
An Average-case Depth Hierarchy Theorem for Higher Depths

Johan Håstad
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Abstract—We extend the recent hierarchy results of Ross-
man, Servedio and Tan [1] to address circuits of almost
logarithmic depth. Our proof uses the same basic approach
as [1] but a number of small differences enables us to obtain
a stronger result by a significantly shorter proof.
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I. INTRODUCTION

One early success of circuit complexity was to understand

some limitations on the power of small-depth Boolean

circuits containing unbounded fanin and-gates and or-gates.

The first major step was done by Ajtai [2] and Furst, Saxe

and Sipser [3] who, independently, proved that polynomial

size circuits of constant depth cannot compute the parity

function. This was later improved by Yao [4] and Håstad [5]

to the tight result that parity requires size exp(Ω(n1/(d−1)))
to be computed by depth d circuits. From the original proofs

it is not difficult to see that any circuit significantly smaller

than the established bounds agrees with parity only for

marginally more than half of the inputs. The most recent

and almost optimal bounds for the possible correlation was

established, again independently, in [6] and [7]. Apart from

being an interesting question on its own, the average-case

hardness results made it possible [8], [9] to prove that,

relative to a random oracle, PSPACE strictly contains the

polynomial time hierarchy.

The lower bounds for the size of circuits computing parity

are essentially tight and as they are decreasing with d one

can conclude that depth d is more powerful than depth d−1,

but only in a weak sense. Sipser [10] started the program

of trying to understand the power of additional depth in

a more systematic manner. In the worst-case setting these

bounds were significantly strengthened [4], [5] but these

early results failed to rule out that any function computed by

a small depth d circuit can in fact be approximated by a not

very large circuit of depth d− 1. The functions constructed

to show the separation were in general quite biased and thus

can in particular be approximated by constant functions.

There seemed to be a need for an additional idea to find

a function computed by a small circuit of depth d but not

approximated by circuits of smaller depth.

In a beautiful and recent paper by Rossman, Servedio

and Tan [1] techniques were introduced that resolved the

question of an average-case hierarchy. Their result is that

there is a constant c such that for d ≤ c
√

logn

log logn there is

a function Fd that is computed by a read-once formula of

depth d but such that any circuit of size at most exp(n
1

6(d−1) )
and depth d− 1 agrees with Fd on a fraction of inputs that

is at most 1
2 + n−Ω(1/d).

The technical innovation in [1] is at the same time simple

and extremely powerful and to explain it let us examine

the proof that parity is hard to compute in the average-

case sense. The main tool here is the use of restrictions.

In the restrictions used to prove the average-case results for

parity, most variables are set to a random constant while

a few variables are kept alive. The key three properties

needed for these restrictions are: (i) the parity function is

reduced to a parity function of the remaining variables,

(ii) giving uniformly random values to the live variables

gives, combined with the restriction, a uniformly random

input, and (iii) any small depth circuit is, more or less and

with high probability, turned into a constant by a restriction

with suitable parameters. Using the simple property that a

constant only agrees with any non-trivial parity for half of

the inputs makes it possible to finish the argument based on

these three properties.

The situation in this case is extremely robust in that parity

survives any restriction that does not fix all the variables.

The situation cannot be as simple when proving a hierarchy

result as also the function we are studying is computed by a

small-depth circuit and thus it is difficult to avoid that this

function is significantly simplified by the restriction. The

way around this used in the proof of the worst-case hardness

results was to pick a special class of restrictions that preserve

the defining function but which simplify any circuit with

a significantly smaller bottom fanin. The papers [4], [5],

[10] were unable to construct such spaces of restrictions

that at the same time satisfied the property (ii) of picking

a uniformly random input. The structure in the restrictions

needed to preserve the defining function seemed difficult

to combine with uniformity. The insight of [1] was to

introduce an intermediate step called a projection. After

some inputs have been given random values, one identifies

many remaining variable with a single new variable. By a

suitable combination of a restriction giving non-independent

values with a biased setting of these new variables it was

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.18

78

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.18

79

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.18

79



possible to have all three desired properties.

Working with non-independent restrictions leads to com-

plications and each of the properties equivalent to (i), (ii)

and (iii) established in [1] required a non-trivial argument

with a careful attention to detail. In the current paper we

take essentially the same approach but by changing the

definitions slightly we are able to get a more streamlined

argument avoiding many of the parameters used by [1]. As

an additional bonus we are able to extend their result to

higher depths and, up to constants, we get non-trivial result

for the same range of parameters as the worst case lower

bounds. In particular we prove the following theorem.

Theorem 1.1: For sufficiently large n and d ≤ logn
log logn ,

then there is a Boolean function Fd, depending on n Boolean

inputs which is computable by a read-once circuit of depth

d such that for any circuit C of depth d−1 and size at most

2n
1/5(d−1)

we have

Pr[Fd(x) = C(x)] ≤ 1

2
+O(n−Ω(1/8d)).

The theorem is only interesting for d ≤ logn
5 log logn as the

bound on the size of C is sublinear for larger values of d.

For the record let us state that we have not tried to optimize

the values of the constants 5 and 8, but even being more

careful, we do not believe they can be pushed below 2.

As was also done in [1] we prove a lower bound for a

slightly larger class of circuits including those of depth d
with small bottom fanin and even depth d+ 1 circuits with

small bottom fanin if the output gate is restricted to be the

other type compared to the output gate of Fd.

