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Abstract—We consider Boolean circuits over the full binary
basis. We prove a (3 + 1

86
)n − o(n) lower bound on the size

of such a circuit for an explicitly defined predicate, namely
an affine disperser for sublinear dimension. This improves the
3n− o(n) bound of Norbert Blum (1984). The proof is based
on the gate elimination technique extended with the following
three ideas. We generalize the computational model by allowing
circuits to contain cycles, this in turn allows us to perform affine
substitutions. We use a carefully chosen circuit complexity
measure to track the progress of the gate elimination process.
Finally, we use quadratic substitutions that may be viewed as
delayed affine substitutions.
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I. INTRODUCTION

In this paper we consider Boolean circuits over the full

binary basis. A simple counting argument [1] shows that

most Boolean functions require circuits of exponential size.

However, showing superpolynomial lower bounds for explic-

itly defined functions (for example, for functions from NP)

remains a hopelessly difficult task. (In particular, such lower

bounds would imply P �= NP.) Moreover, even superlinear

bounds are unknown for functions in ENP. Superpolynomial

bounds are known for MAEXP (exponential-time Merlin-

Arthur games) [2], and arbitrary polynomial lower bounds

are known for O2 (the oblivious symmetric second level of

the polynomial hierarchy) [3].

People started to tackle the problem in the 60s. Kloss

and Malyshev [4] proved a lower bound of 2n − O(1).
Schnorr [5] proved a 2n − O(1) lower bound for a class

of functions with certain structure. Stockmeyer [6] proved a

2.5n − O(1) bound for certain symmetric functions. Paul

[7] proved a 2.5n − o(n) lower bound for a variant of

the storage access functions. Eventually, Blum [8] extended

Paul’s argument and proved a 3n− o(n) bound.

Blum’s bound remained unbeaten for more than thirty

years. By reviewing the proof, one notes that it cannot be

extended to get a stronger than 3n lower bound without

using different properties of functions.

Recently, Demenkov and Kulikov [9] presented a much

simpler proof of a 3n−o(n) lower bound for functions with

an entirely different property: affine dispersers. This property

allows to make affine substitutions until the disperser’s

dimension is reached. As was later noted by Vadhan and

Williams [10], the way Demenkov and Kulikov use this

property cannot give stronger than 3n bounds as it is tight

for the inner product function (which is known to be an

affine disperser for dimension n/2+1). Hence, mysteriously,

two different proofs using two different properties are both

stuck on exactly the same lower bound 3n − o(n) which

was first proved more than 30 years ago. Is this lack of

progress grounded in combinatorial properties of circuits and

this line of research faces an insurmountable obstacle? Or

can refinements on known techniques go above 3n? In this

paper we show that the latter is the case. We eventually

improve the bound for affine dispersers to (3+ 1
86 )n−o(n),

which is stronger than Blum’s bound.

In this paper we eventually improve the bound for affine

dispersers to (3+ 1
86 )n−o(n), which is stronger than Blum’s

bound.

Other models: The exact complexity of computational

problems is different in different models of computation:

for example, switching from multitape to single-tape Turing

machines squares the time complexity; random access ma-

chines are even more efficient. Boolean circuits over the full

binary basis make a very robust computational model. Using

a different constant-arity basis only changes the constants

in the complexity. A fixed set of gates of arbitrary arity

(for example, ANDs, ORs and XORs) still preserves the

complexity in terms of the number of wires. After all, finding

a function hard for Boolean circuits can be viewed as a

combinatorial problem, in a contrast to lower bounds for

uniform models. Therefore, breaking the linear barrier for

Boolean circuits can be viewed as an important milestone

on the way to stronger complexity lower bounds.

Stronger than 3n lower bounds are known for various

restricted bases. One of the most popular such bases, U2,

consists of all binary Boolean functions except for parity

(xor) and its negation (equality), Schnorr [11] proved that

the circuit complexity of the parity function is 3n−3. Zwick

[12] gave a 4n − O(1) lower bound for certain symmetric

functions, Lachish and Raz [13] showed a 4.5n−o(n) lower

bound for an (n − o(n))-mixed function (a function all of

whose subfunctions of any n−o(n) variables are different).

Iwama and Morizumi [14] improved this bound to 5n−o(n).
Demenkov et al. [15] gave a simpler proof of a 5n − o(n)
lower bound for a function with o(n) outputs as well as

presented a 7n − o(n) lower bound for a function with n
outputs. It is interesting to note that the progress on U2
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circuit lower bounds is also stuck on the 5n − o(n) lower

bound: Amano and Tarui [16] presented an (n−o(n))-mixed

function whose circuit complexity over U2 is 5n+ o(n).
It was recently showed that depth 2 circuits with un-

bounded fanin ∧, ⊕-gates cannot compute affine dispersers

with good parameters [17].

