
Optimal Quantile Approximation in Streams

Zohar Karnin

Yahoo Research
New York, NY

zkarnin@yahoo-inc.com

Kevin Lang

Yahoo Research
Sunnyvale, CA

langk@yahoo-inc.com

Edo Liberty

Amazon
New York, NY

libertye@amazon.com

Abstract—This paper resolves one of the longest standing
basic problems in the streaming computational model. Namely,
optimal construction of quantile sketches. An ε approximate
quantile sketch receives a stream of items x1, . . . , xn and allows
one to approximate the rank of any query item up to additive
error εn with probability at least 1− δ. The rank of a query
x is the number of stream items such that xi ≤ x. The
minimal sketch size required for this task is trivially at least
1/ε. Felber and Ostrovsky obtain a O((1/ε) log(1/ε)) space
sketch for a fixed δ. Without restrictions on the nature of
the stream or the ratio between ε and n, no better upper
or lower bounds were known to date. This paper obtains
an O((1/ε) log log(1/δ)) space sketch and a matching lower
bound. This resolves the open problem and proves a qualitative
gap between randomized and deterministic quantile sketching
for which an Ω((1/ε) log(1/ε)) lower bound is known. One
of our contributions is a novel representation and modifica-
tion of the widely used merge-and-reduce construction. This
modification allows for an analysis which is both tight and
extremely simple. The same technique was reported, in private
communications, to be useful for improving other sketching
objectives and geometric coreset constructions.

Keywords-quantiles; streaming quantiles; streaming median

I. INTRODUCTION

Given a set of items x1, . . . , xn, the quantile of an item

x is the fraction of items in the stream such that xi ≤ x. It

is convenient to define the rank of x, R(x), as the number
of items such that xi ≤ x. An additive error εn for R(x) is

an ε approximation of its rank. The literature distinguishes

between several different definitions of this problem. In

this manuscript we distinguish between the single quantile

approximation problem and the all quantiles approximation

problem.

Definition 1. The single quantile approximation problem:
Given x1, . . . , xn in a streaming fashion in arbitrary order,
construct a data structure for computing R̃(x). By the end
of the stream, receive a single element x and compute R̃(x)
such that |R̃(x)−R(x)| ≤ εn with probability 1− δ.

There are variations of this problem in which, the algo-

rithm is not given x (as a query) but rather a rank r. It

should be able to provide an element xi from the stream

such that |R(xi) − r| ≤ εn. There are also variants that

make the value r, or r/n known to the algorithm in advance.

For example, one could a priori choose to search for an

approximate median. There are easy reductions between the

different variants that maintain the failure probability and

error up to a constant. The solution we propose solves all

the above variants.

Definition 2. The all quantiles approximation problem:
Given x1, . . . , xn in a streaming fashion in arbitrary order,
construct a data structure for computing R̃(x). By the end
of the stream, with probability 1 − δ, for all values of x
simultaneously it should hold that |R̃(x)−R(x)| ≤ εn.

Observe that approximating a set of O(1/ε) single queries

well suffices for solving the all quantiles approximation

problem. Therefore, solving the single quantiles approxima-

tion problem with failure probability at most εδ constitutes

a valid solution for the all quantiles approximation problem

simply by invoking the union bound. For this reason, in this

manuscript we deal almost solely with the single quantile

approximation problem.

A. Related Work

Two recent surveys [1][2] on this problem give ample

motivation and explain the state of the art in terms of

algorithms and theory in a very accessible way.1 In what

follows, we shortly review some of the prior work that

is most relevant in the context of this manuscript. For

readability, space complexities of randomized algorithms

apply for a constant success probability unless otherwise

stated.

Manku, Rajagopalan and Lindsay [3] built on the work

of Munro and Paterson [4] and gave a randomized solution

which uses at most O((1/ε) log2(nε)) space. A simple

deterministic version of their algorithm achieves the same

bounds. This was pointed out, for example, by [1]. We

refer to their algorithm as MRL. Greenwald and Khanna

[5] created an intricate deterministic algorithm that requires

O((1/ε) log(nε)) space. This is the best known determinis-

tic algorithm for this problem. We refer to their algorithm

as GK.