Let us first note that while the correlation of Fd with the

output of circuits of smaller depth is 1
2 + o(1), the o(1)

term is only polynomially small while the results for parity

have this term being exponentially small. This is probably

inherent in the current situation as the output of any circuit of

depth d and size S agrees, with probability at least 1
2+

1
O(S) ,

with either a constant or one of its depth d− 1 sub-circuits.

Let us finally note that while our result essentially squares

the depth for which we can prove lower bounds we do not

see how to get any significant new application. The results

of [1] were already sufficient to prove that the polynomial

time hierarchy is infinite relative to a random oracle and

that Benjamini-Kalai-Schramm conjecture is false. We refer

to [1] for a discussion of these results as well as other

applications.

II. THE ARGUMENT AT HIGH LEVEL

The function Fd we prove is difficult to compute on

average is more or less the first function that comes to

mind and slight variants of this function are used in earlier

papers proving hierarchy results. It is computed by a read-

once formula which is a tree of depth d and governed by a

parameter m ≈ log n/2d. We have alternating levels of and-

gates and or-gates, the top fanin is Θ(22m), the bottom fanin

is 2m while the fanin at other levels is Θ(m22m). A little

care is needed to make it balanced but this is straightforward.

We are given a depth d − 1 circuit C that we wish to

prove does not even approximate Fd. The early papers [4],

[5], [10] picked a random restriction (giving values to most

variables) keeping a few variables non-assigned and made

sure that Fd turned into Fd−1 while the depth of the circuit

C could be decreased by one. A new element was introduced

by [1] by allowing projections (identifying several different

old variables with one new variable) but this paper still relied

on induction.

We follow almost the same approach but there is a subtle

difference. After we have done a random restriction and

projection, Fd does not turn exactly into Fd−1 but to a

similar looking function and previous papers use a clean-

up stage to turn it exactly into Fd−1 in order to apply the

induction hypothesis. This clean-up is fairly costly and we

omit it. This gives better parameters and compared to [1]

eliminates a rather tedious analysis. Instead, starting with Fd

we apply a sequence of d − 1 restrictions and projections

and after the i’th stage Fd is reduced to something similar

to, but not exactly equal to Fd−i, while C has, with high

probability, lost i levels. Apart from this change the approach

of the paper is what can be expected given previous papers

and an outline of the paper is as follows.

Defining the function Fd is done in Section III. We define

our set of restrictions in Section IV. Their basic properties,

that they generate uniformly random inputs and that they,

with high probability and to a significant extent, preserve

Fd is established in Section V.

One way of thinking about picking the restriction ρi is

by first picking independent restrictions ρi−1 to each sub-

formula of depth i − 1 and then doing some additional

fixing. This is also the way we reason about ρi when

performing the simplifications, via a switching lemma, of

the competing circuit C. The needed switching lemma is

found in Section VI. This analysis is written in the form of

conditional probabilities using the formalism of [5] while [1]

uses an extension of labeling argument of Razborov [11].

Which of the two ways of presenting the proof that is to

be preferred is probably a matter of taste but at least in the

current situation our presentation avoids some technicalities.

Finally, we put all the pieces together proving our main

theorem in Section VII.

III. DEFINING THE FUNCTIONS Fd

We have a parameter m guiding our construction. We

define Fd to be a tree with alternating layers of and-gates and

or-gates. The layer next to the inputs is defined to contain

and-gates and thus the output gate is an and-gate if d is odd

and otherwise an or-gate.

The intuitive version of the definition is that we want

internal and-gates to be 1 with probability 2−2m for random

inputs and or-gates to be 0 with the same probability.
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Furthermore we want the output to be unbiased. This cannot

be achieved exactly but by an inductive definition we can

come very close. Let us turn to the formal details and give

the parameters.

Definition 3.1: Let c0 = 1
2 and for 1 ≤ i ≤ d − 1 let fi

be the smallest integer such that

(1− ci−1)
fi ≤ 2−2m,

and set ci = (1− ci−1)
fi . Finally set fd to be the smallest

integer such that

(1− cd−1)
fd ≤ 1

2
.

The function Fd is defined by a read-once formula of

alternating levels of and-gates and or-gates. The fan-out at

distance i from the inputs is fi.
It is not difficult to see that 2−2m−2−4m ≤ ci ≤ 2−2m for

1 ≤ i ≤ d−1 and f1 = 2m, fi = 2m ln 2·22m(1+O(2−m))
for 2 ≤ i ≤ d − 1, while fd = ln 2 · 22m(1 + O(2−m)). It

follows that the number of inputs of Fd is

d∏
i=1

fi = 22(d−1)mmd−12O(d) (1)

and we denote this number by n. We note that if d ≤
logn

2 log logn then the first factor of (1) is the dominating factor

and m = logn
2d−2 (1 + o(1)).

It follows by construction that if we feed random inde-

pendent uniform bits as inputs into the formula defining Fd

then an and-gate on level i (which assumes that i is odd)

is one with probability ci while an or-gate is zero with the

same probability for even i. It follows that output of Fd

is, within an error 2−2m, unbiased. We turn to defining the

space of restrictions.

IV. THE SPACE OF RESTRICTIONS Ri

In this paper we, as was first done in [1], complement

restrictions with projections. A classical restriction maps

each variable, xi, to one of the three values 0, 1 and ∗.
The two first values indicate that the corresponding constant

should be substituted for this variables while the third value

says that the value of xi remains undetermined.

We combine classical restriction with projections under

which groups of variables are identified with the same

new variable. This makes further simplifications possible.

The mapping of old variables to new variables could be

completely arbitrary but to avoid a generality that we do not

utilize we define only a special class of projections.

The universe of variables used by our restrictions is given

by xv where v ranges over all nodes in the tree defining Fd.

