantially larger than the exponent log κ + O(1/ρ) in

our β.

The parameters of our hopset also strictly dominate those

of the hopsets of [4], [14], [15]; see below. The hopsets’ con-

struction of [18] is incomparable to ours, as our hopbound

is much better than nΩ(1) of [18], but our hopset’s size is

at least Ω(n log n), while the hopset of [18] has linear size.

At its largest (i.e., when our hopset has size O(n log n)),

our hopbound is bounded by O( log logn+1/ρ
ε )log logn+O(1/ρ).

See Table I for a concise comparison of existing hopsets’

constructions.

B. Hopsets in Parallel, Streaming and Distributed Models

We also devise efficient parallel, distributed and streaming

algorithms for constructing hopsets with constant hopbound.

1) Hopsets in the Streaming Model: In the streaming

model, the only previously known algorithm for constructing

hopsets is that of [15]. Using 2Õ(
√
logn) · log Λ passes over

the stream, and n · 2Õ(
√
logn) · log Λ space, their algorithm

produces a hopset with hopbound β = 2Õ(
√
logn), and size

n · 2Õ(
√
logn) · log Λ. Our streaming algorithm constructs a

hopset with β

β = O

(
log κ+ 1/ρ

ε · ρ
)log κ+O(1/ρ)

, (3)

i.e., it is independent of n. The expected size of the hopset

is O(n1+1/κ · log n), and it uses space O(n1+1/κ · log2 n).
The number of passes is O(nρ · β). Also, by setting κ =

Θ(log n), ρ =
√

log logn
logn , our result strictly dominates that

of [4], [14], [15]; the hopbound and number of passes are

essentially the same, while our space usage and hopset’s size

are significantly better.

2) Hopsets in the PRAM Model: In the PRAM model,

Klein and Sairam [16] and Shi and Spencer [20] (implicitly)

devised algorithms for constructing exact (ε = 0) hopsets

with hopbound β = O(
√
n) of linear size O(n), in parallel

time O(
√
n · log n), and with O(|E| · √n) work. (Work is

the total number of operations performed by all processors

during the algorithm.) Cohen [8] constructed (β, ε)-hopsets

with size n1+1/κ · (log n)O((log κ)/ρ), with hopbound βCoh

given by (1), in parallel time
(

logn
ε

)O((log κ)/ρ)

, using

O(|E| · nρ) work. Her κ and ρ are restricted by κ, 1/ρ =
O(log logn), and thus the resulting hopset is never sparser

than n · 2O( log n
log log n ).

Miller et al. [18] devised two constructions of linear-

size (β, ε)-hopsets, but with very large β. One has β =

Oε(n
4+α
4+2α ), and running time given by the same expression,
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Reference Size Hopbound Run-time

[4], [14], [15] n · 2Õ(
√

logn) · log Λ 2Õ(
√
logn)

[18] O(n) nα, (α = Ω(1))

[8] O(n1+ 1
κ · logn) (logn)

O( log κ
ρ

) |E| · nρ

This paper O(n1+ 1
κ · logn) O

(
log κ+ 1

ρ

)log κ+O( 1
ρ
) |E| · nρ

O(n logn) O(log logn+ 1/ρ)log logn+O(1/ρ) |E| · nρ

Table I
COMPARISON BETWEEN (β, ε)-HOPSETS (NEGLECTING THE DEPENDENCY ON ε). WE NOTE THAT THE HOPSETS OF [4], [14], [15], [18] WERE

DESIGNED FOR CERTAIN COMPUTATIONAL MODELS (I.E., DYNAMIC, STREAMING, DISTRIBUTED). THE SECOND ROW OF OUR RESULT FOLLOWS FROM

THE FIRST ONE BY SUBSTITUTING κ = logn.

and work O(|E| · log3+α n), for a free parameter α. Another

has β = nα, for a constant α, and running time given by

the same expression, and work O(|E| · logO(1/α) n).
Our algorithm has two regimes. In the first regime it

constructs (β, ε)-hopsets with β =
(

logn
ε

)log κ+O(1/ρ)

, with

expected size O(n1+1/κ ·log n), in time
(

logn
ε

)log κ+O(1/ρ)

,

using O(|E| · nρ) work. This result strictly improves upon

Cohen’s hopset [8], as the exponent of β and of the running

time in the latter is O((log κ)/ρ), instead of log κ+O(1/ρ)
in our case. Also, the size of our hopset is smaller than that

of [8] by a factor of O(log n)O((log κ)/ρ).

In the second regime our PRAM algorithm computes a

hopset with constant (i.e., independent of n) hopbound β, but

in larger parallel time. See Table II for a concise comparison

of available PRAM algorithms.

C. Hopsets in Distributed Models

There are two distributed models in which hopsets were

studied in the literature [14], [19], [15], [17], [11]. These are

the Congested Clique model, and the CONGEST model. In

both models every vertex of an n-vertex graph G = (V,E)
hosts a processor, and the processors communicate with one

another in discrete rounds, via short messages. Each message

is allowed to contain an identity of a vertex or an edge,

and an edge weight, or anything else of no larger (up to

a fixed constant factor) size.3 On each round each vertex

can send possibly different messages to its neighbors. The

local computation is assumed to require zero time, and we

are interested in algorithms that run for as few rounds as

possible. (The number of rounds is called the running time.)