Allowing randomness enables sampling. A uniform sam-

ple of size n′ = O(log(1/ε)/ε2) from the stream suffices

1Manuscript [2] was authored in 2007 as a book chapter. It does not
contain recent results but is an excellent survey nonetheless.

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.17

70

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.17

71

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.17

71

to produce an all quantiles sketch. Feeding the sampled

elements into a GK sketch yields an O((1/ε) log(1/ε))
solution. However, to produce such samples, one must know

n (at least approximately) in advance. This observation was

already made by Manku et al. [3]. Since n is not known

in advance it is not a trivial task to combine sampling

with GK sketches. Recently, Felber and Ostrovsky [6] man-

aged to do exactly that. They achieved space complexity

of O((1/ε) log(1/ε)) by using sampling and several GK

sketches in conjunction in a non trivial way. To the best

of our knowledge, this is the best known space complexity

result to date.

Space complexity: Throughout this manuscript we de-

fine the size of a sketch S as |S| if its memory footprint is

at most |S| times the size of storing a single stream item

and a single word of memory.

Mergeability: An important property of sketches is

called mergeability [7]. Informally, this property allows one

to sketch different sections of the stream independently and

then combine the resulting sketches. The combined sketch

should be as accurate as a single sketch one would have

computed had the entire stream been consumed by a single

sketcher. This is formally stated in Definition 3.

Definition 3. Let S denote a sketching algorithm mapping
a stream N to a summary S(N), and denote by err(S, n)
the worst-case error associated with the summary of S on a
stream of length n. Similarly, define size(S, n) to be maximal
size of the the sketch.

Let M be a merge algorithm defined by M(N) =
M(S(N1), S(N2)) where N1 and N2 constitute a partition
of N . Define err(M,S, n) and size(M,S, n) similarly to the
above. A sketching algorithm S is mergeable if there exists
a merge algorithm M such that

err(M,S, n) ≤ err(S, n) and size(M,S, n) ≤ size(S, n)

and furthermore, this sketch has the same guarantees of
S(N) w.r.t. future merge operations.

This property is extremely important in practice since

large datasets are often distributed across many machines.

Agarwal et al [7] conjecture that the GK sketch is not

mergeable. They describe a mergeable sketch of space

complexity (1/ε) log3/2(1/ε). It is worth noting that this

results predates that of [6].

The Comparison Model: Different sketching algorithms

perform different kinds of operations on the elements in

the stream. The most restricted model is the comparison

model. In this model, there is a strong order imposed on

the elements and the algorithm can only compare two items

to decide which is larger. This is the case, for example, for

lexicographic ordering of strings. All the cited works above

operate in this model. Another model assumes the total size

of the universe is bounded by |U |. An O((1/ε) log(|U |))
space algorithm was suggested by [8] in that model.

Lower bounds: For any algorithm, there exists a (triv-

ial) space lower bound of Ω(1/ε). Hung and Ting [9]

showed that any deterministic comparison based algorithm

for the single quantile approximation problem must store

Ω((1/ε) log(1/ε)) items. Felber and Ostrovsky [6] suggest,

as an open problem, that the Ω((1/ε) log(1/ε)) lower bound

could potentially hold for randomized algorithms as well.

Prior to this work, it was very reasonable to believe this

conjecture is true.

Randomly Ordered Streams: If the stream is guar-

antied to be presented in random order, obtaining an

O((1/ε) log(1/ε)) solution is easy. Namely, save the first

O((1/ε) log(1/ε)) items and, from that point on, only count

how many items fall between two consecutive samples.

Due to coupon collector, at least one sample will fall

in each stretch of εn items which makes the solution

trivially correct. Guha and McGregor [10] describe an

algorithm with success probability 1 − δ which achieves

ε = O(polylog(n/δ)/
√
n). For any single quantile it re-

quires O(1) memory and therefore O(1/ε) space for all

quantiles. If the items are numbers, for example, one could

also compute averages or perform gradient descent like

algorithms such as [11], [12].

B. Main Contribution

We begin by re-explaining the work of [7] and the

deterministic version of [3] from a slightly different view

point. The basic building block for these algorithms is a

single compactor. A compactor can store k items all with the

same weight w. It can also compact its k elements into k/2
elements of weight 2w as follows. First, the items are sorted.