While we do not have nonlinear bounds for constant-arity

Boolean circuits, stronger bounds are known for weaker

models, including monotone circuits (Razborov [18]), cir-

cuits of constant depth with no XOR (Yao and Håstad [19],

[20]), circuits of polylogarithmic depth over infinite fields

(Shoup and Smolensky [21]), formulas (Subbotovskaya [22],

Khrapchenko [23], [24], Andreev [25], Impagliazzo and

Nisan [26], Paterson and Zwick [27], Håstad [28] and

Tal [29]). These bounds, however, do not translate to su-

perlinear lower bounds for general constant-arity Boolean

circuits.

Connections to CircuitSAT algorithms: A recent

promising direction initiated by Williams [30] connects the

complexity of circuits to the complexity of algorithms for

CircuitSAT (this is the problem of checking whether a given

circuit has a satisfying assignment, that is, a substitution

of inputs by constants that forces the circuit to output

one). Namely, the existence of better-than-2n algorithms for

CircuitSAT for a particular circuit model implies exponen-

tial lower bounds for these circuits for functions in large

classes like NEXP. This way unconditional exponential

lower bounds have been proved for ACC0 circuits (constant-

depth circuits with unbounded-arity OR, AND, NOT, and

arbitrary modular gates) [31]. Ben-Sasson and Viola [32]

have demonstrated that in order to prove a specific linear

lower bound for a function in ENP it suffices to lower

the base of the exponent in the 3-SAT complexity down

to an appropriate constant. It should be noted, however, that

currently available algorithms for the satisfiability problem

for general circuit classes are not sufficient for proving new

lower bounds.

Also techniques similar to the ones used in proving circuit

lower bounds algorithms are employed in a number of

algorithms for CircuitSAT and FormulaSAT, see e.g. [33],

[34], [35], [36], [37], [38], [39].

Our methods: Almost all previous lower bounds have

been proved using a simple gate elimination technique: one

gradually simplifies the function (for example, by substitut-

ing variables one by one) showing that every simplification

step eliminates a certain number of gates. A crucial idea

[5] is to keep the function in the same class. Following

[9], we prove lower bounds for affine dispersers, that is,

functions that are non-constant on affine subspaces of certain

dimensions: Ben-Sasson and Kopparty [40] gave an explicit

construction of affine dispersers for sublinear dimensions.

Feeding an appropriate constant to a non-linear gate (for

example, AND) makes this gate constant and therefore elim-

inates subsequent gates, which helps to eliminate more gates

than in the case of a linear gate (for example, XOR). On the

other hand, linear gates, when stacked together, sometimes

allow to reorganize the circuit. Then affine restrictions can

kill such gates while keeping the properties of an affine

disperser. This idea has been used in [7], [6], [8], [36], [9].

Thus, it is natural to consider a circuit as composed of

linear circuits connected by non-linear gates. In our case

analysis we make affine substitutions but not restrictions.

That is, instead of just saying that x1 ⊕ x2 ⊕ x3 ⊕ x9 = 0
and removing all gates that become constant, we make sure

to replace all occurrences of x1 by x2⊕x3⊕x9. Since a gate

computing such a sum might be unavailable and we do not

want to increase the number of gates, we “rewire” some parts

of the circuit, which, however, may potentially introduce cy-

cles. This is the first ingredient of our proof: cyclic circuits.

That is, the linear components of our “circuits” may now

have directed cycles; however, we require that the values

computed in the gates are still uniquely determined. Cyclic

circuits have already been considered in [41], [42], [43], [44]

(the last reference contains an overview of previous work on

cyclic circuits).

Thus we are able to make affine substitutions. We try

to make such a substitution in order to make the topmost

(i.e., closest to the inputs) non-linear gate constant. This,

however, does not seem to be enough. The second ingre-

dient in our proof is a complexity measure that manages

difficult situations (bottlenecks) by allowing to perform an

amortized analysis: we count not just the number of gates,

we compute a linear combination of the number of gates and

the number of bottlenecks. Such measures were previously

considered by several authors. For example, Zwick [12]

counted the number of (internal) gates minus the number

of inputs of outdegree 1. The same measure was later used

by Lachish and Raz [13] and by Iwama and Morizumi

[14]. Kojevnikov and Kulikov [45] used a measure assigning

different weights to linear and non-linear gates to show that

Schnorr’s 2n−O(1) lower bound [11] can be strengthened

to 7n/3−O(1). Carefully chosen complexity measures are

also used to estimate the progress of splitting algorithms for

NP-hard problems [46], [47], [48].