Let Vi be the set of variables xv where v is at height i, i.e.

at distance i from the inputs. Note that the set of original

inputs to Fd is exactly given by V0.

Definition 4.1: A level i restriction, ρi, is a mapping of

V0 into the set {0, 1} ∪ Vi. The possible values of ρi(xw)
are 0, 1 and xv where v is the height i ancestor of w.

The only way we construct a level i restriction in this

paper is to first do a level i − 1 restriction, then apply

a classical restriction to the variables in Vi−1 and finally

identify any live variables with its parent. Thus when going

from ρi−1 to ρi we define a mapping from Vi−1 to {0, 1}∪Vi

and ρi is the composition of these two mapping. Any input

mapped to a constant under ρi−1 is still mapped to the same

constant under ρi.
A central role in our proof is played by a probability

distribution of level i restrictions, Ri, and let us give its

basic properties. The restrictions operate independently on

each height i sub-formula and let us assume that i is odd

and hence the top gate of such a sub-formula is an and-gate.

Let Fv be the sub-formula rooted at v, a gate at level i in the

formula defining Fd. We shortly turn to the exact definition

of Ri but to guide the readers intuition we first state four

basic properties that our spaces of restrictions satisfy.

1) With probability 2−5m/2 all variables of Fv are fixed

to constants and Fv�ρi≡ 1.

2) With probability 1−2−m all variables of Fv are fixed

to constants and Fv�ρi≡ 0.

3) With probability 2−m − 2−5m/2 we have Fv�ρi≡ xv .

4) If xv is set to 1 with probability bi defined as

bi =
ci − 2−5m/2

2−m − 2−5m/2
(2)

then ρi combined with this setting gives a uniformly

random input to all variables in Fv .

For future reference we note that bi = 2−m(1 +
O(2−m/2)). If the gate is an or-gate we reverse the roles of 0

and 1. The spaces of restrictions are constructed recursively

for increasing values of i and let us start by formally defining

R1. Let v be a gate at level one and let Bv be the inputs

that appear in Fv which is thus a set of size 2m.
Definition 4.2: A random restriction ρ1 ∈ R1 is con-

structed independently for each gate, v, on level 1 as follows.

1) Pick a uniformly random assignment α ∈ {0, 1}2m to

all inputs xw ∈ Bv .

2) If α = 12m then with probability 2−m/2 set ρ(xw) = 1
for all xw ∈ Bv , and otherwise proceed as follows.

Pick a uniformly random non-empty subset S of Bv

and set ρ(xw) = ∗ for xw ∈ S and ρ(xw) = 1 for

xw 
∈ S.

3) If α 
= 12m, then with probability (1 − 2−m)/(1 −
2−2m) set ρ(xw) = αw for all xw ∈ Bv and otherwise

set ρ(xw) = ∗ for all w such that αw = 0 while

ρ(xw) = 1 when αw = 1.

4) Identify all variables xw ∈ Bv such that ρ(xw) = ∗
with xv .

We let ρ1 denote a typical level 1 restriction after also the

projection in the last step has been applied. If some variable
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xw is mapped to xv then we say that xv is alive and also

write this as ρ1(xv) = xv . Keeping with this convention we

also write ρ1(xv) = c when Fv is fixed to the constant c. In

general we sometimes use ρ1(xv) for Fv�ρ1 and remember

that this takes values 0, 1 or xv .

We think of the assignment α as a tentative assignment

to all variables. We forget some of the values but if we later

assign xv with the correct bias we get the same probability

distribution as if we had kept the original α. This assures

that such a substitution creates a uniformly random input.

It is not difficult to see that R1 has the four basic

properties we described above but let us still check them

in detail.

The probability that Fv is fixed to 1 is 2−5m/2 as we need

to pick α = 12m and then decide to use this assignment fully

under step 2. Similarly the probability that Fv is fixed to 0

is

(1− 2−2m) · (1− 2−m)/(1− 2−2m) = 1− 2−m

as this must happen under step 3. This ensures the two first

properties. Note that in all other cases we have a non-empty

set S such that ρ(xw) = xv for all xw ∈ S while all other

variables of Bv are mapped to 1. This implies that Fv�ρ1=
xv . We now turn to the property that if any live xv is set

to 1 with probability b1 = 2−2m−2−5m/2

2−m−2−5m/2 then we have the

distribution of a random input.

The probability that a set S is chosen under step 2 is

pS2 =
2−2m(1− 2−m/2)

22m − 1

while the probability that the same set is chosen under step

3 is

pS3 =
2−2m(2−m − 2−2m)

(1− 2−2m)
=

(2−m − 2−2m)

(22m − 1)
.

This implies that, conditioned that S is the set of inputs such

that ρ1(xw) = xv , the probability the probability that it was

chosen under step 2 is

pS2
pS2 + pS3

=
2−2m − 2−5m/2

2−m − 2−5m/2
(3)

and this is exactly b1. This implies that if xv is set to 1 with

probability b1 then we get the same probability distribution

on x as if we had set xw = αw immediately. We conclude

that we get a uniformly random input to the gate v. We

conclude that R1 has all the desired properties and proceed

to the general case.

When picking a restriction in the space Ri we first pick a

restriction ρi−1 from Ri−1 which reduces each sub-formula,

Fw of depth i−1 to a constant or a variable xw. This implies

that going from ρi−1 to ρi is essentially picking the inputs to

a single gate and thus quite similar to a restriction from R1.