Then, either the even or the odd elements in the sequence are

chosen. The unchosen items are discarded. The weight of the

chosen elements is doubled (set to 2w). Consider a single

query x. Its rank estimation before and after the compaction

defers by at most w regardless of k. This is illustrated in

Figure 1.

1�0� 3� 5�4� 7�

1� 4� 7�

0� 3� 5�

x x

R(x) = 2w

R(x) = 2w

R(x) = 2w R(x) = 5w

R(x) = 6w

R(x) = 4w

Figure 1. An illustration of a single compactor with 6 items performing
a single compaction operation. The rank of a query remains unchanged if
its rank within the compactor is even. If it is odd, its rank is increased or
decreased by w with equal probability by the compaction operation.

This already gives a deterministic algorithm. Assume we

use such a compactor. When it outputs items, we feed them

717272

into another compactor and so on. Since each compactor

halves the number of items in the sequence, there could be

at most H ≤ �log(n/k)� compactors chained together. Let h
denote the height of a compactor where the last one created

has height h = H and the first one has height h = 1. Let

wh = 2h−1 be the weight of items compactor h gets. Then,

the number of compact operations it performs is at most

mh = n/kwh. Summing up all the errors in the system∑H
h=1 mhwh =

∑H
h=1 n/k = Hn/k ≤ n log(n/k)/k.

Since we have H compactors, the space usage is kH ≤
k log(n/k). Setting k = O((1/ε) log(εn)) yields error of

εn with space O((1/ε) log2(εn)).
One conceptual contribution of Agarwal et al. [7] is to

have each compactor delete the odd or even items with

equal probability. This has the benefit that the expected

error is zero. It also lets one use standard concentration

results to bound the maximal error. This eliminates one

log factor from the worst case analysis. However, the

dependence on the failure probability adds a factor of√
log(1/δ). In the all quantiles problem this translates

into an additional
√
log(1/ε) factor for constant failure

probability. Intuitively Agarwal et al. [7] also show that

when n ≥ poly(1/ε) one can sample items from the

stream before feeding them to the sketch. This gives total

space usage of O
(
(1/ε) log(1/ε)

√
log(1/δ)

)
for the single

quantile problem and O
(
(1/ε) log(1/ε)

√
log(1/εδ)

)
for

the all quantiles problem.

The first improvement we provide to the algorithms above

is to use different compactor capacities in different heights,

denoted by kh. We show that kh can, for example, decrease

exponentially kh ≈ kH(2/3)H−h. That is, compactors in

lower levels in the hierarchy (smaller item weights) can

operate with significantly less capacity. Surprisingly enough,

this turns out to not effect the asymptotic statistical behavior

of the error at all. Moreover, the space complexity is clearly

improved.

The capacity of any functioning compactor must be at

least 2. This could contribute O(H) = O(log(n/k)) to the

space complexity. To remove this dependence, we notice that

a sequence of H ′′ compactors with capacity 2 essentially

perform sampling. Out of every 2H
′′

elements they select

one at random and output that element with weight 2H
′′

.

This is clearly very efficiently computable and does not

truly require memory complexity of O(H ′′) but rather of

O(1). The total capacity of all compactors whose capacity

is more than 2 is bounded by
∑H

h=H′′+1 k(2/3)
H−h ≤ 3k.

This yields a total space complexity of O(k). Setting k =
O((1/ε)

√
log(1/δ)) gives an algorithm with space com-

plexity O((1/ε)
√
log(1/δ)) for the single quantile problem

and O((1/ε)
√

log(1/δε)) for the all quantiles problem,

which constitutes our first result. Interestingly, our algorithm

can be thought of a smooth interpolation between carful

compaction of heavy items and efficient sampling for light

items. We believe this idea would be potentially useful in

other geometric coreset construction problems.

The next improvement comes from special handling of

the top log log(1/δ) compactors. The number of compaction

operations (and therefore random bits) in those levels is

O(log(1/δ)) which means one could expect the worst case

behavior with probability roughly δ. Therefore, optimizing

for the worst case is better suited for those levels and opting

for a fixed kh is preferred to diminishing values of kh. We

suggest to set kh = k when h ≥ H − O(log log(1/δ))
and kh ≈ k(2/3)H−h otherwise. By analyzing the worst

case error of the top log log(1/δ) compactors separately

from the bottom H − log log(1/δ) we improve our analysis

to O((1/ε) log2 log(1/δ)). This sketch is fully mergeable.