Our main bottleneck (called “troubled gate”) is a gate of

outdegree 1 that is fed by two inputs x and y of degree 2,

and that computes (x ⊕ a)(y ⊕ b) ⊕ c for some constants

a, b, c ∈ {0, 1}.
Sometimes in order to fight a troubled gate, we have to

make a quadratic substitution, which is the third ingredient

of our proof. This happens if the gate below G is a linear

gate fed by a variable z; in the simplest case a substitution

z = xy kills G, the linear gate, and the gate below

(actually, we show it kills much more). However, quadratic

substitutions may make affine dispersers constant, so we

consider a special type of quadratic substitutions. Namely,

we consider quadratic substitutions as a form of delayed

affine substitutions (in the example above, if we promise to
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substitute later a constant either to x or to y, the substitution

can be considered affine). In order to maintain this, instead

of affine subspaces (where affine dispersers are non-constant

by definition) we consider so-called read-once depth-2

quadratic sources (essentially, this means that all variables

in the right-hand sides of the quadratic substitutions that

we make are pairwise distinct free variables). We show

that an affine disperser for a sublinear dimension remains

non-constant for read-once depth-2 quadratic sources of a

sublinear dimension.

Open questions and further applications of the meth-
ods: A natural further direction is to apply the developed

techniques (quadratic substitutions, cyclic circuits, and com-

bined complexity measures) to get new complexity lower

bounds and satisfiability upper bounds for other circuit

models.

An affine disperser for dimension d may be viewed as a

function that is not constant on any affine subspace of size at

least 2d. A natural extension is a function that is not constant

on similarly sized varieties defined by quadratic polyno-

mials. Golovnev and Kulikov [49] presented a short proof

that such “quadratic dispersers” with appropriate parameters

must have circuit size at least 3.1n. However, explicit con-

structions of such dispersers are currently unknown. There

are known constructions of dispersers for algebraic varieties

over large finite fields [50], and known constructions of such

dispersers over F2 [17], [51] but with weaker parameters

than needed for the lower bound to work.

Using quadratic substitutions and combined complexity

measures, Golovnev et al. [52] recently improved known

upper bounds for satisfiability algorithms for general circuits

as well as average case circuit size lower bounds.

It would be useful to understand the limitations of the

method used in this paper. Do there exist affine dispersers for

sublinear dimension computable by circuits of linear size?

More generally, is there an inherent limitation of the gate

elimination technique, that is, can it give a non-linear or

arbitrary linear lower bound in principle?

II. DEFINITIONS

Gates and notation: A circuit is an acyclic directed

graph in which incoming edges are numbered for every

node. The nodes are called gates. A gate may have either

indegree zero (in which case it is called an input gate, or

a variable) or indegree two (in which case it is called an

internal gate). Every internal gate is labelled by a Boolean

function g : {0, 1} × {0, 1} → {0, 1}, and the set of all

the sixteen such functions is denoted by B2. We call these

binary functions operations in order to distinguish them from

functions of n variables computed in the gates. The size of

a circuit is the number of internal gates.

We say that an operation is of and-type if it computes

g(x, y) = (c1⊕x)(c2⊕y)⊕c3 for some constants c1, c2, c3 ∈
{0, 1}, and of xor-type if it computes g(x, y) = x⊕y⊕c1 for

some constant c1 ∈ {0, 1}. Similarly, we call gates and-type

and xor-type. If a gate computes an operation depending on

precisely one of its inputs, we call it passing.

If an (internal) gate computes a constant operation, we

call it trivial (note that it still has two incoming edges). If a

substitution forces some gate G to compute a constant, we

say that it trivializes G. (For example, for a gate computing

the operation g(x, y) = x ∧ y, the substitution x = 0
trivializes it.)

We denote by out(G) the outdegree of the gate G. If

out(G) = k, we call G a k-gate. If out(G) ≥ k, we call it

a k+-gate. We adopt the same terminology for variables (so

we have 0-variables, 1-variables, 2+-variables, etc.).

One gate of outdegree zero is designated as the output.

An affine disperser for dimension d(n) is a family of

functions fn : F
n
2 → F2 such that for all sufficiently large n,

fn is non-constant on any affine subspace of dimension at

least d(n). Explicit constructions of affine dispersers have

drawn a lot of attention recently. First, polynomial-time

computable affine dispersers for any linear dimension were

constructed [53], [54], and then it was shown that there are

polynomial-time computable affine dispersers for sublinear

dimensions d(n) = o(n) [40], [55], [56], [51], [57].

A. Generalizations of circuits

Cyclic circuits: In this paper we apply a sequence of

transformations on circuits. To accomodate this we use a

generalizations of circuits. These generalized circuits may

contain cycles of a certain kind; however we only introduce

cycles in such a way that the values computed in the gates

are internally consistent.

A cyclic circuit is a directed (not necessarily acyclic)

graph where all vertices have indegree either 0 or 2. We

adopt the same terminology for its nodes (input and internal

gates) and its size as for ordinary circuits. We restrict our

attention to cyclic xor-circuits, where all gates compute

affine operations. While the most interesting internal gates

compute either ⊕ or ≡, for technical reasons we also allow

passing gates and trivial gates. We will be interested in

multioutput cyclic circuits, so, in contrast to our definition of

ordinary circuits, several gates may be designated as outputs,

and they may have nonzero outdegree.