In the Congested Clique model, we assume that all vertices

are interconnected via direct edges. In the CONGEST model,

every vertex can send messages only to its G-neighbors,

but we also assume that there is an embedded “virtual”

graph G′ = (V ′, E′, ω), V ′ ⊆ V , known locally to the

vertices. (Every vertex u ∈ V knows at the beginning of

3Typically, in the CONGEST model only messages of size O(logn) bits
are allowed, but edge weights are restricted to be at most polynomial in
n. Our definition is geared to capture a more general situation, when there
is no restriction on the aspect ratio. Hence results achieved in our more
general model are more general than previous ones.

the computation if u ∈ V ′, and if it is the case, then it also

knows the identities of its G′-neighbors.) We remark that

the assumption of embedded graph G′ in the CONGEST

model appears in previous papers on computing hopsets in

distributed setting, that is, in [14], [19], [15], [17], [11].

It is motivated by distributed applications of hopsets, i.e.,

approximate shortest paths computation, distance estimation

and routing, which require a hopset for a virtual graph

embedded in the underlying network in the above way.
Henzinger et al. [15] devised an algorithm for constructing

hopsets in the Congested Clique model. Their hopset has

hopbound β = 2Õ(
√
logn), and size n · 2Õ(

√
logn) · log Λ,

where Λ is the aspect ratio of the embedded graph. The

running time of their algorithm is 2Õ(
√
logn) · log Λ.

Our algorithm, for parameters ε > 0, ρ > 0, κ = 2, 3, . . .,
computes a hopset with β as in (3), with expected size

O(n1+1/κ · log n), in O(nρ · β2) rounds.
Comparing our result to that of [15], we first note that our

hopset achieves a constant (i.e., independent of n) hopbound.

Second, by setting κ = Θ(logn), ρ =
√

log logn
logn , we can

have our hopbound and running time equal to 2Õ(
√
logn),

i.e., roughly the same as, but in fact, slightly better than, the

respective bounds of [15]. Our hopset’s size becomes then

O(n · log n), i.e., much closer to linear than n · 2Õ(
√
logn)

of the hopset of [15].
The situation is similar in the CONGEST model. Denote

by m = |V ′| the size of the vertex set of the embedded graph

G′. The algorithm of [15] computes a hopset with the same

hopbound and size as in the Congested Clique model (with

n replaced by m), and it does so in (D +m) · 2Õ(
√
logm) ·

log Λ time, where Λ is the aspect ratio of G′, and D is the

hop-diameter of G.4 Our algorithm computes a hopset with

(constant) hopbound given by (3), expected size O(m1+1/κ ·
logm), in O((D+m1+ρ) ·β ·mρ) time. (In the full version

we provide stronger but more complicated bounds.) Again,

our hopset can have constant hopbound, while that of [15] is

2Õ(
√
logm). Also, by setting κ = Θ(logm), ρ =

√
log logm
logm ,

we obtain a result, which strictly dominates that of [15].

4The hop-diameter of a graph is the maximum hop-distance between two
vertices. The hop-distance between a pair u, v of vertices is the minimal
number of hops in a path between them.
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Reference Size β = Hopbound Time Work

[16], [20] O(n) O(
√
n) O(

√
n log n) O(|E| · √n)

[18]
O(n) O(n

4+α
4+2α ) O(n

4+α
4+2α ) O(|E| · log3+α n)

O(n) O(nα) (α ≥ Ω(1)) O(nα) O(|E| · logO(1/α) n)

[8] n1+1/κ · (log n)O( log κ
ρ

)
(log n)

O( log κ
ρ

)
(log n)

O( log κ
ρ

)
O(|E| · nρ)

This paper
O(n1+ 1

κ · log n) (log n)
log κ+O( 1

ρ
)

(log n)
log κ+O( 1

ρ
)

O(|E| · nρ)

O(n1+ 1
κ · log n) O

(
log κ+ 1

ρ

ζ

)log κ+O( 1
ρ
)

O(nζ) · β O(|E| · nρ+ζ)

O(n · log n) O
(

log logn+1/ρ
ζ

)log logn+O(1/ρ)

O(nζ) · β O(|E| · nρ+ζ)

Table II
COMPARISON BETWEEN (β, ε)-HOPSETS IN THE PRAM MODEL (NEGLECTING THE DEPENDENCY ON ε). THE HOPSETS OF [16], [20] PROVIDE EXACT

DISTANCES. THE THIRD ROW OF OUR RESULT FOLLOWS FROM THE SECOND ONE BY SUBSTITUTING κ = logn.

D. Applications

Our algorithms for constructing hopsets also give rise to

improved algorithms for the problems of computing (1+ε)-
approximate shortest distances (henceforth, (1+ε)-ASD) and

paths (henceforth, (1+ ε)-ASP). In all settings, we consider

a subset S ⊆ V of origins, and we are interested in distance

estimates or in approximate shortest paths for pairs in S×V .

Denote s = |S|.
Our PRAM algorithm for the (1 + ε)-ASP problem has

running time O
(

logn
ε

)log κ+1/ρ+1

, and uses O(|E|·(nρ+s))

work. Cohen’s algorithm [8] for the same problem has

(parallel) running time O
(

logn
ε

)O((log κ)/ρ)

, and has the

same work complexity as our algorithm. Hence, both our and

Cohen’s algorithms achieve polylogarithmic time and near-

optimal work complexity, but the exponent log κ+ 1/ρ+ 1
of the logarithm in our result is significantly smaller than in

Cohen’s one. The latter is O((log κ)/ρ).

In the distributed CONGEST model, the hopset-based

algorithm of [15] computes single-source (1 + ε)-ASP in

(D +
√
n) · 2Õ(

√
logn) · log Λ time. Using it naively for

S×V (1+ ε)-ASP results in running time of (D+ s ·√n) ·
2Õ(

√
logn) · log Λ. Using our hopsets we solve this problem

in (D+
√
n · s)·2Õ(

√
logn) ·log Λ time. Whenever s = nΩ(1),

we use our hopset with different parameters, and our running

time becomes Õ(D +
√
n · s) · log Λ. We also remark that

if large messages of size nρ are allowed for some constant

ρ > 0, then we can compute single-source (1 + ε)-ASP in

Õ(D+
√
n) · log Λ time, and in the Congested Clique model

we obtain single source (1+ε)-ASP in polylogarithmic time.

