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Abstract—We give a new, strongly polynomial algorithm and
improved analysis of the metric s-t path TSP. It finds a tour of
cost less than 1.53 times the optimum of the subtour elimination
LP, while known examples show that 1.5 is a lower bound for
the integrality gap.

A key new idea is the deletion of some edges of Christofides’
trees, and we show that the arising “reconnection” problems
can be solved for a minor extra cost. On the one hand our
algorithm and analysis extend previous tools, at the same
time simplifying the framework. On the other hand new tools
are introduced, such as a flow problem used for analyzing
the reconnection cost, and the use of a set of more and
more restrictive minimum cost spanning trees, each of which
can still be found by the greedy algorithm. The latter leads
to a simple Christofides-like algorithm completely avoiding
the computation of a convex combination of spanning trees.
Furthermore, the 3/2 target-bound is easily reached in some
relevant new cases.
keywords: path traveling salesman problem (TSP), approximation
algorithm, integrality gap, Christofides’ heuristic, matching theory, the
Chinese postman problem, T -joins, polyhedra, matroids

I. INTRODUCTION

In the Traveling Salesman Problem (TSP), we are given

a set V of n “cities”, a cost function c :
(
V
2

) → Q>0, and

the goal is to find a tour of minimum cost that starts and

ends in the same city and visits each city exactly once. This

“minimum length Hamiltonian circuit” problem is one of the

most well-known problems of combinatorial optimization. It

is not only NP-hard to solve but also to approximate, and

even for quite particular lengths, since the Hamiltonian cycle

problem in 3-regular graphs is NP-hard [10].

A condition on the cost function that helps in theory and is

often satisfied in practice is known as the triangle inequality

in complete graphs. A nonnegative function on the edges

that satisfies this inequality is called a metric function. For

a thoughtful and entertaining account of the difficulties and

successes of the TSP, see Bill Cook’s book [4].

If the cost function is a metric, we may relax the problem

into finding a Eulerian sub-multigraph (V,E∗) of minimum

cost
∑

e∈E∗ c(e), since an Eulerian trail can be shortcut to

a tour without increasing the cost, with edge-multiplicities

0, 1 or 2.

Christofides [3] gave a very simple 3
2 -approximation

algorithm for the metric TSP: he separated the problem

into finding a minimum cost connected subgraph (minimum

cost spanning tree) and completing this tree to an Eulerian

subgraph, by correcting the parity of the constructed tree,

S, i.e., by adding a minimum cost TS-join, where TS is

the set of vertices that have odd degree in S (Chinese

postman problem). Wolsey [20] observed that Christofides

actually finds a solution that can be similarly bounded with

the optimum of the well-known subtour elimination linear

program (LP) that was introduced by Dantzig, Fulkerson and

Johnson [5]:

Min c(x) :=
∑

e∈(V2)
c(e)x(e)

subject to: ∑
e∈δ({i})

x(e) = f({i}), for all i ∈ V,

∑
e∈δ(U)

x(e) ≥ f(U), for all ∅ � U � V,

x(e) ≥ 0, for all e ∈
(
V

2

)
,

where f(U) ≡ 2 for all sets U , and δ(U) = {{i, j} ∈
E : i ∈ U, j �∈ U}. The first set of constraints impose the

condition that every vertex is visited once, and the second set

of constraints, known as the subtour elimination constraints,

ensure that every subset is visited at least once. Let x∗

denote an optimal solution to the subtour elimination LP, and

OPTLP := OPTLP (c) := c(x∗) the optimal objective value.

The integrality gap is the worst-case ratio, over all metric

cost functions, of the cost of the optimal tour to OPTLP .

Wolsey [20] observed that n−1
n x∗ is in the the spanning

tree polytope, and that x∗/2 is in the T -join polyhedron for

any set T of even size, which implies that the integrality

gap of the subtour elimination LP is at most 3
2 .

Despite significant effort, no improvement is known for

either the approximation ratio or the integrality gap.
A relevant generalization of the (metric) TSP is the

(metric) s−t path TSP, where s, t ∈ V are part of the input.
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The salesman starts in s, ends in t, and needs to visit every

city once. In other words, the goal is to find a Hamiltonian

path from s to t of minimum cost. The special case s = t
is the regular traveling salesman problem. When s �= t, the

subtour elimination LP for the s − t path TSP is as above,

but now defining f(U) = 1 if |U∩{s, t}| = 1 and f(U) = 2
otherwise.

In this paper, we describe a new, combinatorial, strongly

polynomial algorithm and improved analysis with the new

approximation and integrality ratio 3/2+1/34 for the metric

s − t path traveling salesman problem. To achieve this, we

also need to delete edges from Christofides’ trees, in the

hope that they will be automatically reconnected during

parity correction; however, this is not always the case,

and whenever it is not, we also need to invest separately

in reconnection. We deal with this in the algorithm by

anticipating the cost of reconnection in the cost of the parity

connecting T -joins we anticipate the cost of reconnection;

when analyzing it, we use an LP for defining the distribution

of a random choice for the reconnecting edges.

To the best of our knowledge, the first relevant occurrence

of s �= t is in an exercise in [13]. Hoogeveen [12] provides

a Christofides-type approximation algorithm for the metric

case, with an approximation ratio of 5/3 rather than 3/2.

There had been no improvement until An, Kleinberg and

Shmoys [1], [2] improved this ratio to 1+
√
5

2 < 1.618034
with a simple algorithm and an ingenious new framework

for the analysis. The algorithm in [1], [2] is the best-of-many
version of Christofides’ algorithm. It first determines a min-

imum cost solution x∗ of the subtour elimination LP. Then

writing x∗ as a convex combination of spanning trees and

adding Christofides’ parity correction for each, the algorithm

outputs the best of the arising solutions. The best-of-many

algorithm was used by subsequent publications and is also

used in the present work with some modification; mainly, we

alter Christofides’ algorithm by deleting certain edges from

the spanning tree (see Section II), and by then correcting

both parity and connectivity. Deletion has been already used

for other versions of the TSP by Mömke and Svensson in a

different, ingenious way avoiding disconnection [14], [15].