A circuit, and even a cyclic circuit, naturally corresponds

to a system of equations over F2. Variables of this system

correspond to the values computed in the internal gates. The

operation of an internal gate imposes an equation defining

the computed value. Whenever an input gate is encountered,

it is treated like a constant (because we will be interested

in solving this system when we are given specific input

values). Thus we formally have a separate system for every

assignment to the input gates, but all these systems share

the same matrix. For a gate G fed by gates F and H
and computing some operation 	, we write the equation

G⊕(F	H) = 0. A more specific clarifying example would
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be a gate G computing F ⊕x⊕1, where x is an input gate;

then the line in the system would be G⊕F = x⊕1, where G
and F contribute two 1’s to the matrix, and x⊕1 contributes

to the constant vector.

For a cyclic xor-circuit, this is a linear system with a

square matrix. We call a cyclic xor-circuit fair if this matrix

has full rank. It follows that for every assignment of the

inputs, there exist unique values for the gates such that

these values are consistent with the circuit (that is, for each

gate its value is correctly computed from the values in its

inputs). Thus, similarly to an ordinary circuit, every gate

in a fair circuit computes a function of the values fed into

its input gates (clearly, it is an affine function). Note that

if we additionally impose the requirement that the graph is

acyclic, we arrive at ordinary linear circuits (that is, circuits

consisting of xor-type gates, passing gates, and constant

gates).

Semicircuits: We introduce the following notion, called

semicircuits, a generalization of both Boolean circuits and

cyclic xor-circuits.

A semicircuit is a composition of a cyclic xor-circuit and

an (ordinary) circuit. Namely, its nodes can be split into two

sets, X and C. The nodes in the set X form a cyclic xor-

circuit. The nodes in the set C form an ordinary circuit (if

wires going from X to C are replaced by variables). There

are no wires going back from C to X . A semicircuit is called

fair if X is fair. In what follows we abuse the notation by
using the word “circuit” to mean a fair semicircuit.

III. LOWER BOUND

A. Overview

Section III is devoted to the proof of the main theorem.

The proof goes by induction. We start with an affine

disperser and a circuit computing it on {0, 1}n. Then we

gradually shrink the space where it is computed by adding

equations (“substitutions”) for variables. This allows us to

simplify the circuit by reducing the number of gates (and

other parameters counted in the complexity measure) and

eliminating the variable we have just substituted.

In Section III-B we show how to make substitutions in fair

semicircuits, and how to normalize them afterwards. We in-

troduce five normalization rules covering various degenerate

cases that may occur in a circuit after applying a substitution

to it: e.g., a gate of outdegree 0, a gate computing a constant

function, a gate whose value depends on one of its inputs

only. For each such case, we show how to simplify a circuit.

We then show how to make affine substitutions. This is

the step that might potentially introduce cycles in the affine

part of a circuit and that requires to work with a generalized

notion of circuits.

Also, we define a so-called troubled gate. Informally

speaking, this is a special bottleneck configuration in a

circuit that does not allow to eliminate more than three

gates easily. To overcome this difficulty, we use a circuit

complexity measure that depends on the number of troubled

gates. This, in turn, requires us to analyze carefully how

many new troubled gates can be introduced by applying

a normalization rule. At the same time, we show that a

circuit computing an affine disperser cannot have too many

troubled gates (otherwise one could find an affine subspace

of not too large dimension that makes the circuit constant).

This implies that the bottleneck case cannot appear too often

during the gate elimination process.
In Section III-C we formally define a source arising

from constant, affine, and quadratic substitutions. We apply

quadratic substitutions very carefully. In particular, we main-

tain the following invariant: the variables from the right-hand

side of quadratic substitutions are pairwise different and do

not appear in the left hand side of affine substitutions. This

invariant guarantees that a disperser for affine sources is also

a disperser for our generalized sources (with parameters that

are only slightly worse).
In Section III-D we define the circuit complexity measure

and formulate the main result: we can always reduce the

measure by an appropriate amount by shrinking the space;

the lower bound follows. The measure is defined as a linear

combination of four parameters of a circuit: the number of

gates, the number of troubled gates, the number of quadratic

substitutions, and the number of inputs. The optimal values

for coefficients in this linear combination come from solving

a simple linear program.
Finally, Section III-E employs all developed techniques in

order to prove the main lower bound of the paper. Due to the

page limit, here we only present a proof sketch, the detailed

proof can be found in the full version of the paper [58].

B. Cyclic circuit transformations
In this section we consider several types of substitutions.

It is straightforward how to substitute a constant to an input:

Proposition 1. Let C be a circuit with input gates
x1, . . . , xn, and let c ∈ {0, 1} be a constant. For every
gate G fed by x1 replace the operation g(x1, t) computed
by G with the operation g′(x1, t) = g(c, t) (thus the result
becomes independent of x1). This transforms C into another
circuit C ′ (in particular, it is still a fair semicircuit) such
that it has the same number of gates, the same topology, and
for every gate H that computes a function h(x1, . . . , xn) in
C, the corresponding gate in the new circuit C ′ computes
the function h(c, x2, . . . , xn).