In the streaming model, Henzinger et al. [15] devised

a single-source (1 + ε)-ASP streaming algorithm with

2Õ(
√
logn) · log Λ passes, that uses n ·2Õ(

√
logn) · log Λ space.

To the best of our knowledge, the best-known streaming

S×V (1+ ε)-ASP algorithm with this space requirement is

to run the algorithm of [15] for each source separately, one

after another. The resulting number of passes is s·2Õ(
√
logn)·

log Λ. Our algorithm for this problem builds a hopset, whose

parameters depend on s. As a result, our algorithm has an

improved number of passes, particularly when s is large (we

also avoid the dependence on Λ). Our space usage is only

Õ(n) for (1 + ε)-ASD. Moreover, allowing larger space we

can get optimal O(s) passes for any fixed ε > 0 whenever

s = nΩ(1). See the full version [10] for the precise results.

E. Overview of Techniques

In this section we sketch the main ideas used in the

hopsets’ constructions of [8], in [4], [19], [14], [15], and

in our constructions.

Cohen’s algorithm [8] starts with constructing a pairwise

cover C of the input graph [6], [2]. This is a collection of

small-diameter clusters, with limited intersections, and such

that for any path π of length at most W , for a parameter

W , all vertices of π are clustered in the same cluster. For

each cluster C ∈ C, the algorithm inserts into the hopset a

star {(rC , u) | u ∈ C} connecting the center rC of C with

every other vertex of C. In addition, it adds to the hopset

edges connecting centers of large clusters with one another,

and recurses on small clusters.

This powerful approach has a number of limitations. First,

the collection of star edges itself contains O(κ · n1+1/κ)
edges, where κ is a parameter, which controls the hopset’s

size. Each level of the recursion increases the exponent of the

number of edges in the hopset by roughly a factor of κ·n1/κ,

and as a result, the hopset of [8] cannot be very sparse.

Second, each distance scale [2k, 2k+1], k = 0, 1, 2, . . ., re-

quires a separate hopset, and as a result, a separate collection

of covers. This increases the hopset’s size even further, but

in addition, a hopset of scale k + 1 in Cohen’s algorithm

is computed using hopsets of all the lower scales. This

results in accumulation of error, i.e., if the error incurred

by each hopset computation is 1 + ε, the approximation

factor of the ultimate hopset becomes (1 + ε)log Λ. After

rescaling ε′ = ε log Λ, one obtains a hopbound of roughly

(1/ε)� = O( log Λ
ε′ )�, where 	 is the number of levels of

the recursion. As a result, the hopbound in [8] is at least

polylogarithmic in n.

130131131



Another line of works [4], [14], [15], [19] is based on the

distance oracles and emulators5 of Thorup and Zwick [21],

[22]. They build a hierarchy of sampled sets V = A0 ⊃
A1 ⊃ . . . Ak−1 ⊃ Ak = ∅, where for any i = 1, . . . , k − 1,

each vertex v ∈ Ai−1 joins Ai independently at random with

probability n−1/k. For each vertex v ∈ V , one can define the

TZ cluster C(v) by C(v) =
⋃k−1

i=0 {u | u ∈ Ai, dG(u, v) <
dG(u,Ai+1)}. Thorup and Zwick [22] showed that for

unweighted graphs H = {(v, u) | u ∈ C(v)} is a (1+ ε, β)-
emulator with O(k · n1+1/k) edges, and β = O(k/ε)k.

Bernstein and others [4], [14], [15], [19] showed that a

closely related construction provides a hopset. Specifically,

they set k = Θ(
√
log n), and build TZ clusters with respect

to 2Õ(
√
logn)-limited distances. This results in a so-called

restricted hopset, i.e., a hopset H1 that handles 2Õ(
√
logn)-

limited distances. Consequently, all nearly shortest paths

with N hops in G, for some N , translate now into nearly

shortest paths (incurring an approximation factor of 1+ ε of

H1) with N
2Õ(

√
log n)

hops in G ∪H1. Nanongkai [19] called

this operation a hop reduction, as this essentially reduces the

maximum number of hops from n−1 to n/2
√
logn. Then the

hop reduction is repeated for
√
log n times, until a hopset

for all distances is constructed.

This scheme appears to be incapable of providing very

sparse hopsets, as just the invocation of Thorup-Zwick’s

algorithm with κ = Θ(
√
log n) gives n ·2Ω(

√
logn) edges. In

addition, the repetitive application of hop reduction blows up

the hopbound to 2Ω(
√
logn), i.e., the large hopbound appears

to be inherent in this approach.

Our approach combines techniques from [12] for con-

structing (1 + ε, β)-spanners in unweighted graphs with

those of [8], and with a suit of new ideas. To build their

spanners, [12] start with constructing an Awerbuch-Peleg’s

partition P = {C1, . . . , Cq} [3] of the vertex set V into

disjoint clusters of small diameter. (This partition satisfies

an additional property which is irrelevant to this discussion.)

It then sets a distance threshold δ1 and a degree threshold

deg1. Every cluster C ∈ P that has at least deg1 unclustered

clusters C ′ ∈ P in its δ1-vicinity creates a supercluster

which contains C and these clusters. (At the beginning

all clusters are unclustered. Those that join a supercluster

become clustered.) This superclustering step continues until

no additional superclusters can be formed. All the remaining

unclustered clusters which are at pairwise distance at most

δ1 are now interconnected by shortest paths in the spanner.