The novel method we develop disconnects and reconnects

each of the occurring trees.

To analyze the best-of-many algorithm, An, Kleinberg and

Shmoys [1] come up with a certain “master formula” to

bound the average parity correction cost, that was also used

in subsequent publications. Sebő [17] improved the analysis

further by separating each spanning tree in the convex

combination into an s − t path and its complement. This

separation makes it possible to use a simple and transparent

master formula (see (5) in Section III), but, surprisingly,

until now the original, quite involved one was used by all

the papers on s− t path TSP following [1].

Moreover, p∗ can be further decomposed: it bounds from

above a sum of naturally arising vectors important for parity

correction [17] (denoted by xQ, see the details later on).

These vectors are getting an extended role in the present

paper for analyzing the economies of deletion (Section III).

For the s − t path TSP on “graph metrics”, that is, cost

functions that are defined as the shortest path distances on

a given unweighted graph, Gao [8] proves the existence of

a tree in the support of LP solution x∗ that has exactly

one edge in so-called narrow cuts (see Section II below).

For such a tree, it is possible to bound the cost of the

parity correction by c(x∗)/2, as in Wolsey’s version of

Christofides’ analysis. This allows Gao to give a very elegant

proof of the approximation ratio 3/2 for graph metrics, a

result that was first shown by [18] with a combinatorial, but

more difficult proof.

For arbitrary metrics, the interesting idea of choosing
the convex combination of spanning trees in a particular
way was introduced in Vygen [19]. The claimed progress

in the ratio was only 0.001, but the reassambling of trees

S ∈ S which participate in the convex combination by local

changes is further developed by Gottschalk and Vygen [11].

They generalize the concept of Gao-trees, and the reas-

sambling leads to a powerful result: a convex combination

using generalized Gao-trees. Although the use of local

changes in Gottschalk and Vygen’s proof of the existence

of the convex combination is constructive, the algorithm

it implies is not a polynomial time algorithm. Kanstantsin

Pashkovich pointed out that this convex combination can

be found (in weakly polynomial time) using the ellipsoid

method [11]. Gottschalk and Vygen show that the best-of-

many algorithm applied to this convex combination gives a

1.566-approximation and integrality ratio for the s− t path

TSP.

The convex combination of Gottschalk-Vygen will also

play a role in our analysis, namely in bounding the recon-

nection cost (Section III-D). We provide a new interpretation

of this convex combination in terms of matroid partition,

which immediately implies a polynomial time algorithm.

However, it turns out we only need the existence of this

convex combination, with the added matroid-basis property

of generalized Gao-trees: at the end of Section II, we sketch

how, using this property, our algorithm can work with a set

of spanning trees found by a greedy algorithm rather than a

convex combination requiring heavy computations.

In the next section we provide more details for the

approaches described above in the form we need them in

this paper, along with the novel algorithm.

II. THE BEST-OF-MANY-WITH-DELETION ALGORITHM

Given a finite set V and costs c :
(
V
2

) → Q>0 satisfying

the triangle inequality, let x∗ be the minimum cost solution

to the subtour elimination LP for the s − t path TSP, and

E = {e : x∗(e) > 0}. We will slightly abuse notation,

and use the same notation for a (multi) subset of E and
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its own incidence vector in ZE
≥0. For a vector z ∈ RE and

any (multi) subset H of E, the usual notation z(H) :=∑
e∈H z(e) is then just the scalar product of two vectors, as

well as c(z) :=
∑

e∈E c(e)z(e).
We can write x∗ as a convex combination of spanning

trees; that is, there exist a collection of spanning trees S
and coefficients λS > 0 for S ∈ S such that

∑
S∈S λS = 1

and x∗ =
∑

S∈S λSS.

For a set of edges S, we let TS be the set of odd degree

vertices of S, i.e. those that have an odd number of incident

edges from S. For two sets A, B, let A	B := (A\B)∪(B\
A) be the symmetric difference operation, which corresponds

to the mod 2 sum of the incidence vectors. Then the vertex

set with the “wrong” degree parity is TS	{s, t}. A T -join

(T ⊆ V, |T | is even) is a set of edges J such that |J ∩
δ({i})| is odd for i ∈ T and |J∩δ({i})| is even for i ∈ V \T .

The operation “+” between sets means the disjoint union

(sum of the multiplicity vectors). If S is a spanning tree and

JS a TS	{s, t}-join, (V, S + JS) is a spanning connected

multigraph in which s and t have odd degree and every other

vertex has even degree. We call the edge set of such a graph

an {s, t}-tour.

The best-of-many Christofides’ (BOMC) algorithm com-

putes a minimum cost TS	{s, t}-join for every tree S with

λS > 0, and outputs the resulting {s, t}-tour of minimum

total cost. The cost of the BOMC solution is at most the cost

of the {s, t}-tour we obtain by adding a TS	{s, t}-join to

a randomly chosen spanning tree S with Pr(S = S) = λS .

Clearly, the expected cost of S is equal to c(x∗); the main

difficulty for the analysis of the s-t path TSP version of

Christofides’ algorithm is the “parity correction” part. It

follows from Edmonds and Johnson [7] that the TS	{s, t}-
join polyhedron is∑

e∈δ(U) y(e) ≥ 1 for all U such that

|U ∩ (TS	{s, t})| is odd,

y(e) ≥ 0 for all e ∈ E.

As noted above, Wolsey [20] observed for the TSP (i.e. for

s = t) and a solution x∗ to the subtour elimination LP

for the TSP that x∗/2 is in the T -join polyhedron for any

set T ⊆ V, |T | even. If s �= t this is not true anymore

for a solution x∗ to the corresponding subtour elimination

LP since for U ⊆ V containing exactly one of s and t,
f(U) = 1 in the LP, and hence we are only guaranteed that

x∗(δ(U))/2 ≥ 1
2 . If U ⊂ V and |U ∩ {s, t}| = 1, we call

the edge set δ(U) an s− t cut.
Following [1], [2], we say that an s− t cut Q is narrow if

x∗(Q) < 2. We let Q be the set of all narrow cuts, that is,

Q = {Q ⊂ E : Q is an s− t cut, x∗(Q) < 2}. Figure 1

shows an example of an optimal solution x∗ to the subtour

elimination LP for an s − t path TSP and the narrow cuts

Q. An, Kleinberg and Shmoys [1], [2], observe that Q is

defined by a chain:

s 1 2 4 5 6 t

Q1 Q2 Q3 Q4 Q5 Q6

3

Figure 1. An example from Gao [9]: for full edges x∗(e) = 1, for dashed
edges x∗(e) = 2/3 and for dotted edges x∗(e) = 1/3. The narrow cuts
are indicated by gray lines and labeled Q1, . . . , Q6.