We call this transformation a substitution by a constant.
A more complicated type of a substitution is when we

replace an input x with a function computed in a different

gate G. In this case in each gate fed by x, we replace

wires going from x by wires going from G. We call this

transformation a substitution by a function.

Proposition 2. Let C be a circuit with input gates
x1, . . . , xn, and let g(x2, . . . , xn) be a function computed
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in a gate G. Consider the construction C ′ obtained by
substituting a function g to x1 (it has the same number
of gates as C). Then if G is not reachable from x1 by a
directed path in C, then C ′ is a fair semicircuit, and for
every gate H that computes a function h(x1, . . . , xn) in C,
except for x1, the corresponding gate in the new circuit C ′

computes the function h(g(x2, . . . , xn), x2, . . . , xn).

In what follows, however, we will also use substitutions

that do not satisfy the hypothesis of this proposition: sub-

stitutions that create cycles. We defer this construction to

Section III-B2.

1) Normalization and troubled gates: In order to work

with a circuit, we are going to assume that it does not

contain obvious inefficiencies (such as trivial gates, etc.), in

particular, those created by substitutions. We describe certain

normalization rules below; however, while normalizing we

need to make sure the circuit remains within certain limits:

in particular, it must remain fair and compute the same

function. We need to check also that we do not “spoil” a

circuit by introducing “bottleneck” cases. Namely, we are

going to prove an upper bound on the number of newly

introduced unwanted fragments called “troubled” gates.

We say that an internal gate G is troubled if it satisfies the

following three criteria: G is an and-type gate with outdegree

1, the gates feeding G are input gates, and both input gates

feeding G have outdegree 2. From now on, we denote all
and-type gates by ∧, and all xor-type gates by ⊕.

We always make substitutions consciously and thus can

count the number of troubled gates that can possible emerge.

However, what if a gate is killed because of simplifications?

We limit the process of removing gates to normalization

rules, and make sure that we never get more than four

new troubled gates per killed gate. We say that a circuit

is normalized if none of the following rules is applicable to

it. Each rule eliminates a gate G whose inputs are gates I1
and I2. (Note that I1 and I2 can be inputs or internal nodes,

and, in rare cases, they can coincide with G itself).

Rule 1: If G has no outgoing edges and is not marked as

an output, then remove it. Note also that it could not happen

that the only outgoing edge of G feeds itself, because this

would make a trivial equation and violate the circuit fairness.

Rule 2: If G is trivial, i.e., it computes a constant function c
of the circuit inputs (not necessarily a constant operation on

the two inputs of G), remove G and “embed” this constant

to the next gates. That is, for every gate H fed by G,

replace the operation h(g, t) computed in this gate (where

g is the input from G and t is the other input) by the

operation h′(g, t) = h(c, t). (Clearly, h′ depends on at most

one argument, which is not optimal, and in this case after

removing G one typically applies Rule 3 or Rule 2 to its

successors.)

Rule 3: If G is passing, i.e., it computes an operation

depending only on one of its inputs, remove G by reattaching

its outgoing wires to that input. This may also require

changing the operations computed at its successors (the

corresponding input may be negated; note that an and-

type gate (xor-type gate) remains an and-type gate (xor-type

gate)).

If G feeds itself and depends on another input, then the

self-loop wire (which would now go nowhere) is dropped.

(Note that if G feeds itself it cannot depend on the self-loop

input.)

If G has no outgoing edges it must be an output gate

(otherwise it would be removed by Rule 1). In this special

case, we remove G and mark the corresponding input of G
(or its negation) as the output gate.

Rule 4: If G is a 1-gate that feeds a single gate Q, Q is

distinct from G itself, and Q is also fed by one of G’s

inputs, then replace in Q the incoming wire going from G
by a wire going from the other input of G (this might also

require changing the operation at Q); then remove G. We

call such a gate G useless.

Rule 5: If the inputs of G coincide (I1 and I2 refer to

the same node) then we replace the binary operation g(x, y)
computed in G with the operation g′(x, y) = g(x, x). Then

perform the same operation on G as described in Rule 3

or 2.

Proposition 3. Each of the Rules 1–5 removes one internal
gate, introduces at most four new troubled gates. An input
gate that was not connected by a directed path to the output
gate cannot be connected by a new directed path1. None of
the rules change the functions of n input variables computed
in the gates that are not removed. A fair semicircuit remains
a fair semicircuit.

2) Affine substitutions: In this section, we show how to

make substitutions that do create cycles. This will be needed

in order to make affine substitutions. Namely, we take a gate

computing an affine function x1 ⊕
⊕

i∈I xi ⊕ c (where c ∈
{0, 1} is a constant) and “rewire” a circuit so that this gate

is replaced by a trivial gate computing a constant b ∈ {0, 1},
while x1 is replaced by an internal gate. The resulting circuit

over x2, . . . , xn may be viewed as the initial circuit under

the substitution x1 ←
⊕

i∈I xi ⊕ c ⊕ b. The “rewiring” is

formally explained below; however, before that we need to

prove a structural lemma (which is trivial for acyclic circuits)

that guarantees its success.