We again center the construction around a Boolean vector

α which plays the role of a set of independent but suitably

biased set of values at level i − 1. The bits of α come in

two flavors. Those that are “hard” which should be thought

of as already fixed by ρi−1 and hence cannot be changed to

xv and those that are “soft” and can be changed.

Let us assume that i is odd and hence that each gate v
on level i is an and-gate. In the case of even i the roles of

0 and 1 are reversed in the definition below. As before we

let Bv be the set of input gates to v which is now of size

fi. We first pick an input α ∈ {0, 1}fi where some values

are hard while other are soft.

Definition 4.3: (Distribution of α.) For each αw indepen-

dently,

1) Make it a hard zero with probability 2−5m/2.

2) Make it a hard one with probability 1− 2−m.

3) Make it a soft zero with probability ci−1 − 2−5m/2.

4) Make it a soft one with probability 2−m − ci−1.

We note that a coordinate that is not given a hard value

is set to a soft zero with probability exactly bi−1.

Let T be the set of inputs that are given soft values. Thus

typically T is of size roughly 2−mfi and let fv be the actual

size at gate v. Let S be a potential set of soft zeroes. For a

non-empty set T , by a “uniformly non-empty subset of T of

bias bi−1” we mean that we include each element of T with

probability bi−1 in S and if S turns out to be empty we try

again. We denote this probability distribution by qS,T and it

is not difficult to see that

qS,T = (1− (1− bi−1)
fv )−1b

|S|
i−1(1− bi−1)

fv−|S|. (4)

Note that if T is about its typical size, then the probability

(conditioned on picking T ) that S is empty is about 2−2m

so this conditioning is in general mild. Now we proceed

to determine the value of ρi by determining the values of

the gates in Bv to be 0, 1 or xv . As indicated above we

never change a hard value while soft values are either made

permanent or turned into xv .

Definition 4.4: (Definition of Ri) Going from a restric-

tion ρi−1 to ρi as guided by α is done by the below steps.

1) If there is at least one hard zero in Bv set ρ(xw) = αw

for all w.

2) If |fv − fi2
−m| ≥ 23m/4 then set ρ(xw) = αw for all

w.

Let us turn to the more interesting part of ρ. Let q3
and q4(fv) be constants, which in rough terms satisfy

q3 ≈ 2−m/2 and q4(fv) ≈ 2−m, but whose exact values

are given during the analysis.

3) If α = 1fi , then with probability q3 set ρ(xw) = 1
for all w and otherwise proceed as follows. Choose

a non-empty subset S of T with bias bi−1 and set

ρ(xw) = ∗ for xw ∈ S and ρ(xw) = 1 for xw 
∈ S.

4) Suppose we get a non-empty set S of soft zeroes. Then

with probability 1 − q4(fv) set ρ(xw) = αw for all

xw ∈ Bvand otherwise we set ρ(xw) = ∗ for w ∈ S
and ρ(xw) = 1 = αw for xw 
∈ S.

818282



5) Identify all live variables in Bv with xv .

Before proceeding let us observe that if any coordinate

αw is set to a hard value, xw is always set to this value.

This follows as S is a subset of T and hence not given hard

ones as values and if a hard zero is assigned, all values of

α are used.

The above description tells us how to go from ρi−1

to ρi and there are a couple of equivalent ways to view

the combination into a full assignment. One way is the

following.

1) Pick an assignment α according to the distribution in

Definition 4.3.

2) For hard coordinates w of α pick a restriction ρi−1 ∈
Ri−1 conditioned on ρi−1(xw) being this constant.

3) For soft coordinates w of α pick a restriction ρi−1 ∈
Ri−1 conditioned on ρi−1(xw) = xw and then set

ρi(xw) as in the above procedure.

Of course an equivalent way to describe the procedure is

to first pick random independent ρi−1 ∈ Ri−1 for each depth

i−1 circuit and then a value of α conditioned on getting hard

coordinates with the correct value whenever ρi−1(xw) was

chosen to be a constant. In more detail this is the following

procedure.

1) Pick a random ρi−1 ∈ Ri−1. Whenever ρi−1(xw) is a

constant we fix αw to be that constant in a hard way.

2) For any w such that αw is not set in step 1 pick it to

be a soft value with bias bi−1.

3) Fix the values of some xw for w ∈ Vi−1 to constants

based on cases 1 and 2 in Definition 4.4. This is done

by a traditional restriction taking values 0, 1 and ∗ and

we denote this restriction by ρ1.

4) Fix the values of some xw for w ∈ Vi−1 to constants

based on cases 3 and 4 in Definition 4.4. This is again

a traditional restriction that we denote by ρ.

5) For all xw ∈ Bv with ρ(xw) = ∗ set ρi(xw) = xv .

We call this projection π.

We say that ρi−1, ρ1, ρ and π are the components of ρi.
The most interesting part when going from ρi−1 to ρi turns

out to be the third step ρ. For a function f we let f�ρ denote

the function after this step. We let f�ρ+π denote the function

also after the projection has been made. We have that f�ρ is

a function of xw where w ∈ Vi−1 while f�ρ+π is a function

of xv where v ∈ Vi.

As an example suppose that f = xw1∨ x̄w2 where w1 and

w2 are two nodes in the same depth i sub-formula. Suppose

furthermore that ρ does not fix either of these variables. In

this situation f�ρ is the same function as f while f�ρ+π is

identically true.

V. SIMPLE PROPERTIES OF Ri

The construction of the spaces of restrictions, Ri has been

carefully crafted to, more or less by definition, satisfy the

four basic properties and we establish these as a sequence

of lemmas closely examining the cases of Definition 4.4.