Lemma 1 (An, Kleinberg, Shmoys [1], [2]): Let U1, U2

such that s ∈ U1 ∩U2, and Qi = δ(Ui) is in Q for i = 1, 2.

Then either U1 ⊆ U2, or U2 ⊆ U1.

We include a brief proof.

Proof: The lemma is a consequence of the submodular

inequality that will be helpful in the following well-known

equality form:

x∗(δ(A)) + x∗(δ(B)) = x∗(δ(A ∩B))

+ x∗(δ(A ∪B)) + 2x∗(A \B,B \A), (1)

where (X,Y ) is the set of edges with one endpoint in X , the

other in Y . Now to show Lemma 1 apply (1) to A := U1,

B := V \U2. If the lemma does not hold, A∩B and A∪B are

both non-empty, strict subsets of V . Furthermore, note that

A∩B contains neither of s, t and A∪B contains both of s, t.
Hence, by constraint (1), the first and second terms in the

right hand side of (1) are at least 2, contradicting that the left

hand side is strictly smaller than 4 since δ(U1), δ(U2) ∈ Q.

�

An, Kleinberg and Shmoys [1], [2] exploit the fact that

the TS	{s, t}-join polyhedron has a constraint for a narrow

cut Q = δ(U) only if the spanning tree S has an even

number of edges in Q, which allows them to remedy the

fact that x∗(Q)/2 < 1 in an economic way only when

necessary. Later works [9], [11], [17], [19] suggest improved

ways of completing x∗/2 to a vector in the TS	{s, t}-join

polyhedron. In Section III we introduce these approaches,

and transform them to a novel method using several new

ideas.

We recall now more precisely Gao’s beautiful theorem

[8] mentioned in the introduction: there always exists a
spanning tree S in the support of x∗ (that is, in S ⊆ {e :
x∗(e) > 0}) such that |S ∩Q| = 1 for every narrow cut Q.
Such a spanning tree will be called a Gao-tree. Whenever

there exists a minimum cost spanning tree which is a Gao-

tree (like for “graph-metrics”) the 3/2 ratio and integrality

gap follow straightforwardly. Let us also recall Gottschalk

and Vygen [11]’s generalization: a subtour LP solution x∗

can be decomposed into “generalized Gao-trees”, an ordered
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collection of spanning trees, such that the “first” 2− x∗(Q)
trees have a single edge in cut Q, and this holds for every

narrow cut Q.

More precisely, let the different cut-sizes of narrow cuts

be 2− ζ1 > 2− ζ1 − ζ2 > . . . > 2− ζ1 − . . .− ζk = 1, and

Qi := {Q ∈ Q : x∗(Q) ≤ 2− ζ1 − . . .− ζi}.
Note that

∑k
i=1 ζi = 1. Let Bi := {S ⊆ E :

S is a spanning tree of G, |S ∩Q| = 1 for all Q ∈ Qi},
and let P i be the convex hull of Bi (i = 1, . . . , k). We

state the theorem in a form that supports the interpretation

we need:

Theorem 2 (Gottschalk and Vygen [11]): There exist

xi ∈ P i for i = 1, . . . , k such that
∑k

i=1 ζix
i = x∗.

For convenience, and to show the equivalence to the orig-

inal form of the theorem, observe that xi can be expressed

as a convex combination of spanning trees in Bi. We can

thus write

ζix
i =

�i∑
j=�i−1+1

λjSj , (i = 1, . . . , k)

where 0 = �0 < . . . < �k, Sj (j = 1, . . . , �k) are spanning

trees,
∑li

j=�i−1+1 λi = ζi and Sj ∈ Bi for j = �i−1 +
1, . . . , �i.

If for Q ∈ Q we have x∗(Q) = 2 − ζ1 − . . . − ζi, then

we write �Q := �i, and we have

|Sj ∩Q| = 1 for j = 1, . . . , �Q, and

�Q∑
j=1

λj = 2− x∗(Q). (2)

We call a convex combination of trees with these properties

layered. See Figure 2 for an example.

We now interpret this particular convex combination in a

way that immediately yields a faster algorithm for obtaining

it:

We say that edge e ∈ E is in layer i (i ∈ {1, . . . , k}),
if there is a unique cut Q ∈ Qi such that e ∈ Q. Edges

may also be in several or no layers. Since Q1 ⊇ . . . ⊇ Qk,

the layers in which an edge is contained are consecutive

numbers. (If it is contained exactly in layers i ∈ [a, b] ∩ N,

then it is contained in at least 2 cuts of Qi for i < a, and

in none of the cuts Qi for i > b.) Denote Li := {e ∈ E :
e is in layer i}.

Now, let Ii = {Fi ∪ Ci : Fi is a forest in E \ Li and

Ci ⊆ Li, |Ci∩Q| ≤ 1 for each Q ∈ Qi}. It is straighforward

to check that Ii form the independent sets of a matroid, and

that Bi is exactly the set of bases of this matroid. Hence,

Theorem 2 states that it is possible to partition or decompose

x∗ into bases of the matroids M1, . . . ,Mk with coefficients

given by ζ1, . . . , ζk. Therefore, using Edmonds’ matroid

S1
s 1 2 4 5 6 t

3

S2

s 1 2 4 5 6 t

3

S3

s 1 2 4 5 6 t

3

Figure 2. x∗ from Figure 1 expressed as a layered convex combination
of three spanning trees S1, S2, S3, each with multiplier λSi

= 1/3. Note
that S1 is a so-called Gao-tree. All edges but {3, 4} are lonely in S1, and
in S2, S3 only the edges incident to s and t are lonely.

partition algorithm [6], a layered convex combination can

be found in strongly polynomial time.