For an xor-circuit, we say that a gate G depends on a

variable x if G computes an affine function in which x is

a term. Note that in a circuit without cycles this means that

precisely one of the inputs of G depends on x, and one

could trace this dependency all the way to x, therefore there

always exists a path from x to G. The following lemma

states that it is always possible to find such a path in a fair

1This trivial observation will be formally needed when we later count
the number of such gates.
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cyclic circuit too. However, it may be possible that some

nodes on this path do not depend on x.

Lemma 1. Let C be a fair cyclic xor-circuit, and let the
gate G depend on the variable x. Then there is a path from
x to G.

We now come to rewiring.

Lemma 2. Let C be a fair semicircuit with input gates
x1, . . . , xn and internal gates G1, . . . , Gm. Let G be a gate
not reachable by a directed path from any and-type gate.
Assume that G computes the function x1 ⊕

⊕
i∈I xi ⊕ c,

where I ⊆ {2, . . . , n}. Let b ∈ {0, 1} be a constant.
Then one can transform C into a new circuit C ′ with
the following properties: 1) graph-theoretically, C ′ has the
same gates as C, plus a new internal gate Z; some edges
are changed, in particular, x1 is disconnected from the
circuit; 2) the operation in G is replaced by the constant
operation b; 3) inC′(Z) = 2, outC′(G) = outC(G) + 1,
outC′(x1) = 0. outC′(Z) = outC(x1)−1. 4) The indegrees
and outdegrees of all other gates are the same in C
and C ′. 5) C ′ is fair. 6) all gates common for C ′ and C
compute the same functions on the affine subspace defined
by x1 ⊕

⊕
i∈I xi ⊕ c ⊕ b = 0, that is, if f(x1, . . . , xn)

is the function computed by an internal gate in C and
f ′(x2, . . . , xn) is the function computed by its counterpart
in C ′, then f(

⊕
i∈I xi⊕c⊕b, x2, . . . , xn) = f ′(x2, . . . , xn).

The gate Z computes the function
⊕

i∈I xi ⊕ c ⊕ b (which
on the affine subspace equals x1).

This transformation does not introduce new troubled

gates.

After we apply the transformation, we apply Rule 2 to G.

Since the only troubled gates introduced by this rule are the

inputs of the removed gate, no troubled gates are introduced

(and one gate, G itself, is eliminated, thus the combination

of Lemma 2 and Rule 2 does not increase the number of

gates).

C. Read-once depth-2 quadratic sources

We generalize affine sources as follows.

Definition 1. Let the set of variables {x1, . . . , xn} be
partitioned into three disjoint sets F,L,Q ⊆ {1, . . . , n} (for
free, linear, and quadratic). Consider a system of equalities
that contains for each variable xj with j ∈ Q, a quadratic
equality of the form xj = (xi ⊕ ci)(xk ⊕ ck) ⊕ cj , where
i, k ∈ F and ci, ck, cj are constants; the variables from
the right-hand side of all the quadratic substitutions are
pairwise disjoint. For each variable xj with j ∈ L, an affine
equality of the form xj =

⊕
i∈Fj⊆F xi ⊕

⊕
i∈Qj⊆Q xi ⊕ cj

for some constant cj . A subset R of {(x1, x2, . . . , xn) ∈ F
n
2}

that satisfies these equalities is called a read-once depth-2

quadratic source (or rdq-source) of dimension d = |F |.

The variables from the right-hand side of quadratic sub-

stitutions are called protected. Other free variables are called

unprotected.

For this, we will gradually build a straight-line program

(that is, a sequence of lines of the form x = f(. . .),
where f is a function depending on the program inputs

(free variables) and the values computed in the previous

lines) that produces an rdq-source. We build it bottom-up.

Namely, we take an unprotected free variable xj and extend

our current program with either a quadratic substitution

xj = (xi⊕ ci)(xk⊕ ck)⊕ cj depending on free unprotected

variables xi, xk or a linear substitution xj =
⊕

i∈J xi ⊕ cj
depending on any variables. It is clear that such a program

can be rewritten into a system satisfying Definition 1. In

general, we cannot use protected free variables without

breaking the rdq-property. However, there are two special

cases where this is possible: (1) we can substitute a con-

stant to a protected variable (and update the quadratic line

accordingly: for example, z = xy and x = 1 yield z = y
and x = 1); (2) we can substitute one protected variable for

another variable (or its negation) from the same quadratic

equation (for example, z = xy and x = y yield z = y and

x = y).

In what follows we abuse the notation by denoting by

the same letter R the source, the straight-line program

defining it, and the mapping R : Fd
2 → F

n
2 computed by

this program that takes the d free variables and evaluates all

other variables.