Lemma 5.1: For any node v on level i in Fd such that xv

is alive after ρi, we have Fv�ρi= xv . Furthermore if Fv�ρi

is a constant then ρi assigns constants to all variables in Fv .

Proof: Going over the construction line by line it is not

difficult to see that this is true.

The second lemma says that a sub-formula is reduced to

1 with the correct probability.

Lemma 5.2: We can determine a value of q3 =
2−m/2(1 + o(1)) such that Pr[Fv�ρi= 1] = 2−5m/2.

Proof: Let p2 be the probability that case 2 hap-

pens. By standard Chernoff bounds we have p2 =
exp(−Ω(2m/2/m)). Let p2,1 be the probability that the

value of Fv is fixed to 1 under case 2.

Now let p3 be the event that we are in case 3. As the

probability that α = 1fi is ci we have that p3 = ci − p2,1
and thus p3 = 2−2m(1 + o(1)). Fix the value of q3 to be

(2−5m/2 − p2,1)/p3 and note that q3 = 2−m/2(1 + o(1))
as promised. The probability of fixing Fv to the value 1 is

p2,1+ p3q3 and this, by the choice of q3, equals 2−5m/2.

We next determine a suitable value for q4(fv).
Lemma 5.3: We can determine a value of q4(fv) =

2−m(1 + o(1)) such that setting xv = 1 with probability

bi after we have chosen a random ρi, gives the same

distribution as setting xw = αw for all w.

Proof: We prove that for any S and T , conditioned on

T being the set of soft values and S being the set of variables

set to xv , the probability that this happened in case 3 is bi
while the probability that this happened in case 4 is 1− bi.
As we in case 3 change the values of the variables in S
from 1 to xv and in case 4 from 0 to xv this is sufficient to

prove the lemma. From now on we condition on a particular

non-empty set T of size fv being chosen and no hard zero

being picked.

The conditional probability of ending up with a specific

set S and being in case 3 is

p3S,T = (1− bi−1)
fvqS,T (1− q3),

where qS,T is the conditional probability as in (4). The

probability of getting the same sets in case 4 is

p4S,T = (1− (1− bi−1)
fv )qS,T q4(fv).

We now set

q4(fv) =
(1− bi−1)

fv (1− bi)(1− q3)

(1− (1− bi−1)fv )bi
(5)

with the result that

p4S,T
p3S,T

=
1− bi
bi

. (6)

Since we did not fix the values of all variables in case 2

we know that fv = fi2
−m(1 +O(2−m/4)) and hence (1−

bi−1)
fv = 2−2m(1 + o(1)). Furthermore as bi = 2−m(1 +
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o(1)) it is possible to satisfy (5) with q4(fv) = 2−m(1 +
o(1)).

From now on we assume that we use the values of q3
and q4(fv) determined by Lemma 5.2 and Lemma 5.3. The

next lemma is, more or less, an immediate consequence of

Lemma 5.3.

Lemma 5.4: Let v be a node on level i of the formula

for Fd. Then picking a random ρi ∈ Ri and then setting xv

with bias bi gives the uniform distribution on inputs to the

formula Fv .

For completeness let us point out that by “bias bi” we

here mean that xv is more likely to be 0 if i is odd and

more likely to be 1 if i is even.

Proof: We proceed by induction over i and for i = 1
we already established the lemma in the discussion after the

definition of R1.

Lemma 5.3 tells us that picking a xv with bias bi is

the same as setting the soft values according to α. This,

in its turn, is the same as picking independent restrictions

from ρi−1 for each sub-formula Fw and setting any live

xw with bias bi−1. By induction this results in the uniform

distribution.

Let us also verify the last basic property of Ri.

Lemma 5.5: We have Pr[Fv�ρi= 0] = 1− 2−m.

Proof: This could be done by a tedious calculation,

but in fact it can be seen by a high level argument. The

restriction ρi can reduce Fv to 0, 1 or xv . Lemma 5.2 says

that second value is taken with the correct probability and

Lemma 5.4 says that if xv is set to 1 with bias bi then we

get a uniformly random input and hence the output of Fv is

one with probability ci. This implies that

2−5m/2 + biPr[Fv�ρi≡ xv] = ci

and hence, by the definition of bi, we conclude that

Pr[Fv�ρi≡ xv] = 2−m − 2−5m/2 and as the probabilities

of obtaining the three possible values for Fv�ρi sum to one,

the lemma follows.

The most interesting property of our restrictions is that

we can prove a switching lemma and we proceed with this

step.

VI. THE SWITCHING LEMMAS

To establish a general hierarchy result (in particular dis-

tinguishing depth d and d − 2) it is sufficient to prove a

switching lemma for Ri for i ≥ 2 and in view of this we

prove this lemma first. To get a tight result we later prove

a modified lemma for R1.

As discussed in Section IV, a restriction ρi ∈ Ri is chosen

by first picking ρi−1 ∈ Ri−1, followed by ρ1, ρ and finally

making a projection π. In this section we assume any fixed

values of of ρi−1 and ρ1 and consider the effect of ρ. The

fact that the distribution of ρ is dependent on the actual

values of ρi−1 and ρ1 is left implicit.

A set F of restrictions is said to be “downward closed”

if changing the value of ρ on some input from the value ∗
to a constant cannot make it leave the set. Let us write this

formally.

Definition 6.1: A set F of restrictions is downward closed
if when ρ ∈ F and ρ′(xw) = ρ(xw) for w 
= w0 and

ρ(xw0
) = ∗ then ρ′ ∈ F .

We can now formulate the main lemma.