In this paper, we will take a layered convex combination

of x∗ and modify the best-of-many Christofides’ algorithm

by deleting certain edges called lonely from the spanning

trees in S = {S1, . . . , S�k}. We denote by L(Sj) the set of

lonely edges of tree Sj , defined as

L(Sj) =
{
e ∈ Sj : there exists Q ∈ Q such that

Q ∩ Sj = {e} and �Q ≥ j
}
. (3)

For a tree S ∈ S , denote by Q(S) ⊆ Q the set of lonely
cuts of S: cuts Q such that |Q ∩ S| = 1 and for which the

unique edge in Q ∩ S is in L(S). In other words, Q(Sj) =
{Q ∈ Q : �Q ≥ j}. If Q(S) = Q, then S is a Gao-tree; in

a layered convex combination the first �1 spanning trees are

Gao-trees.

Note that the definition of the layered convex combination

guarantees the following “monotonocity property”:

for each Q ∈ Q(S) and cut Q′ such that

x∗(Q′) ≤ x∗(Q) we have Q′ ∈ Q(S), (4)

that is, Q′ is also lonely in S if it is smaller than another cut

Q lonely in S. This is the crucial property that we exploit in

Section III-D where we bound the reconnection cost, and the

very reason why layered convex combinations are necessary.

For each tree S ∈ S , we delete its lonely edges to

obtain a forest F (S) := S \ L(S). We write F instead of

F (S) whenever S is clear from the context. We then add a

TF	{s, t}-join JF to obtain a graph in which each vertex

except for s and t has even degree and finally, we add a

minimum cost doubled spanning tree on the components of

this graph to get an {s, t}-tour. Note that adding a spanning
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s 1 2 4 5 6 t

3

Figure 3. The forest F1 := F (S1) obtained by removing the lonely
edges from S1 in Figure 2 contains only the edge {3, 4} indicated in
(solid) black, the dashed edges are the lonely edges of S1. The (solid) red
edges give a possible TF1�{s, t}-join JF1 , where edges {s, 3} and {3, 6}
are bad edges. An upper bound on 2DF1+JF1

can be obtained by adding

two copies of two out of the three lonely edges {s, 1}, {1, 2}, {2, 4} and
adding two copies of either {4, 5} or {5, 6}.

tree between the components suffices to make the graph

connected, and we double it in order to keep the degree

parities.

If we were to compute a minimum cost TF	{s, t}-join

JF , then (V, F + JF ) may have many components, and

the doubled spanning tree between the components could

be very expensive. In order to prevent this, we compute

a minimum cost join with respect to a modified cost,

which, for every edge e, takes the sum of its cost and

the anticipation of (or, in fact, an upper bound on) the

reconnection cost related to its presence in JF .

We explain now a way to upper bound the reconnection

cost, which determines how to modify the costs.

For Q ∈ Q(S), we denote by eQS the (incidence vector of)

the unique edge of Q∩S. For each edge e ∈ E, let Q(S, e)
be the set of lonely cuts that contain e. Note that Q(S, e)
may be empty. Now, the set of doubled edges is obtained

by taking two copies of

⋃
e∈JF

{eQS : for all but at most one Q in Q(S, e)}.

In other words, each edge e in JF will add two copies of

the lonely edges of all but one of the lonely cuts that e is

contained in. See Figure 3 for an illustration.

To see that the set of doubled edges does indeed contain a

doubled spanning tree between the components of (V, F +
JF ), note that if, for each e ∈ JF , we were to add two

copies of eQS for every Q ∈ Q(S, e), then the set would

contain at least two copies of all lonely edges in L(S). This

is because JF must contain at least one edge in every cut

Q ∈ Q(S), and thus Q ∈ Q(S, e) for at least one e ∈ JF .

Moreover, each edge e ∈ JF will be in a cycle with the

edges in F +{eQS : Q ∈ Q(S, e)}, and hence we can choose

one of the cuts Q ∈ Q(S, e) and not include eQS . The best

choice is of course to omit the edge with the highest cost

and thus the cost of including e in the TF	{s, t}-join will

be set to

cF (e) = c(e) +
∑

Q∈Q(S,e)

2c(eQS )− max
Q∈Q(S,e)

2c(eQS ).

Note that cF (e) > c(e) only if e is contained in more than

one lonely cut in S.

In addition to computing a forest-based {s, t}-tour for

each S ∈ S , the algorithm also computes tree-based {s, t}-
tours as in the best-of-many Christofides’ algorithm, and

returns the least expensive among all constructed {s, t}-
tours.

Algorithm 1 summarizes the description of the algorithm.

Let x∗ be an optimal solution to the subtour

elimination LP for the s− t path TSP.

Write x∗ as a layered convex combination of spanning

trees.

Let S be the collection of trees with positive

coefficient.

for S ∈ S do
Construct forest-based {s, t}-tour:
F := F (S) := S \ L(S).
For all e ∈ E, let cF (e) =
c(e) +

∑
Q∈Q(S,e) 2c(e

Q
S )−maxQ∈Q(S,e) 2c(e

Q
S ).

Let J∗F be a minimum cost TF	{s, t}-join with

respect to costs cF .

Contract the components of (V, F + J∗F ), and let

2DF+J∗F be the edge set of a doubled minimum

cost spanning tree in the contracted graph.

P1(S) = F + J∗F + 2DF+J∗F .

Construct tree-based {s, t}-tour:
P2(S) = S + J∗S , where J∗S is a minimum cost

TS	{s, t}-join with respect to costs c.
end for
Return a minimum cost {s, t}-tour from among⋃

S∈S{P1(S), P2(S)}.