This is the interconnection step of the algorithm. Together

the superclustering and interconnection steps from a single

phase of the algorithm. Once the first phase is over, the same

process (interleaving superclustering and interconnection) is

repeated with new distance and degree thresholds δ2 and

5A graph G′ = (V ′, E′, ω′) is called a (1 + ε, β)-emulator of an
unweighted graph G = (V,E), if V ⊆ V ′, and for every pair of u, v ∈ V
of vertices, it holds that dG′ (u, v) ≤ dG(u, v) ≤ (1 + ε)dG(u, v) + β.
If G′ is a subgraph of G, then G′ is called a (1 + ε, β)-spanner of G.

deg2, respectively, on the set of superclusters of the previous

phase. The sequences δ1, δ2, . . . and deg1, deg2, . . . are set

carefully to optimize the parameters of the resulting spanner.

The basic variant of our hopset construction considers

each distance scale [2k, 2k+1], k = 0, 1, 2, . . ., separately

(w.l.o.g we assume all weights are at least 1). Instead of

Awerbuch-Peleg’s partition, we use the partition P = {{v} |
v ∈ V } into single vertices. We set the distance threshold

δ1 to roughly 2k/β = 2k/(1/ε)�, where 	 is the number

of phases of the algorithm, and raise it by a factor of

1/ε on every phase. The degree thresholds are also set

differently from the way they were set in [12]. This is

because, intuitively, the hopset contains less edges than the

spanner, as the hopset can use a single edge where a spanner

needs to use an entire path. Hence the degree sequence that

optimizes the hopset’s size is different than the one that

optimizes the spanner’s size.

The superclustering and interconnection steps are also

implemented in a different way than in [12], because of

efficiency considerations. The algorithm of [12] is not partic-

ularly efficient, and there are no known efficient streaming,

distributed or parallel implementation of it. 6 On phase i
we sample clusters C ∈ P independently at random with

probability 1/deg i. The sampled clusters create superclusters

of radius δi around them. Then the unclustered clusters

of P which are within distance δi/2 from one another

are interconnected by hopset edges. Note that here the

superclustering distance threshold and the interconnection

distance thresholds differ by a factor of 2. This ensures

that all involved Dijkstra explorations can be efficiently

implemented. We also show that the overhead that this

factor introduces to the resulting parameters of our hopset

is insignificant.

Our approach (interleaving superclustering and intercon-

nection steps) to constructing hopsets was not previously

used in the hopsets’ literature [8], [4], [14], [19], [15].

Rather it is adapted from [12]. The latter paper deals with

nearly-additive spanners for unweighted graphs. We believe

that realizing that the technique of [12] can be instrumental

for constructing drastically improved hopsets, and adapting

that technique from the context of near-additive spanners

for unweighted graphs to the context of hopsets for general

graphs is our main technical contribution.

To construct a hopset for all scales, in the centralized

setting we simply take the union of the single-scale hopsets.

In parallel, distributed and streaming settings, however, Dijk-

stra explorations for large scales could be too expensive. To

remedy this, we rely on lower-scales hopsets for computing

the current scale, like in Cohen’s algorithm. On the other

6The algorithms of [9], [13] that construct (1 + ε, β)-spanners in
distributed and streaming settings are not based on superclustering and
interconnection technique. Rather they are based on a completely different
approach, reminiscent to that of [8], i.e., they build covers, and recurse in
small clusters.
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hand, a naive application of this approach results in polylog-

arithmic hopbound β. To achieve constant (i.e., independent

of n) hopbound β, we compute in parallel hopsets for many

different scales, using the same low-scale hopset for distance

computations. This results in a much smaller accumulation

of error than in Cohen’s scheme, but requires larger running

time. (Roughly speaking, computing a scale-t hopset using

scale-s hopset, for t > s, requires time proportional to 2t−s.)

We carefully balance this increase in running time with other

parameters, to optimize the attributes of our ultimate hopset.

Finally, one needs to replace the logarithmic dependence

on the aspect ratio Λ, by the same dependence on n. Cohen’s

results [8] do not have this dependence, as they rely on a

PRAM reduction of Klein and Sairam [16]. However, Klein

and Sairam [16] (see also [7] for another analysis) analyzed

this reduction for single-source distance estimation, while

in the hopset’s case one needs to apply it to all pairs. The

distributed and streaming hopsets’ constructions [4], [14],

[15], [19] all have a dependence on log Λ.

We develop a new analysis of Klein-Sairam’s reduction,

which applies to the hopsets’ scenario. We also show that

the reduction can be efficiently implemented in distributed

and streaming settings.

II. PRELIMINARIES

Let G = (V,E) be a weighted graph on n vertices with

diameter Λ, we shall assume throughout that edge-weights

are positive integers. Let dG be the shortest path metric on

G, and let d
(t)
G be the t-limited distance, that is, for u, v ∈ V ,

d
(t)
G (u, v) is the minimal length of a path between u, v that

contains at most t edges (set d
(t)
G (u, v) = ∞ if there is no

such path). Note that d
(t)
G is not a metric.

III. HOPSETS

We show here the centralized (i.e., sequential) construc-

tion of our hopsets, and defer the other results to the full

version.