Let R ⊆ F
n
2 be an rdq-source of dimension d, let

the free variables be x1, x2, . . . , xd, and let f : Fn
2 → F2

be a function. Then f restricted to R, denoted f |R, is a

function f |R : Fd
2 → F2, defined by f |R(x1, . . . , xd) =

f(R(x1, . . . , xd)). Note that affine sources are precisely

rdq-sources with Q = ∅. We define dispersers for rdq-

sources similarly to dispersers for affine sources: A family

of functions fn : F
n
2 → F2 is an rdq-disperser for dimension

d(n) if for all sufficiently large n, for every rdq-source R
of dimension at least d(n), fn|R is non-constant. The fol-

lowing proposition shows that affine dispersers are also rdq-

dispersers for related parameters. By setting one protected

variable to 0 for each quadratic restriction, we get that if R
is an rdq-source of F

n
2 of dimension d, then R contains an

affine subspace of dimension at least d/2.2 In particular we

have the following.

Corollary 1. An affine disperser for dimension d is an
rdq-disperser for dimension 2d. In particular, an affine
disperser for sublinear dimension is also an rdq-disperser
for sublinear dimension.

2This is obviously false for quadratic varieties: no Boolean function
can be non-constant on all sets of common roots of n − o(n) quadratic
polynomials. For example, the system of n/2 quadratic equations x1x2 =
x3x4 = . . . = xn−1xn = 1 defines a single point, so any function is
constant on this set.
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D. Circuit complexity measure

For a circuit C and a straight-line program R defining an

rdq-source (over the same set of variables), we define the

following circuit complexity measure:

μ(C,R) = g + αQ · q + αT · t+ αI · i ,

where g is the number of internal gates in C, q is the number

of quadratic substitutions in R, t is the number of troubled

gates in C, and i is the number of influential input gates

in C. We say that an input is influential if it feeds at least

one gate or is protected (recall that a variable is protected

if it occurs in the right-hand side of a quadratic substitution

in R). The constants αQ, αT , αI > 0 will be chosen later.

Proposition 3 implies that when a gate is removed from

a circuit by applying a normalization rule the measure μ is

reduced by at least β = 1− 4αT . The constant αT will be

chosen to be very close to 0 (certainly less than 1/4), so

β > 0.

In order to estimate the initial value of our measure, we

need the following lemma.

Lemma 3. Let C be a circuit computing an affine disperser
f : Fn

2 → F2 for dimension d, then the number of troubled
gates in C is less than n

2 + 5d
2 .

We are now ready to formulate our main result.

Theorem 1. Let f : Fn
2 → F2 be an rdq-disperser for

dimension d and C be a fair semicircuit computing f . Let
αQ, αT , αI ≥ 0 be some constants, and αT ≤ 1/4. Then
μ(C, ∅) ≥ δ(n− d− 2) where

δ := αI

+min
{αI

2
, 4β, 3 + αT , 2β + αQ, 5β − αQ, 2.5β +

αQ

2

}
,

and β = 1− 4αT .

We defer the proof of this theorem to the next section.

This theorem, together with Corollary 1 and Lemma 3,

implies a lower bound on the circuit complexity of affine

dispersers.

Corollary 2. Let δ, β, αQ, αT , αI be constants as above,
then the circuit size of an affine disperser for sublinear
dimension is at least

(
δ − αT

2 − αI

)
n− o(n).

The maximal value of δ− αT

2 −αI satisfying the condition

from Corollary 2 is achieved when αT = 1
43 , αQ = 65

43 ,

αI = 6+ 2
43 , β = 39

43 , δ = 9+ 3
43 . This gives the main result

of the paper.

Main Theorem. The circuit size of an affine disperser for
sublinear dimension is at least (3 + 1

86 )n− o(n).

E. Gate elimination

In order to prove Theorem 1 we first show that it is always

possible to make a substitution and decrease the measure by

δ. The main theorem then follows by a simple induction

proof.

Theorem 2. Let f : Fn
2 → F2 be an rdq-disperser for

dimension d, let R be an rdq-source of dimension s ≥
d + 2, and let C be an optimal (i.e., C with the smallest
μ(C,R)) fair semicircuit computing the function f |R. Then
there exist an rdq-source R′ of dimension s′ < s and a
fair semicircuit C ′ computing the function f |R′ such that
μ(C ′, R′) ≤ μ(C,R)− δ(s− s′).

The proof of Theorem 2 is based on a careful considera-

tion of a number of cases. Due to the page limit restrictions,

here we show a high-level picture of the case analysis only.

We fix the values of constants αT , αQ, αI , β, δ to the

optimal values: αT = 1
43 , αQ = 65

43 , αI = 6 2
43 , β = 39

43 , δ =
9 3
43 . Now it suffices to show that we can always make one

substitution and decrease the measure by at least δ = 9 3
43 .

First we normalize the circuit. By Proposition 3, during nor-

malization if we eliminate a gate then we introduce at most

four new troubled gates, this means that we decrease the

measure by at least 1−4αT = 39
43 . Therefore, normalization

never increases the measure.