Algorithm 1: Best-of-Many With Deletion

A variant of this algorithm avoids the computation of a

layered convex combination for x∗, but uses a collection

of k spanning trees easy to compute from x∗ instead. The

first of these trees, B1, is a minimum cost Gao tree (having

exactly one edge in each narrow cut in Q = Q1), and

analogously Bi is a minimum cost tree containing exactly

one edge in each narrow cut Q ∈ Qi. By the observations

below Theorem 2, Bi is a minimum cost basis of a matroid,

and can thus be found using a greedy algorithm, in fact

several spanning tree minimizations in subgraphs.
Now, let x′ :=

∑k
i=1 ζiBi. Then c(x∗) ≥ c(x′) =∑

i ζic(Bi) by Theorem 2 and the fact that Bi is a minimum

cost basis in Bi. Furthermore, although x′ is not necessarily

a feasible solution to the subtour elimination LP for the

s− t path TSP, we can view
∑k

i=1 ζiBi as a layered convex

combination of x′. This implies that the analysis below can

be applied to x′ and this revised convex combination, giving

a bound that is not worse than the one of Theorem 6. The

details, including the precise computational complexity of

this simplified version is deferred to the full version of this

paper.
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III. THE ANALYSIS

Given x∗ =
∑

S∈S λSS, where S is a set of spanning

trees, λS > 0 for S ∈ S , and
∑

S∈S λS = 1, recall that

this coefficient vector can be interpreted as a probability

distribution. We will slightly abuse notation and let S denote

both the support of the convex combination, and also a

tree-valued random variable with Pr(S = S) = λS . (See

Figure 2 for such a convex combination, where x∗ is from

Figure 1.)

Our analysis will bound the cF -cost of a minimum

cost TF	{s, t}-join J∗F by constructing a parity correction
vector yF in the TF	{s, t}-join polyhedron. We separately

bound c(yF ) (referred to as the cost of parity correction) and

cF (yF )− c(yF ) (referred to as the cost of reconnection).

We let E [·] denote the expectation or average of a random

vector in RE ; for example E [S] = x∗. Similarly, we view

yF as the expectation of a random TF	{s, t}-join. Various

notations for trees S will be inherited by S (and similarly

for T -joins): for instance, for a tree S, we denote S(s, t) the

s− t path of S, and then S(s, t) is the path-valued random

variable equal to S(s, t) on the event S = S.

A. Bounding the cost of tree-based {s, t}-tours

To analyze the average cost of the tree-based {s, t}-tours,

we recall a simple well-known observation that we adopt:

Observation 3: Since S = S(s, t) + S \ S(s, t), and for

any S ∈ S , S + S \ S(s, t) is an {s, t}-tour, defining

p∗ := E [S(s, t)] , q∗ := E [S \ S(s, t)] , x∗ = E [S] =
p∗ + q∗ ∈ RE , the cost of the solution found by the best-

of-many Christofides’ algorithm can be bounded by

E [c(S) + c(S \ S(s, t))] = c(x∗)+c(q∗) = 2c(x∗)−c(p∗).

Similar to the analysis of [17], when c(q∗) is sufficiently

small compared to c(p∗), then this bound provides the best

approximation guarantee; when it is large, the other bound

we will derive is better.

In fact, since we will be taking the minimum of this tree-

based {s, t}-tour and another, forest-based {s, t}-tour, this

observation allows us to “erase” S \ S(s, t) from further

consideration for parity correction, i.e., for analyzing the

cost of the forest-based {s, t}-tours, we will only take the

complementary S(s, t) into account.

B. Basic parity correction

Concretely, to analyze the parity correction for the forests,

we will always use

x∗

2
+ γ S(s, t), (5)

as a so-called basic parity correction, where γ is a chosen

parameter between 0 and 1/2. The basic parity correction

plays a similar role to the vector β x∗
2 + (1 − β)S that

was used in the analysis of [1], which was also adopted

by subsequent work [9], [11], [17], [19].

For γ = 1/2 the basic parity correction x∗
2 + 1

2S(s, t) for

any S ∈ S gives a feasible solution to the T -join polyhedron

for any set T of even size, so in particular it allows us to

bound the cost of the TS	{s, t}-join that corrects the parity

for the tree S. On average, the basic parity correction with

γ = 1/2 will equal x∗
2 + p∗

2 , and combined with Observa-

tion 3, we get the integrality gap and approximation ratio

min
{

3
2c(x

∗) + 1
2c(p

∗), 2c(x∗)− c(p∗)
} ≤ 5

3c(x
∗) equal to

Hoogeveen’s ratio. We can similarly use x∗
2 + 1

2S(s, t) as

a fractional TF	{s, t}-join for the forest F = S \ L(S);
however, the summand 1

2S(s, t) is too expensive to get a

good bound on the parity correction cost.

To improve the ratio further, we will need γ < 1/2, but

then the basic parity correction vector may not be feasible

for the TF	{s, t}-join polyhedron. Hence, as in previous

analyses of the best-of-many algorithm, we will need to add

a parity completion1 vector to the basic parity correction

vector so as to ensure the constraints of the TF	{s, t}-
join polyhedron are satisfied for the narrow cuts Q with

x∗(Q) < 2 − 2γ in which F contains an even number of

edges.

However, we cannot reduce γ to 0, since the completion

vectors are too expensive for large narrow cuts. The thresh-

old for being “large” will be chosen optimally at the end of

Section IV.

C. Parity completion

The parity completion vector will add (fractional) edges

for each narrow cut Q if |Q ∩ F | is even. For each narrow

cut Q we introduce a vector xQ ∈ RE , where

xQ(e) := Pr(S ∩Q = {e} and e ∈ L(S)). (6)

Note that xQ(Q) = Pr(Q ∈ Q(S)), and by (2):

xQ(Q) = Pr(Q ∈ Q(S)) ≥ 2− x∗(Q). (7)

holds with equality. (The essential part of this inequality

also holds for an arbitrary convex combination where the

definition is xQ(e) = Pr(S ∩Q = {e}) [17]).

Hence, we have that
x∗(Q)+xQ(Q)

2 = 1, on every cut.

In other words, adding xQ/2 to the basic parity correction

vector for every Q such that |Q ∩ F | is even gives a

suitable vector to complete parity correction, that is, for

parity completion.

On the other hand, if we let F be the random forest

obtained by deleting L(S) from S, then we also have that

xQ(e) is the deletion probability for edge e and cut Q.