Interestingly, the worst case analysis of the top log log(1/δ)
compactors is identical to the analysis of the MRL sketch

above.

This last observation leads us to our third and final im-

provement. If one replaces the top log log(1/δ) compactors

with a GK sketch, the space complexity can be shown to

reduce to O((1/ε) log log(1/δ)). However, this prevents the

sketch from being mergeable because the GK sketch is not

known to have this property.

Another way to view this algorithm is as a concatenation

of three sketches. The first, receiving the stream of elements

is a sampler that simulates all the compactors of capacity

2. Its output is fed into a sketch composed of a sequence

of compactors of increasing sizes, as described above. We

refer to such a sketch as a KLL sketch. This sketch outputs

O((1/ε) poly log(1/δ)) items that are fed into an instance

of GK. This idea is illustrated in Figure 2.

Our final contribution (Section V) is that of im-

proving the lower-bound from the trivial Ω(1/ε) to

Ω((1/ε) log log(1/δ)). We do this by leveraging the lower

bound of Ω((1/ε) log(1/ε)) of [9] for deterministic algo-

rithms. This proves that streaming quantile approximation

is a rare case in which the correct space complexity of a

sketch is doubly logarithmic in the failure probability.

II. ALGORITHM AND ANALYSIS

As mentioned above, our sketching algorithm (KLL)

includes a hierarchy of compactors with varying capacities.

Consider a run of the algorithm that terminates with H
different compactors. The compactors are indexed by their

hight h ∈ 1, . . . , H . The weight of items at hight h is

wh = 2h−1. Denote by kh the smallest number of items

that the compactor at height h contains during a compact

operation. For brevity, denote k = kH . For reasons that will

become clear later assume that kh ≥ kcH−h for c ∈ (0.5, 1).

Since the top compactor was created, we know that the

second compactor from the top compacted its elements at

least once. Therefore n ≥ kH−1wH−1 = kH−12
H−2 which

727373

Single quantile All quantiles Randomized Mergeable

MRL [3] (1/ε) log2(εn) (1/ε) log2(εn) No Yes

GK [5] (1/ε) log(εn) (1/ε) log(εn) No No

ACHPWY [7] (1/ε) log(1/ε)
√

log(1/δ) (1/ε) log(1/ε)
√

log(1/εδ) Yes Yes

FO [6]
δ = e−(1/ε)c (1/ε) log(1/ε) (1/ε) log(1/ε) Yes No

KLL
[This paper]

(1/ε) log2 log(1/δ) (1/ε) log2 log(1/δε) Yes Yes

KLL
[This paper]

(1/ε) log log(1/δ) (1/ε) log log(1/δε) Yes No

Table I
THE TABLE DESCRIBES THE SPACE COMPLEXITY OF SEVERAL STREAMING QUANTILES ALGORITHMS IN BIG-O NOTATION. ALL ALGORITHMS ARE

REQUIRED TO SOLVE THE SINGLE QUANTILE PROBLEM AND OPERATE IN THE COMPARISON MODEL FOR ARBITRARILY ORDERED STREAMS. THE

RANDOMIZED ALGORITHMS ARE REQUIRED TO SUCCEED WITH PROBABILITY 1− δ. THE ALGORITHM OF FELBER AND OSTROVSKY [6] USES A

FIXED FAILURE PROBABILITY δ = e−(1/ε)c . THE NON-MERGEABILITY OF SOME OF THESE ALGORITHMS IS DUE TO THEIR RELIANCE ON GK WHICH

IS NOT KNOWN TO BE MERGEABLE.

 items of �
weight �

 items of �
weight 1�

Sampler�

 compactors �

n1/ε2

nε2

log(n)

 compactors �O(log(1/ε))

 items of �
weight �

 items of �
weight 1�

Sampler�

n1/ε2

nε2
items of weight �

(1/ε) poly log(1/δ)

nε/ poly log(1/δ)

GK sketch�

compactors of
equal capacity�

O(log log(1/δ))

Figure 2. Sampling, varying capacity compactors, equal capacity com-
pactors and GK sketches achieve different efficiencies at different stream
lengths. The set of capacitated compactors used by KLL creates a smooth
transition between sampling and GK sketching. The top figure corresponds
to the first construction explained in Section II. The second from the top
is explained in Section III. The two bottom figures correspond to our main
contributions and are explained in Sections IV and IV-A respectively.

gives

H ≤ log(n/kH−1) + 2 ≤ log(n/ck) + 2 .