Let G = (V,E) be a weighted graph on n vertices with

diameter Λ. Fix parameters κ ≥ 1, 0 < ε < 1/10 and

1/κ ≤ ρ < 1/2. Recall that κ governs the sparsity of

the hopset, ε governs its stretch, and ρ governs the running

time. The parameter β, which governs the hopbound, will

be determined later as a function of n,Λ, κ, ρ, ε. (Λ stands

for the aspect ratio.) We build separately a hopset Hk for

every distance range (2k, 2k+1], for k ≤ log Λ. We will call

such a hopset Hk a single-scale hopset.

Denote R̂ = 2k+1. For R̂ ≤ β = (1/ε)�, where 	 is the

number of levels of the construction (to be determined), an

empty hopset Hk = ∅ does the job. (Indeed, for dG(u, v) ≤
R̂ ≤ β, we have d

(β)
G∪Hk

(u, v) = d
(β)
G (u, v) = dG(u, v), for

Hk = ∅.) Hence we assume that k > log β− 1, i.e., R̂ > β.

The algorithm initializes the hopset Hk as an empty set,

and proceeds in phases. It starts with setting P̂0 = {{v} |

v ∈ V } to be the partition of V into singleton clusters. The

partition P̂0 is the input of phase 0 of our algorithm. More

generally, P̂i is the input of phase i, for every index i in

a certain appropriate range, which we will specify in the

sequel.

Throughout the algorithm, all clusters C that we will

construct will be centered at designated centers rC . In

particular, each singleton cluster C = {v} ∈ P̂0 is centered

at v. We define Rad(C) = max{dG(C)(rC , v) | v ∈ C},
and Rad(P̂i) = maxC∈P̂i

{Rad(C)}.
All phases of our algorithm except for the last one consist

of two steps. Specifically, these are the superclustering and

the interconnection steps. The last phase contains only the

interconnection step, and the superclustering step is skipped.

We also partition the phases into two stages. The first stage

consists of phases 0, 1, . . . , i0 = �log(κρ)�, and the second

stage consists of all the other phases i0 + 1, . . . , i1 where

i1 = i0 +
⌈
κ+1
κρ

⌉
− 2, except for the last phase 	 = i1 + 1.

The last phase will be referred to as the concluding phase.

Each phase i accepts as input two parameters, the distance

threshold parameter δi, which determines the range of the

Dijkstra explorations, and the degree parameter deg i, which

determines the sampling probability. The difference between

stage 1 and 2 is that in stage 1 the degree parameter grows

exponentially, while in stage 2 it is fixed. The distance

threshold parameter grows in the same steady rate (increases

by a factor of 1/ε) all through the algorithm.

The distance thresholds’ sequence is given by α = ε� · R̂,

δi = α(1/ε)i + 4Ri, where R0 = 0 and Ri+1 = δi + Ri =
α(1/ε)i + 5Ri, for i ≥ 0. It follows that R1 = α, and by

estimating the recurrence we obtain Ri ≤ 2 · α · (1/ε)i−1.

The degree sequence in the first stage of the algorithm is

given by deg i = n2i/κ, for i = 0, 1, . . . , i0. We then use

deg i = nρ in all subsequent phases i0 + 1, . . . , i1. Finally,

on phase 	 = i1 + 1 we perform just the interconnection

step. Note that 	 ≥ 2 since ρ < 1/2.

Next we take a closer look on the execution of phase i,
i = 0, 1, 2, . . . , 	−1. At the beginning of the phase we have

a collection P̂i of clusters, of radius 2α ·(1/ε)i−1, for i ≥ 1,

and radius 0 for i = 0. (It will be shown in Claim III.1 that

Rad(P̂i) ≤ Ri = 2α ·(1/ε)i−1, for all i = 0, 1, . . . , 	.) Each

of these clusters is now sampled with probability 1/deg i,
i.a.r.. The resulting set of sampled clusters is denoted Si.
We then initiate a single Dijkstra exploration in G rooted at

the set Roots = {rC | C ∈ Si} of cluster centers of sampled

clusters. The Dijkstra exploration is conducted to depth δi.
Let Fi denote the resulting forest.

Let C ′ ∈ P̂i\Si be a cluster whose center rC′ was reached

by the exploration, and let rC , for some cluster C ∈ Si,
be the cluster center such that rC′ belongs to the tree of

Fi rooted at rC . We then add an edge (rC , rC′) of weight

ω(rC , rC′) = dG(rC , rC′) into the hopset Hk, which we are

now constructing. A supercluster Ĉ rooted at rĈ = rC is
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now created. It contains all vertices of C and of clusters C ′

as above. This completes the description of the supercluster-

ing step. The resulting set Ŝi of superclusters becomes the

next level partition P̂i+1, i.e., we set P̂i+1 ← Ŝi.
Claim III.1. Fix any cluster C ∈ P̂i with center rC . Then
for any u ∈ C there is a path in Hk of at most i edges from
rC to u of length at most Ri.

Proof: The proof is by induction on i, the basis i = 0
holds as C is a singleton. Assume it holds for i, and fix any

Ĉ ∈ P̂i+1 and u ∈ Ĉ. Recall that Ĉ consists of a sampled

cluster C ∈ Si, and clusters C ′ ∈ P̂i for which the Dijkstra

exploration to range δi from rC reached their center rC′ .
Assume u ∈ C ′ (the case where u ∈ C is simpler). Then by

induction there is a path of length at most Ri from rC′ to

u in Hk of i hops, and by construction we added the edge

(rC , rC′) of weight dG(rC , rC′) into the hopset Hk. This

implies a path of i+ 1 hops and length at most

δi +Ri = Ri+1 .