So by deleting the lonely edges from S , we “save up”

for parity completion. In Section IV, we show how to

put these ingredients together to construct an appropriate

1Our terminology differs from that in [1], where the term “correction
vector” is used for what we call the “parity completion vector”. We use the
term “parity correction vector” for a vector that is in the TF�{s, t}-join
polyhedron, and it will be composed of basic parity correction and parity
completions.
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parity correction vector yF , and we bound the mean parity

correction cost by computing E [c(yF (S)].

D. Reconnection

It remains to analyze cF (yF ) − c(yF ); the cost of the

doubled edges that give an upper bound on the doubled

spanning tree on the components of (V, F + JF ), where

JF is a TF	{s, t}-join, with E [JF ] = yF . We will call the

edges e with cF (e) > c(e) the bad edges for S, and denote

them by B(S), that is, B(S) =

{e ∈ E : there exist Q1 �= Q2 ∈ Q(S), e ∈ Q1 ∩Q2}.
Figure 3 shows a forest F and a TF	{s, t}-join JF with

two bad edges.

In order to bound cF (yF )−c(yF ), we will need two ingre-

dients. First, we will need to bound Pr(e ∈ JF ) = yF (e) for

the bad edges e ∈ B(S). As sketched above, our fractional

TF	{s, t}-join yF is going to consist of the basic parity

correction x∗
2 + γS(s, t) plus a parity completion vector for

which we will use the xQ vectors for Q ∈ Q. There is no

way to avoid that the basic parity correction vector contains

bad edges, but the fact that we used a layered convex

combination and the accompanying definition of the lonely

edges for each S ∈ S guarantees that parity completion does

not add more bad edges:

Lemma 4: Let S be the support of a layered convex com-

bination, S ∈ S , and Q ∈ Q \ Q(S). Then xQ(B(S)) = 0.

Proof: We prove xQ(Q′) = 0 for each Q′ ∈ Q(S). Indeed,

by (4), x∗(Q′) < x∗(Q), for otherwise Q ∈ Q(S). Also, by

(4), Q′ is lonely in every tree S′ ∈ S where Q is lonely, so

Q and Q′ cannot have a common edge in such a tree S′,
proving xQ(Q′) = 0.

Therefore, the edges e with xQ(e) > 0 are not contained

in any cut of Q(S) at all, whereas the edges of B(S) are

contained in at least two cuts of Q(S). �

This lemma will allow us to bound the probability that

yF contains a bad edge e by x∗(e)/2, and thus cF (yF ) −
c(yF ) = cF (x

∗/2) − c(x∗/2). The second ingredient will

be the following lemma, which is proved by analyzing the

combinatorial structure of the inequalities satisfied by x∗:

Lemma 5: Let S ∈ S , let F = S \L(S) and let Q(S) be

the lonely cuts in S. Then

cF (x
∗/2)− c(x∗/2) ≤

∑
Q∈Q(S)

(x∗(Q)− 1)c(eQS ).

Proof: Observe that

cF (e)− c(e) =
∑

Q∈Q(S,e)

2c(eQS )− max
Q∈Q(S,e)

2c(eQS )

≤
∑

Q∈Q(S,e)

2c(eQS )(1− x(e,Q)),

for any values x(e,Q) ≥ 0 for e,∈ E,Q ∈ Q(S) such that∑
Q∈Q(S,e) x(e,Q) ≤ 1. Hence, given such values, we can

write cF (x
∗/2)− cF (x

∗/2)

=
∑
e∈E

x∗(e)
2

⎛
⎝ ∑

Q∈Q(S,e)

2c(eQS )− max
Q∈Q(S,e)

2c(eQS )

⎞
⎠

≤
∑
e∈E

x∗(e)
2

⎛
⎝ ∑

Q∈Q(S,e)

2c(eQS )(1− x(e,Q))

⎞
⎠

=
∑

Q∈Q(S)

∑
e∈Q(S)

x∗(e)
2

(
2c(eQS )(1− x(e,Q))

)

=
∑

Q∈Q(S)

c(eQS )

⎛
⎝x∗(Q)−

∑
e∈Q(S)

x∗(e)x(e,Q)

⎞
⎠ .

So in order to prove the lemma, it suffices to prove that

the following system of inequalities has a solution:∑
Q∈Q(S,e)

x(e,Q) ≤ 1 for all e ∈ E

∑
e∈Q(S)

x(e,Q)x∗(e) ≥ 1 for all Q ∈ Q(S)

x(e,Q) ≥ 0 for all e ∈ E,Q ∈ Q(S, e)
By multiplying the first set of inequalities by x∗(e), and

letting f(e,Q) = x∗(e)x(e,Q), this gives the following flow

problem.∑
Q∈Q(S,e)

f(e,Q) ≤ x∗(e) for all e ∈ E

∑
e∈Q(S)

f(e,Q) ≥ 1 for all Q ∈ Q(S)

f(e,Q) ≥ 0 for all e ∈ E,Q ∈ Q(S, e)
A solution to this flow problem exists if and only for any

Q′ ⊆ Q
x∗(∪Q∈Q′Q) ≥ |Q′|.

Indeed, the necessity and sufficiency of this condition fol-

lows from the max flow min cut theorem (it is actually just

a variant of the Kőnig-Hall theorem), and to prove that the

condition is satisfied denote k := |Q′|, and let C0, . . . , Ck

the vertex sets of components of S \ ∪Q∈Q′e
Q
S , where

s ∈ C0, t ∈ Ck. Since {C0, . . . , Ck} is a partition of V ,

every edge is counted twice in the sum of their coboundaries:

x∗(∪Q∈Q′Q) =
1

2

k∑
j=0

x∗(δ(Ci))

≥ 1

2

⎛
⎝x∗(δ(C0)) +

k−1∑
j=1

x∗(δ(Cj)) + x∗(δ(Ck))

⎞
⎠

≥ 1

2
(1 + 2(k − 1) + 1) = k.

exactly as needed. �
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E. Balancing

To bound the average cost of the forest-based {s, t}-tours,

we now simply add up the average cost of the forest plus

parity correction (consisting of basic parity correction and

parity completion) plus reconnection. By setting the param-

eter γ in the basic parity correction vector appropriately,

we show that the average cost of the forest-based {s, t}-
tours is expressable in terms of x∗ and p∗ only. Finally, we

take the minimum of the tree-based {s, t}-tours (which, by

Observation 3, has cost decreasing in c(p∗)) and the cost

of the forest-based {s, t}-tours is increasing in c(p∗). The

worst case for the minimum of the two is when the two are

balanced, that is equal.