Lemma 6.2: Let ρi ∈ Ri be a random restriction with

components ρi−1, ρ1, ρ and π and f be an arbitrary function.

Suppose g = f�ρi−1 is computed by a depth-2 circuit of

bottom fanin t ≤ 2m/8. Let F be a downward closed set of

restrictions and let depth(g�ρi) be the minimal depth of the

decision tree computing g�ρi . Then, for sufficiently large m,

Pr[depth(g�ρi) ≥ s | ρ ∈ F ] ≤ Ds,

where D = t23−m/2.

Proof: By symmetry we may assume that i is odd. By

possibly looking at the negation of g (which has the same

depth decision tree as g) we can assume that g is a CNF,

and after ρ1 has been applied it can be written as

g�ρ1= ∧�
i=1Ci,

where each Ci is a disjunction of at most t literals. The

proof proceeds by induction over � and the base case is

when � = 0 in which case g�ρi is always computable by a

decision tree of depth 0.

We divide the analysis into two cases depending on

whether C1 is forced to one or not. We can bound the

probability of the lemma as the maximum of

Pr[depth(g�ρi) ≥ s | ρ ∈ F ∧ C1�ρ≡ 1],

and

Pr[depth(g�ρi) ≥ s | ρ ∈ F ∧ C1�ρ 
≡ 1]. (7)

The first term is taken care of by induction applied to g
without its first conjunction (and thus having size at most

�− 1) and using that the conditioning in this case is a new

downward closed set. We need to consider the second term

(7).

To avoid that g�ρi≡ 0 there must be some non-empty set,

Y of variables appearing in C1 which are given the value

∗ by ρ. Let a set Bv of variables be called a “block” and

suppose the variables in C1 come from t1 different blocks.

Say that a block is “undetermined” if it contains a variable

given the value ∗ by ρ. Let Z be the set of undetermined

blocks and let us assume it is of size r. Let us introduce the

notation undet(Z) to denote the event that all blocks in Z
are undetermined and det(C1/Z) to say that all variables in

C1 outside Z are fixed to non-∗ values by ρ.
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We start constructing a decision tree for g�ρi by querying

the new variables corresponding to Z. Let τ be an assign-

ment to these variables. We can now bound (7) as∑
τ,Z

Pr[depth(g�τρi) ≥ s− r ∧ undet(Z)∧ det(C1/Z)| E1]

(8)

where r is the size of Z which is non-empty and the

conditioning event E1 is given by ρ ∈ F ∧ C1�ρ 
≡ 1. Now

for each term in (8) we will use the estimate

Pr[depth(g�τρi) ≥ s− r | E2]× Pr[undet(Z) | E1], (9)

where the conditioning E2 is defined by

undet(Z) ∧ det(C1/Z) ∧ ρ ∈ F ∧ C1�ρ 
≡ 1,

and hence a key lemma is the following.

Lemma 6.3: If Z is a set of set r blocks appearing in C1

and ρ a random restriction appearing in the construction of

Ri for i ≥ 2, then, for sufficiently large m,

Pr[undet(Z) | E1] ≤ 2r(1−m/2).

Proof: The crux of the proof is to, given a restriction

ρ that contributes to the probability in question, create a

restriction ρ′ that also satisfies the conditioning but fixes all

variables in the blocks of Z. We describe how to do this

for r = 1 but the general case follows immediately as we

can do the changes independently on each block. Thus let

us assume that Z is the single block Bv and fix a restriction

ρ that contributes to the event of the lemma. Let P be the

set of variables of Bv that appears positively in C1 and N
the set of variables that appear negatively.

We can assume that we have no hard zero in Bv and

the number of non-hard ones in Bv is close to fi2
−m as

otherwise already ρ1 would have fixed all variables in Bv

to constants.

Clearly for ρ we must have ρ(xv) = ∗. For variables

xw ∈ P we must have ρ(xw) = ∗ while for variables in N
we have either ρ(xw) = ∗ or ρ(xw) = 1.

We now define a companion restriction ρ′ = H(ρ). If ρ
maps some variable outside N to ∗ (and in particular if P
is non-empty) we set ρ′(xv) = 0 and otherwise ρ′(xv) =
1. For a xw ∈ P we set ρ′(xw) = 0 while for xw ∈ N
we set ρ′(xw) = 1, independently of the value of ρ(xw).
Outside C1 but in Bv we set ρ′(xw) = 1 if ρ(xw) = 1
and ρ′(xw) = ρ′(xv) otherwise. Outside Bv , ρ and ρ′ agree.

First observe that ρ′ satisfies the conditioning. We only have

ρ(xw) 
= ρ′(xw) when ρ(xw) = ∗ and by the definition of

P and N we are careful not to satisfy C1.

The mapping H is many-to-one as given ρ′ we do not

know the values of ρ(xw) when xw ∈ N (but we do the

corresponding values for all other variables in Bv).

First note that

Pr(ρ)

Pr(ρ′)
=

Pr(ρv)

Pr(ρ′v)

where ρv is only the behavior of ρ on Bv and similarly for

ρ′. This is true as ρ and ρ′ take the same values outside Bv

and the restrictions are picked independently on each block.

Assume first that ρ′(xv) = 0. In this situation ρ could have

been picked under case 3 or case 4 of Definition 4.4 while

ρ′ can only have been produced under case 4. We know, by

(6), that each ρ is about a factor 2m more likely to have been

produced under case 4 than under case 3 so let us ignore

case 3, introducing a small error factor (1 + O(2−m)) that

we temporarily suppress.