Let Ûi denote the set of P̂i clusters which were not

superclustered into Ŝi clusters. These clusters are involved

in the interconnection step. Specifically, each of the cluster

centers rC , C ∈ Ûi, initiates now a separate Dijkstra

exploration to depth 1
2δi = 1

2α · (1/ε)i + 2Ri. For any

cluster center rC′ of a cluster C ′ ∈ Ûi such that rC′ was

discovered by an exploration originated at rC , we now insert

an edge (rC , rC′) into the hopset, and assign it weight

ω(rC , rC′) = dG(rC , rC′). This completes the description

of the interconnection step.

Lemma III.2. For any vertex v ∈ V , the expected number
of explorations that visit v at the interconnection step of
phase 0 ≤ i ≤ i1 is at most deg i.

Proof: For 0 ≤ i ≤ i1, assume that there are l clusters

of P̂i within distance δi/2 from v. If at least one of them

is sampled to Si, then no exploration will visit v (since in

the superclustering phase the sampled center will explore to

distance δi, and thus all these l cluster will be superclustered

into some cluster of Ŝi). The probability that none of them

is sampled is (1 − 1/deg i)
l, in which case we get that l

explorations visit v, so the expectation is l · (1− 1/deg i)
l ≤

deg i for any l.
We analyze the number of clusters in collections P̂i in

the following lemma.

Lemma III.3. Assuming nρ = ω(1), with high probability,
for every i = 0, 1, . . . , i0 + 1 we have

|P̂i| ≤ 2 · n1− 2i−1
κ , (4)

and for i = i0 + 2, . . . , i1 + 1,

|P̂i| ≤ 2 · n1+1/κ−(i−i0)ρ .

Proof: For the first assertion, the probability that a

vertex v ∈ V will be a center of a cluster in P̂i is∏i−1
j=0 1/degj = n−(2i−1)/κ. Thus the expected size of P̂i is

n1−(2i−1)/κ, and as these choices are made independently,

by Chernoff bound,

Pr[|P̂i| ≥ 2E[|P̂i|]] ≤ exp{−Ω(E[|P̂i|])}
= exp{−Ω(n1− 2i−1

κ )} .

Since for ρ < 1/2 and i ≤ i0 + 1 = �log ρκ� + 1, we

have n1− 2i−1
κ ≥ n1−2ρ = ω(log n), we conclude that whp

for all 0 ≤ i ≤ i0 + 1, |P̂i| ≤ 2n1− 2i−1
κ . In particular,

|P̂i0+1| = O(n1−ρ+1/κ).
For the second assertion, consider any i ∈ [i0+2, i1+1],

the expected size of P̂i is

E[|P̂i|] = n ·
i−1∏
j=0

1/degj ≤ n1+1/κ−ρ−(i−1−i0)ρ

= n1+1/κ−(i−i0)ρ .

Since n1+1/κ−(i−i0)ρ ≥ nρ for any i ≤ i1, by Chernoff

bound with probability at least 1− exp{−Ω(nρ)} (which is

1− o(1) by our assumption on nρ), we have

|P̂i| ≤ 2 · n1+1/κ−(i−i0)ρ .

This lemma implies that whp

|P̂i1+1| ≤ O(n1+1/κ−(i1+1−i0)ρ) (5)

= O(n1+1/κ−(�κ+1
κρ 	−1)ρ) = O(nρ) .

For the assumption of the Lemma above to hold, we will

need to assume that ρ ≥ log logn
2 logn , say. We will show soon

that this assumption is valid in our setting.

The running time required to implement the single Di-

jkstra exploration in the superclustering of phase i is

O(|E| + n log n), while in the interconnection step, by

Lemma III.2 every vertex is expected to be visited by at

most deg i explorations, so the expected running time of

phase 0 ≤ i ≤ i1 is O(|E| + n log n) · deg i. Recall that

in the last phase i1 + 1 there is no superclustering step, but

as (5) implies, there are whp only O(nρ) clusters, so each

vertex will be visited at most O(nρ) times. Thus the total

expected running time is

O(|E|+ n log n) ·
(

�−1∑
i=0

(deg i) + nρ

)

= O(|E|+ n log n) ·
(

i0∑
i=0

(n2i/κ) + (i1 − i0)n
ρ

)

= O(|E|+ n log n) · (n2i0/κ + nρ/ρ)

= O(|E|+ n log n) · nρ/ρ .
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The size of the hopset Hk that was constructed by this

algorithm is dominated by the number of edges inserted

by the interconnection steps, since all the edges inserted at

superclustering steps induce a forest. Due to Lemma III.2,

the expected number of edges inserted by the interconnection

step of phase i is at most O(|P̂i| · deg i) = O(n1+1/κ), for

i ≤ i0, and
∑�+1

i=i0+1 O(|P̂i| · deg i) = O(n1+1/κ) edges on

the later phases. Hence overall E(|Hk|) = O(n1+1/κ ·log κ).
We remark that the factor log κ can be eliminated from the

hopset size by using a refined degree sequence, at the cost of

increasing the number of phases by 1 (this will increase the

exponent of β by 1). We elaborate on this in the full version

of the paper. Then the number of edges contributed to the

hopset Hk by all interconnection steps becomes O(n1+1/κ).

Next we analyze the stretch and the hopbound of Hk.

Write H = Hk. Observe that, by Claim III.1, Rad(Û0) =
R0 = 0, and, for all i ∈ [1, 	], Rad(Ûi) ≤ Rad(P̂i) ≤
Ri ≤ 2α(1/ε)i−1. Write c = 2. Note also that for any

pair of distinct clusters C,C ′ ∈ Ûi, for any i, which

are at distance dG(C,C
′) ≤ 1

2α · (1/ε)i, it holds that

dG(rC , rC′) ≤ dG(C,C
′)+2Ri ≤ 1

2α(1/ε)
i+2 ·Ri =

1
2δi.