IV. THE NEW RATIO

In this section we prove the main result.

Theorem 6: The Best-of-Many With Deletion (BOMD)

algorithm returns a solution to the s− t path TSP of cost at

most
(
3
2 + 1

34

)
OPTLP .

Proof: We analyze the different parts of the forest-based

{s, t}-tour P1(S) averaged over S ∈ S:

Forest: Let F := S \ L(S).
Expected Value of Forest : E [F ] = x∗ −∑

Q∈Q xQ.

Parity Correction (PC): For each forest F , we define yF
as the sum of the following vectors:

Basic Parity Correction (BP): 1
2x
∗ + γ S(s, t).

Note that (BP) is enough to ensure that yF satisfies the

constraints of the TF	{s, t}-join polyhedron for all

Q = δ(U) with x∗(Q) ≥ 2− 2γ.

Expected Value of (BP):
1

2
x∗ + γ p∗.

Parity Completion for Empty Cuts (PCE):(
1− 1

2
x∗(Q)− γ

)
eQS .

We recall that eQS is the (indicator vector of) the lonely

edge of S in Q. We add this (PCE) vector to yF for

every Q ∈ Q(S) such that x∗(Q) ≤ 2 − 2γ. Note that

then (BP)+(PCE) suffices to ensure that yF satisfies the

constraint of the TF	{s, t}-join polyhedron for each

narrow cut Q such that Q∩F = ∅. Since E
[
eQS

]
= xQ,

we have:

Expected Value of (PCE):∑
Q∈Q: x∗(Q)≤2−2γ

(
1− 1

2x
∗(Q)− γ

)
xQ.

Parity Completion for Large (Non-Empty Even) Cuts

(PCL):

(
1− 1

2x
∗(Q)− γ

2− x∗(Q)

)
xQ.

We add this vector to yF for every Q such that x∗(Q) ≤
2 − 2γ and |F ∩ Q| is even and at least 2. By (7),

yF satisfies then the constraints of the TF	{s, t}-join

polyhedron also for such cuts. Contrary to (PCE), (PCL)

does not depend on (the outcome of the random variable)

S, but only on the cut Q ∈ Q. However, the choice of

adding it or not, depends on S: we add it only if |F ∩Q|
is even and at least two, the probability of which can be

bounded by Pr(|S ∩Q| ≥ 2) ≤ 1− (2− x∗(Q)) by (7),

so we add (PCL) with probability at most x∗(Q)− 1:

Expected Value of (PCL):∑
Q∈Q:x∗(Q)≤2−2γ(x

∗(Q)− 1)
(

1− 1
2x
∗(Q)−γ

2−x∗(Q)

)
xQ.

The combination (BP) + (PCE) + (PCL) gives a fractional

solution to the TF	{s, t}-join polyhedron for any fixed tree

S and its uniquely determined forest F = S \ L(S) :

yF =
1

2
x∗ + γ S(s, t)

+
∑

Q∈Q:x∗(Q)≤2−2γ
|Q∩F |=0

(
1− 1

2
x∗(Q)− γ

)
eQS

+
∑

Q∈Q:x∗(Q)≤2−2γ
|Q∩F |≥2,even

(
1− 1

2x
∗(Q)− γ

2− x∗(Q)

)
xQ.

Reconnection: Given S ∈ S , define the random TF	{s, t}-
join JF with E [JF ] = yF . As explained in Section II,

E
[
c(2DF+JF )

] ≤ cF (yF ) − c(yF ) (where F is fixed and

the expectation is over JF ).
Recall that B(S) is the set of edges that are contained in

more than one cut in Q(S), and that cF (e) − c(e) = 0 for

e �∈ B(S). We claim that yF (e) = x∗(e)/2 for e ∈ B(S):
γS(s, t) and (PCE) contain only edges from the S(s, t) and

thus contain no bad edges for S, since they are by definition

contained in at most one cut of Q(S), while the edges in

B(S) are those contained in at least two such cuts. The fact

that this also holds for (PCL) is exactly the conclusion of

Lemma 4.
Hence, we have cF (yF ) − c(yF ) = c(x∗/2) − c(x∗/2),

which is bounded by
∑

Q∈Q(S)(x
∗(Q) − 1)c(eQS ) by

Lemma 5. By taking the expectation over S ∈ S and noting

that E
[
eQS

]
= xQ, we get the following bound.

Expected Value of Reconnection Cost:
E [c(2DF+JF )] ≤

∑
Q∈Q(x

∗(Q)− 1)c(xQ).

TOTAL: If we add up the costs of the bounds on the

different parts of the solution, we get 3
2c(x

∗) + γc(p∗) plus

the sum over all Q ∈ Q of some multiple (that depends on

x∗(Q)) of c(xQ). In particular, if 2− 2γ < x∗(Q) < 2, the

multiplier of c(xQ) is −1 + x∗(Q) − 1 = x∗(Q) − 2 ≤ 0,

and if x∗(Q) ≤ 2− 2γ it is

−1 +
(
1− 1

2
x∗(Q)− γ

)(
1 +

x∗(Q)− 1

2− x∗(Q)

)
+

+x∗(Q)− 1 =
2− x∗(Q)− 2γ

2(2− x∗(Q))
+ x∗(Q)− 2.

We choose γ so that this multiplier is nonpositive for all

Q ∈ Q, that is, we want

2− x∗(Q)− 2γ + 2(2− x∗(Q))(x∗(Q)− 2) ≤ 0
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that is,

(2− x∗(Q)− 1

4
)2 + γ − 1

16
≥ 0.

The minimum of γ for which this is satisfied for all 1 ≤
x∗(Q) ≤ 2 is γ = 1

16 , where we note that equality holds if

and only if x∗(Q) = 7
4 .