Let N1 be subset of N that was actually given the value

∗ by ρ. If N1 is empty then Pr(ρv) =
q4(fv)

1−q4(fv)
Pr(ρ′v) and

in general we pick up an extra factor b
|N1|
i−1 (1− bi−1)

−|N1|.
As

∑
N1⊆N

b
|N1|
i−1 (1− bi−1)

−|N1| = (1 +
bi−1

1− bi−1
)|N |

we get

∑
H(ρ)=ρ′

Pr(ρ) ≤
(
1 +

bi−1

1− bi−1

)|N |
q4(fv)

1− q4(fv)
Pr[ρ′]

≤ 21−mPr[ρ′],
(10)

for sufficiently large m. This follows as |N | ≤ 2m/8, bi =
(1 + o(1))2−m and q4 = (1 + o(1))2−m.

If ρ′(xv) = 1 the situation is similar except that ρ′ is

produced under case 3 (while we still only consider the ρ
produced under case 4) and thus we pick up a factor q3
instead of 1− q4(fv). We get in this case

∑
H(ρ)=ρ′

Pr(ρ) ≤
(
1 +

bi−1

1− bi−1

)|N |
q4(fv)

q3
Pr[ρ′]

≤ 21−m/2Pr[ρ′],

(11)

again for sufficiently large m. The fact that we ignored

restrictions ρ produced under case 3 gives an additional

factor (1 + O(2−m)) in the above estimates and thus the

calculations remain valid, possibly by making m slightly

larger, to make sure that the “sufficiently large m” statements

are true.

The case of general r follows from the fact that we do

the modifications on all blocks of Z independently.

Remark 1: The careful reader might have noticed that in

the case with ρ′(xv) = 1 we can conclude that N1 is non-

empty giving a slightly better estimate especially in the case

when t is small. This observation can probably be used to

get a slightly better constant in the main theorem, but to

keep the argument simple we ignore this point. We return

to the main argument.

We now estimate

Pr[depth(g�τρi) ≥ s− r | E2] (12)
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by induction. We need to check that the conditioning defines

a downward closed set. This is not complicated but let us

give some details. Fix any behavior of ρ inside the blocks

of Z and satisfying the conditioning. As g�ρiτ does not

depend on the variables corresponding to Z the event in (12)

depends only the values of ρ outside Z. Changing ρ from ∗
to a constant value for any variable outside Z cannot violate

any of the conditions in the conditioning and hence we have

a downward closed set when considering ρ as a restriction

outside Z. We conclude that the probability of the event in

(12) is, by induction, bounded by Ds−r.
Our goal is to estimate the sum (8), using the bound (9)

for each term, Lemma 6.3 and the inductive case. If C1

intersects t1 different blocks (where of course t1 ≤ t) then,

using the fact that we have at most 2r (remember that r
is the number of blocks of Z) different τ , we get the total

estimate∑
Z �=∅

2r2r(1−m/2)Ds−r = Ds
(
(1 +D−122−m/2)t1 − 1

)

≤ Ds

(
(1 +

1

2t
)t1 − 1

)
≤ Ds

(13)

and we are done.
Lemma 6.2 is sufficient to prove a fairly tight hierarchy

theorem. To prove a tight variant we need also to see how

R1 simplifies circuits.
Lemma 6.4: Let g be computed by a depth-2 circuit of

bottom fanin t ≤ m/4. Let F be a downward closed set of

restrictions and ρ1 a random restriction with the distribution

R1. Let depth(g�ρ1) be the minimal depth of the decision

tree computing g�ρ1 . Then, for sufficiently large m,

Pr[depth(g�ρ1) ≥ s | ρ ∈ F ] ≤ Ds,

where D = t23+t−m/2.
Proof: The proof of this lemma is almost identical to the

proof of Lemma 6.2 and let us only discuss the differences.

Lemma 6.3 is replaced by the following.
Lemma 6.5: If Z is a set of set r blocks appearing in C1

and ρ a random restriction appearing in the construction of

R1, then, for sufficiently large m,

Pr[undet(Z) | ρ ∈ F ∧ C1�ρ 
≡ 1] ≤ 2r(t+1−m/2).

Proof: The proof is almost the same as the proof of

Lemma 6.3. The reason for the loss in parameters is that

the factor (
1 +

bi−1

1− bi−1

)|N |

that used to be bounded by a constant strictly less than two

can now be as large as 2t.
The rest of the proof of how Lemma 6.4 follows from

Lemma 6.5 is identical with how Lemma 6.2 followed from

Lemma 6.3 with the obvious change in the final calculation.

VII. THE PROOF OF THE MAIN THEOREM

We now proceed to prove Theorem 1.1. In fact we are

going to prove the following, slightly stronger, theorem.

Theorem 7.1: Let C be a circuit depth d with bottom

fanin at most m/4 and which is of size S then, for

sufficiently large m,

Pr[Fd(x) = C(x)] ≤ 1

2
+O(2−m/4) + S2−2m/2−4

.

It is not difficult to see that this theorem implies Theo-

rem 1.1 as a depth d − 1 circuit can be seen as a depth d
circuit with bottom fanin one and that m = logn

2d−2 (1+o(1)).
We turn to proving Theorem 7.1.

Proof: Let us apply a random restriction ρd−1 ∈ Rd−1

to both Fd and C. Let us assume that i is odd and hence

the output gate of Fd is an and-gate. The case of even i is

completely analogous. By Lemma 5.4 we have

Pr[Fd(x) = C(x)] = Pr[Fd�ρd−1(x) = C�ρd−1(x)]

where the latter probability is over a random ρd−1 and

random assignment to the live variables in Vd−1 where each

variable is given the value 1 with probability 1− bd−1. Let

us first see how ρd−1 affects Fd.