Hence for every pair of clusters C,C ′ as above, an edge

(rC , rC′) of weight ω(rC , rC′) = dG(rC , rC′) belongs to

the hopset.

Observe that Û =
⋃�

i=0 Ûi is a partition of G. For any i,

we denote Û (i) =
⋃i

j=0 Ûj .

Lemma III.4. Let x, y be a pair of vertices with dG(x, y) ≤
1
2α · (1/ε)i and such that all vertices of a shortest path
π(x, y) in G between them are clustered in Û (i), for some
i ≤ 	. Then it holds that

d
(hi)
G∪H(x, y) ≤ dG(x, y)(1 + 16c(i− 1)ε) + 8αc(1/ε)i−1 ,

(6)

with hi given by h0 = 1, and hi+1 = (hi + 1)(1/ε + 2) +
2i+ 5.

Proof: The proof is by induction on i. The base case

is the case i = 0.

Base case: We assume dG(x, y) ≤ 1
2α and all vertices

of π(x, y) are clustered in Û0, then there is an edge (x, y)
in H with ω(x, y) = dG(x, y), and indeed

d
(h0)
G∪H(x, y) = dG(x, y) ≤ dG(x, y)(1−16cε)+8αc(1/ε)−1 .

Step: We assume the assertion of the lemma for some

index i, and prove it for i+ 1.

Consider first a pair u, v of vertices such that all vertices of

π(u, v) are clustered in Û (i), for a fixed i < 	, without any

restriction on dG(u, v).

We partition π(u, v) into segments L1, L2, . . . of length

roughly 1
2 · α · (1/ε)i each in the following way. The first

segment L1 starts at u, i.e., we write u = u1. Given a left

endpoint up, p ≥ 1, of a segment Lp, we set the right

endpoint vp of Lp to be (if exists) the farthest vertex of

π(u, v) from up which is closer to v than up, and such that

dG(up, v) ≤ 1
2 · α · (1/ε)i.

If vp does not exist then the pth segment Lp is declared

as void, and we define vp = up+1 to be the neighbor of up

on π(u, v) which is closer to v. If vp does exist, then up+1

is (if exists) the ”right” neighbor of vp on π(u, v), i.e., the

neighbor of vp which is closer to v than vp is. (It may not

exist only if vp = v.) Observe that in either case, if up+1

exists then dG(up, up+1) >
1
2 · α · (1/ε)i.

We also define extended segments L̂p in the following

way. If Lp is a void segment, then we define L̂p = Lp.

Otherwise L̂p is the segment of π(u, v) connecting up with

up+1, if up+1 exists, and with vp otherwise. (This may be

the case only if Lp = L̂p is the last, i.e., the rightmost,

segment of the path π(u, v).)

Observe that every non-void extended segment L̂p, except

maybe the last one, has length at least 1
2 ·α·(1/ε)i, and every

segment Lp has length at most 1
2 · α · (1/ε)i.

Next we construct a path π′(u, v) in G ∪ H , which has

roughly the same length as π(u, v), but consists of much

fewer hops. Consider a segment Lp, with left endpoint up

and right endpoint vp, and its extended segment L̂p with

right endpoint up+1. We define a substitute segment L′p in

G ∪ H , connecting up with up+1 with a few hops, and of

roughly the same length.

If Lp is a void segment then L′p is just the single edge

(up, up+1), taken from E = E(G). Observe that for a void

segment,

ω(L̂p) = ω(Lp) = ω(up, up+1) = dG(up, up+1) .

Otherwise, if Lp is not a void segment, then dG(up, vp) ≤
1
2 ·α·(1/ε)i. Observe also that since all vertices of π(u, v) are

Û (i)-clustered, this is also the case for the subpath π(up, vp).
Hence the induction hypothesis is applicable to this subpath,

and so there exists a path π′(up, vp) in G∪H with at most

hi hops, such that

ω(π′(up, vp)) ≤ dG(up, vp)·(1+16c(i−1)ε)+8αc(1/ε)i−1 .

We define L′p to be the concatenation of π′(up, vp) with the

edge (vp, up+1). (This edge is taken from G.) Since vp lies

on a shortest path between up and up+1, it follows that

ω(L′p) ≤ (1+16c(i− 1)ε) · dG(up, up+1)+8αc(1/ε)i−1 ,

and L′p contains up to hi + 1 hops.

Finally, our ultimate path π′(u, v) is the concatenation of

all the substitute segments L′1◦L′2◦. . .◦L′q , where π(u, v) =

L̂1 ◦ L̂2 ◦ . . . ◦ L̂q . Since each extended segment has length
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at least 1
2α · (1/ε)i−1 we conclude that

d
((hi+1)·� dG(u,v)

1
2
α(1/ε)i

	)
G∪H (u, v)

≤ dG(u, v)(1 + 16c(i− 1)ε) +

⌈
dG(u, v)
1
2α(1/ε)

i

⌉
· 8αc
εi−1

≤ dG(u, v)

(
1 + 16c(i− 1)ε+

8αc/εi−1

1
2α/ε

i

)
+

8αc

εi−1

= dG(u, v)(1 + 16ciε) +
8αc

εi−1
. (7)

Now consider x, y such that dG(x, y) ≤ 1
2α · (1/ε)i+1 and

such that π(x, y) is Û (i+1)-clustered. Let z1 and z2 denote

the leftmost and the rightmost Ûi+1-clustered vertices on

this path, and denote by C1 and C2 their respective clusters.