We have thus bounded the expectation of c(P1(S)) by
3
2c(x

∗) + 1
16c(p

∗). By Observation 3, the expectation of

c(P2(S)) is at most 2c(x∗) − c(p∗), and therefore the cost

of the solution returned by (BOMD) is at most

min

{
3

2
c(x∗) +

1

16
c(p∗), 2c(x∗)− c(p∗)

}

=

(
3

2
+

1

34

)
c(x∗).

�

V. TIGHT BOUND FOR SPECIAL CASES

We show some simple cases where the upper bound of

3/2 on the approximation ratio and integrality gap can be

proved.

A. All Narrow Cuts Are Small

If x∗(Q) ≤ 3
2 for all Q ∈ Q, then choosing γ = 0

suffices to guarantee that (2 − x∗(Q) − 1
4 )

2 + γ − 1
16 ≥ 0.

Hence, by the proof of Theorem 6, our algorithm achieves

the bound of 3
2OPTLP for any instance of the s − t path

TSP in which the optimal subtour LP solution has no cuts

Q with x∗(Q) ∈ ( 32 , 2).

B. Disjoint and Almost-Disjoint Narrow Cuts

Let G = (V,E) be a graph and denote 1 be the all-

1 vector on the edges. A naturally arising open question

relaxing the integrality gap of the subtour elimination LP is

to determine the smallest constant α so that α1 a convex

combination of T -tours2 [16]. In this case, we will say that

α1 is feasible.

When T = {s, t}, the conjecture that the integrality gap

of the subtour elimination LP for the s− t path TSP is 3/2
implies that 1 is feasible for graphs in which all non s-t
cuts are of size at least 3: Indeed, the conjecture that the

integrality gap of the subtour elimination LP is 3/2 for s-t
path TSP is well-known to be equivalent to the feasibility of
3
2x provided x is in the subtour polytope (for the LP with

degree lower bound constraints rather than degree equality

constraints). Since setting 2/3 on all the edges is in the

subtour polytope, if this conjecture is true, α = 3
2 · 2

3 = 1
gives a feasible vector for T = {s, t}. Our techniques allow

us to prove that this is indeed true.

Theorem 7: Let G = (V,E) be a connected graph, s, t ∈
V and let |δ(U)| ≥ 3 for any |U ∩ {s, t}| �= 1. Then, 1 can

be expressed as a convex combination of {s, t}-tours.

2A T -tour is a connected graph in which the set of odd degree vertices
is T .

Proof: (Sketch) We can suppose that G is 2-edge-

connected, since a cut-edge necessarily separates s and t,
and we can proceed by induction, separating the problem

into two. Then x∗(e) = 2
3 on every e ∈ E satisfies the

subtour elimination constraints of the LP for the s− t path

TSP, and the narrow cuts are exactly the s − t cuts of G
containing two edges. Now, the fact that the non-s− t-cuts

of G have at least three edges implies that the narrow cuts
are pairwise disjoint:

Indeed, suppose there exist narrow cuts Q1 =
δ(U1), Q2 = δ(U2) (each containing exactly two edges),

s ∈ U1, t ∈ U2 and Q1∩Q2 �= ∅. Then the left hand side of

(1) is 2 · 23 + 2 · 23 , and the first term of the right hand side

is 3 · 2
3 = 2 by the condition of the theorem; the last term

on the right hand side is at least 2 · 2
3 because a common

edge, that exists by the non-emptiness asumption, has one

endpoint in U1 \U2 and the other in U2 \U1. Since 8
3 < 10

3
this is a contradiction.

This observation allows us to simplify the BOMD algo-

rithm, since there are no bad edges: such an edge would be

in the intersection of two narrow cuts. Rather than requiring

a layered convex combination, we allow now an arbitrary

decomposition of x∗ into spanning trees S ∈ S , and define

L(S) to be simply the set of edges e ∈ S such that there

exists a narrow cut in which e is the unique edge of S.

Furthermore, in the analysis, we take yF to be the basic

parity correction vector with γ = 0, and we add as parity

completion xQ/2 for every narrow cut Q such that |Q∩F |
is even. As observed in Section III-C, this indeed gives a

feasible parity correction vector, with an expected value of at

most 1
2x
∗+ 1

2

∑
Q∈Q xQ. Adding this to the expected value

of the forest x∗−∑
Q∈Q xQ and noting that no reconnection

is needed shows that 3
2x
∗ − 1

2

∑
Q∈Q xQ ≤ 1 is already in

the convex hull of {s, t}-tours. �

We actually proved that 3
2x
∗ − 1

2

∑
Q∈Q xQ is a convex

combination of {s, t} tours, under the more general condi-
tion that the narrow cuts are disjoint. This can actually be

strengthened as follows.

Theorem 8: Let x∗ be a feasible solution to the subtour

elimination LP for the s−t path TSP, and let G = (V,E) be

the support graph of x∗. If no edge in G is contained in more

than two narrow cuts, then 3
2x
∗ is a convex combination of

{s, t}-tours.

Proof: (Sketch) By Lemma 1, we know that there exist

s ⊆ U1 ⊂ U2 ⊂ U2 ⊂ . . . Uk such that the narrow cuts are

exactly δ(Ui) for i = 1, . . . , k. We will call a narrow cut

Q = δ(Ui) odd-numbered or even-numbered, depending on

whether i is odd or even. As in the proof of Theorem 7, we

take an arbitrary decomposition of x∗ into spanning trees

and call an edge lonely in a tree if it is the unique edge in

some narrow cut. However, we will now only remove lonely

edges from either the odd-numbered narrow cuts, or the

even-numbered narrow cuts, each with probability 1
2 . This
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changes the expectation of the forest to x∗ − 1
2

∑
Q∈Q xQ.

As in the proof of Theorem 7, we can upper bound

the expectation of the parity correction vector by 1
2x
∗ +

1
2

∑
Q∈Q xQ, and we are again guaranteed that the recon-

nection cost is 0, since a bad edge can be contained in

only two consecutive narrow cuts, and we never delete the

lonely edges of both of these. The sum of the two nonzero

contributions is exactly 3
2x
∗. �
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