We always make constant, linear or simple quadratic

substitution to a variable. Then we remove the substituted

variable from the circuit, so that for each assignment to

the remaining variables the function is defined. It is easy

to make a constant substitution x = c for c ∈ {0, 1}. We

propagate the value c to the inputs fed by x and remove

x from the circuit, since it does not feed any other gates.

An affine substitution x =
⊕

i∈I xi ⊕ c is harder to make,

because a straightforward way to eliminate x would be to

compute
(⊕

i∈I xi ⊕ c
)

elsewhere. We will always have a

gate G that computes
⊕

i∈I xi⊕ c and that is not reachable

by a direct path from an and-type gate. Fortunately, in this

case Lemma 2 shows how to compute it on the affine

subspace defined by the substitution without using x and

without increasing the number of gates (later, an extra gate

introduced by this lemma is removed by normalization).

Thus, in this sketch we will be making arbitrary affine

substitutions for sums that are computed in gates without

saying that we need to run the reconstruction procedure

first. Also, we will make a simple quadratic substitution

z = (x ⊕ c1)(y ⊕ c2) ⊕ c3 only if the gates fed by z are

cancelled out after the substitution, so that we do not need

to propagate this quadratic value to other gates. We want to

stay in the class of rdq-sources, therefore we cannot make

an affine substitution to a variable x if it already has been

used in the right-hand side of some quadratic restriction

z = (x ⊕ c1)(y ⊕ c2) ⊕ c3 (that is, x is protected), also

we cannot make quadratic substitutions that overlap in the
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Figure 1: Gate elimination process in Theorem 2.

variables. In this proof sketch we ignore these two issues,

but they are addressed in the full version of the paper.

Let A be a topologically minimal and-type gate (i.e., an

and-type gate that is not reachable from any and-type gate),

let I1 and I2 be the inputs of A (I1 and I2 can be variables

or internal gates). Now we consider the following cases (see

Figure 1).

1) At least one of I1, I2 (say, I1) is an internal gate of

outdegree greater than one. There is a constant c such

that if we assign I1 = c, then A becomes constant.

(For example, if A is an and, then c = 0, if A is

an or, then c = 1 etc.) When A becomes constant it

eliminates all the gates it feeds. Therefore, if we assign

the appropriate constant to I1, we eliminate I1, two of

the gates it feeds (including A), and also a successor

of A, four gates total, and we decrease the measure

by at least αI + 4β = 9 29
43 > δ.

2) At least one of I1, I2 (say, I1) is a variable of

outdegree one. We assign the appropriate constant

to I2. This eliminates I2, A, a successor of A, and

I1. This assignment eliminates at least two gates and

two variables, so the measure decrease is at least

2αI + 2β = 13 39
43 > δ.

3) I1 and I2 are internal gates of outdegree one. Then if

we assign the appropriate constant to I1, we eliminate

I1, A, a successor of A, and I2 (since I2 does not feed

any gates). We decrease measure by at least αI+4β >
δ.

4) I1 is an internal gate of outdegree one, I2 is a variable

of outdegree greater than one. Then we assign the

appropriate constant to I2. This assignment eliminates

I2, at least two of its successors (including A), a

successor of A, and I1 (since it does not feed any

gates). Again, we decrease the measure by at least

αI + 4β > δ.

5) I1 and I2 are variables of outdegree greater than one.

a) I1 or I2 (say, I1) has outdegree at least three.

By assigning the appropriate constant to I1 we

eliminate at least three of the gates it feeds and

a successor of A, four gates total.

b) I1 and I2 are variables of degree two. If A is

a 2+-gate we eliminate at least four gates by

assigning I1 so in what follows we assume that

A is a 1-gate. In this case A is a troubled gate.

We want to make the appropriate substitution and

eliminate I1 (or I2), its successor, A, and A’s

successor.

i) If this substitution does not introduce new

troubled gates, then we eliminate a variable,

three gates and decrease the number of trou-

bled gates by one. Thus, we decrease the

measure by αI + 3 + αT = 9 3
43 = δ.

ii) If the substitution introduces troubled gates,

then we consider which normalization rule

introduces troubled gates. The full case anal-

ysis is presented in the full paper, here we

demonstrate just one case of the analysis. Let

us consider the case when a new troubled gate

is introduced when we eliminate the gate fed

by A (see Figure 1, the variable z will feed

a new troubled gate after assignments x = 0
or y = 0). In such a case we make a different

substitution: z = (x ⊕ c1)(y ⊕ c2) ⊕ c3.

This substitution eliminates gates A,D,E, F
and a gate fed by F . Thus, we eliminate

one variable, five gates, but we introduce a

new quadratic substitution, and decrease the

measure by at least αI+5β−αQ = 9 3
43 = δ.

It is conceivable that when we count several eliminated

gates, some of them coincide, so that we actually eliminate

fewer gates. Usually in such cases we can prove that some

other gates become trivial. This and other degenerate cases
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are handled in the full version of the paper [58].
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