Denote also r1 = rC1
, r2 = rC2

. (If z1 and z2 do not exist,

then π(x, y) is Û (i)-clustered, and this case was already

taken care of.) Denote also by w1 (resp., w2) the neighbor

of z1 (resp., z2) on the subpath π(x, z1) (resp., π(z2, y)) of

π(x, y).
The path π′(x, y) in G∪H between x and y is constructed

in the following way. By (7), we can reach from x to w1

while incurring a multiplicative stretch of (1 + 16ci · ε) and

an additive error of 8 · α · c · (1/ε)i−1, and using at most

b1 = (hi + 1) · �dG(x,w1)
1
2α(1/ε)

i � hops. The same is true for the

pair w2, y, except that the required number of hops is at

most b2 = (hi + 1) · �dG(w2,y)
1
2α(1/ε)

i �. Finally, the path π′(x, y)
connects w1 with w2 via edges (w1, z1), (z2, w2) that belong

to E(G), the edge (r1, r2) of the hopset H , and the paths

π(z1, r1), π(r2, z2) (each of i+1 hops) in H given by Claim

III.1. Hence

d
(hi+1)
G∪H (x, y)

≤ d
(b1)
G∪H(x,w1) + d

(1)
G (w1, z1) + d

(i+1)
G (z1, r1)

+d
(1)
H (r1, r2) + d

(i+1)
G (r2, z2) + d

(1)
G (z2, w2)

+d
(b2)
G∪H(w2, y)

≤ (1 + 16ciε)dG(x,w1) + dG(w1, z1) +Ri+1

+(dG(z1, z2) + 2Ri+1) + Ri+1 + dG(z2, w2)

+(1 + 16ciε)dG(w2, y) + 2(8αc(1/ε)i−1)

≤ (1 + 16ciε)dG(x, y) + 4αc(1/ε)i + 16αc(1/ε)i−1

≤ (1 + 16ciε)dG(x, y) + 8αc(1/ε)i ,

where the required number of hops indeed satisfies

(hi + 1)

(
� dG(x,w1)
1
2α · (1/ε)i

�+ � dG(w2, y)
1
2α · (1/ε)i

�
)
+ 2i+ 5

≤ (hi + 1)

(
dG(x, y)
1
2α(1/ε)

i
+ 2

)
+ 2i+ 5

≤ (hi + 1)(1/ε+ 2) + 2i+ 5

= hi+1 . (8)

The recursive equation hi+1 = (hi+1)(1/ε+2)+2i+5
solves to hi ≤ 3 · (1/ε + 2)i, for ε < 1/10, i.e., h� ≤
3 · (1/ε+ 2)�. Write ζ = 16c(	+ 1) · ε and β = 2h� + 1 ≤
6 · (1/ε+ 2)� + 1.

Corollary III.5. Let x, y ∈ V be such that dG(x, y) ∈
(R̂/2, R̂]. Then

d
(β)
G∪H(x, y) ≤ (1 + ζ) · dG(x, y) .

Proof: Let π(x, y) be the shortest path in G between

x, y. By a similar (and simpler) argument to the one ap-

pearing in Lemma III.4, one can see that there exists an

edge (u, v) ∈ E such that both u, v are on π(x, y), and

also dG(x, u) ≤ R̂/2 and dG(y, v) ≤ R̂/2. Applying

Lemma III.4 on these pairs with i = 	, recalling that
1
2α · (1/ε)� = R̂/2 and that every vertex is clustered in

Û (�), it follows that

d
(h�)
G∪H(x, u) ≤ dG(x, u)(1 + 16c(	− 1) · ε) + 8c · ε · R̂ .

Similarly also

d
(h�)
G∪H(y, v) ≤ dG(x, u)(1 + 16c(	− 1) · ε) + 8c · ε · R̂ .

Since β = 2h� + 1 and (u, v) ∈ E, we obtain

d
(β)
G∪H(x, y)

≤ d
(h�)
G∪H(x, u) + d

(1)
G (u, v) + d

(h�)
G∪H(y, v)

≤ (dG(x, u) + dG(u, v) + dG(v, y))(1 + 16c(	− 1)ε)

+16cεR̂

≤ dG(x, y) · (1 + 16c(	− 1) · ε) + 32c · ε · dG(x, y)
= dG(x, y) · (1 + ζ) .

Recall that 	 = �log(κρ)� + �κ+1
ρκ � − 1 ≤ log(κρ) +

�1/ρ� is the number of phases of the algorithm (for the

sake of brevity, from now on we shall ignore the ceiling

of 1/ρ). When we rescale ε = ζ as the strech factor then

β = O(	/ε)� = O
(

log κ+1/ρ
ε

)log κ+1/ρ

.

Our ultimate hopset H is created by H ← ⋃
k>log β−1 Hk,

i.e., H is the union of up to �log Λ� hopsets, each of

which takes care of its own distance range. As a result, the

number of edges in H is O(n1+1/κ · log Λ), and its expected

construction time is O((|E| + n log n) · nρ/ρ · log Λ). In

the full version of the paper we show how to remove the

dependence on the aspect ratio Λ, and replace it with n,

which yields the following result.

Theorem III.6. For any graph G = (V,E, ω) with n
vertices, 2 ≤ κ ≤ (log n)/4, 1/2 > ρ ≥ 1/κ, and
0 < ε ≤ 1, our algorithm constructs a (β, ε)-hopset H with
O(n1+1/κ · log n) edges in expectation, in time O((|E| +
n log n)(nρ/ρ · log n)), with β = O

(
log κ+1/ρ

ε

)log κ+1/ρ

.

Finally, we note that our assumption that ρ >
log logn/(2 logn) is justified, as otherwise we get β ≥ n,
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in which case an empty hopset will do. Also ε ≤ 1, because

we rescaled it by a factor of 16c(	+ 1) > 10.
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