We have the output gate, v, of fanin fd. Looking at

Lemma 5.2 and remembering that, as d−1 is odd, we should

reverse the roles of 0 and 1 we see that each input to v is

fixed with 0 with probability 2−5m/2. Thus the probability

that some input gate to v is forced to 0 is bounded by

O(2−m/2). Suppose that this does not happen and let h1

be the number of input gates to v that are not fixed to

one. By Lemma 5.2, Lemma 5.5, and standard Chernoff

bounds we have |h1 − fd2
−m| ≤ 23m/4 with probability

1−exp(−Ω(2m/2)). Thus we conclude that, with probability

1−O(2−m/2), Fd has been reduced to an and-gate of fanin

ln 2 · 2m(1 +O(2−m/4)).
Now let us see how ρd−1 affects C. We want to prove by

induction that ρi, with high probability, reduces the depth

of C by i. Let us assume that C has Si gates at distance i
from the inputs.

Consider any gate in C at distance two from the inputs

and suppose it is an or of and-gates, the other case being

similar. By Lemma 6.4, for sufficiently large m, after ρ1

has been applied, except with probability 2−2m/2−4

this sub-

circuit can be computed by a decision tree of depth of depth

at most 2m/2−4. This implies that it can we written as an

and of or-gates of fan-out at most 2m/2−4. We conclude

that except with probability S22
−2m/2−4

, by collapsing two

adjacent levels of and-gates, C�ρ1 can be computed by a

depth d−1 circuit with bottom fanin at most 2m/2−4 where

each gate at distance at least two from the inputs corresponds

to a gate at distance at least three in the original circuit.

Applying Lemma 6.2 for i = 2, 3 . . . d−2 in a similar way

we conclude that except with probability
∑d−2

i=3 Si2
−2m/2−4

,

C�ρd−2 can be computed by a depth 2 circuit of bottom fanin
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2m/2−4. A final application of Lemma 6.2 says that except

with an additional failure probability 2−2m/2−4

, C�ρd−1 can

be computed by a decision tree of depth 2m/2−4.

By the above reasoning we know that except with proba-

bility O(2−m/2) + S2−2m/2−4

, it is true that Fd�ρd−1 is an

and of size ln 2·2m(1+O(2−m/4)) and C�ρd−1 is computed

by a decision tree of depth 2m/2−4. As the former is equal

to 1 with probability 1
2 (1 + O(2−m/4)) and the output of

any decision tree of depth s of inputs that are bd−1 biased

has a sbd−1 biased output, we conclude that

Pr[Fd�ρd−1(x) = C�ρd−1(x)] =
1

2
+O(2−m/4)+S2−2m/2−4

and the proof is complete.

Looking more closely at the proof we can derive an even

stronger theorem.

Theorem 7.2: Suppose d is odd and let C be a circuit

depth d+1 with output gate that is an or-gate, with bottom

fanin at most m/4 and of size at most S, then, for sufficiently

large m,

Pr[Fd(x) = C(x)] ≤ 1

2
+O(2−m/4) + S2−2m/2−4

.

The same is true for even d if the output gate of C is an

and-gate.

Proof: Let us assume that d is odd, the even case

being completely analogous. We follow exactly the proof of

Theorem 7.1 until the very last step. We can conclude that

C�ρd−1 , with high probability, is reduced to the disjunction

of a set of functions each computable by a decision tree of

depth 2m/2−4. We can convert this to a DNF formula of bot-

tom fanin 2m/2−4 and we must analyze the probability that

such a formula equals an and of size ln 2·2m(1+O(2−m/4)).
We have two cases.

Suppose first that each term in the DNF-formula contains

a negated variable. Then C�ρd−1 rejects the all-one input

which is chosen with probability 1
2 +O(2−m/4) and as this

input is accepted by Fd�ρd−1 we have

Pr[Fd�ρd−1(x) = C�ρd−1(x)] ≤ 1

2
+O(2−m/4) (14)

in this situation (where the probability is only over a random

input) and this case follows.

On the other hand if there is a term in C�ρd−1 that only

contains positive variables then it (and hence C�ρd−1 ) is

true with probability 1 − O(2−m/2). As Fd�ρd−1 is close

to unbiased, (14) is true also in this case and the theorem

follows.

As stated previously we have not done a serious effort

to get the best constants in our main theorems. They are,

however, not too far from the truth as we may take C to be

one input to the output gate of Fd. This is a depth d − 1
circuit of sub-linear size that agrees with Fd for a fraction
1
2 +Ω(2−2m) of the inputs.

VIII. SOME FINAL WORDS

The main difference between the current paper and the

early proof of the hierarchy theorem in [5] is the use of

projections. The projections serve two purposes. The first is

to make sure that once a single ∗ is found in ρ we do not bias

any other value of ρi to be ∗. This property was achieved in

[5] by fixing the values of neighboring variables to constants

while here we identify all the neighboring variables with the

same new variable and hence we only query one variable in

the decision tree. We feel that this difference is minor.

The more important difference is that projections enables

us to choose a uniformly random input where this seemed

difficult to achieve. It is amazing how seemingly simple

ideas can take care of problems that, at least initially, looks

like fundamental obstacles.

We finally want to remind the reader that the main ideas of

the current paper are very close to [1]. We have not changed

definitions in a very fundamental way. We do, however,

believe that a number of small changes has resulted in a

more transparent argument with fewer parameters which also

extends to give the result for higher depths.
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