Using the above we can bound the number of compact

operations mh at height h. Every compact procedure call is

performed on at least kh items and the items have a weight

of wh = 2h−1. Therefore,

mh ≤ n

khwh
≤ 2n

k2H
(2/c)H−h ≤ (2/c)H−h−1 .

To analyze the total error produced by the sketch, we

first consider the error generated in each individual level.

Define by R(x, h) the rank of x among the following

weighted set of items. The items yielded by the compactor

at height h and all the items stored in the compactors of

heights h′ ≤ h at end of the stream. For convenience

R(x, 0) = R(x) is the exact rank of x in the input stream.

Define err(x, h) = R(x, h) − R(x, h − 1) to be the total

change in the approximated rank of x due to level h.

Note that each compaction operation in level h either

leaves the rank of x unchanged or adds wh or subtracts

wh with equal probability. To be more explicit, if x has

an even rank among the item inside the compactor, the

total mass to the left of it (its rank) is unchanged by

the compaction operation. If its rank inside the compactor

is odd however and the odd items are chosen, this mass

increases by wh. If its rank inside the compactor is odd

and the even items are chosen, its mass decreases by wh.

Therefore, err(x, h) =
∑mh

i=1 whXi,h where E[Xi,h] = 0
and |Xi,h| ≤ 1. The final discrepancy between the real rank

of x and its approximation R̃(x) = R(x,H) is

R(x,H)−R(x, 0) =

H∑
h=1

R(x, h)−R(x, h− 1) =

H∑
h=1

err(x, h) =
H∑

h=1

mh∑
i=1

whXi,h .

Lemma 1 (Hoeffding). Let X1, . . . , Xm be independent
random variables, each with an expected value of zero,
taking values in the range [−wi, wi]. Then for any t > 0 we

737474

have

Pr

[∣∣∣∣∣
m∑
i=1

Xi

∣∣∣∣∣ > t

]
≤ 2 exp

(
− t2

2
∑m

i=1 w
2
i

)

with exp being the natural exponent function.

We now apply Hoeffding’s inequality to bound the prob-

ability that the bottom H ′ ≤ H compactors contribute more

than εn to the total error. The reason for considering only

the bottom levels and not all the levels will become apparent

in Section III.

Pr [|R (x,H ′)−R(x, 0)| > εn] =

Pr

⎡
⎣ H′∑
h=1

mh∑
i=1

whXi,h > εn

⎤
⎦ ≤

2 exp

(
− ε2n2

2
∑H′

h=1

∑mh

i=1 w
2
h

)
(1)

A straight forward computation shows that

H′∑
h=1

mh∑
i=1

w2
h =

H′∑
h=1

mhw
2
h ≤

H′∑
h=1

(c/2)H
′−h−122h−1 =

(2/c)H
′−1

4

H′∑
h=1

(2c)h ≤

(2/c)H
′−1

4

(2c)H
′

2c− 1
≤ c

8(2c− 1)
22H

′

Substituting 22H
′
= 22H/22(H−H′) and recalling that H ≤

log(n/ck) + 2 we get that

H′∑
h=1

mh∑
i=1

w2
h ≤

n2/k2

2c2(2c− 1)

1

22(H−H′) (2)

Substituting Equation 2 into Equation 1 and setting C =
c2(2c− 1) we get the following convenient form

Pr [|R(x,H ′)−R(x)| ≥ εn] ≤ 2 exp(−Cε2k222(H−H′))
(3)

Theorem 1. There exists a streaming algorithm that
computes an ε approximation for the rank of a single
item with probability 1 − δ whose space complexity is
O((1/ε)

√
log(1/δ) + log(εn)). This algorithm also pro-

duces mergeable summaries.

Proof: Let kh =
⌈
kcH−h

⌉
+ 1. Note that kh changes

throughout the run off the algorithm since H changes. Nev-

ertheless, H can only increase and so kh is monotonically

decreasing with the length of the stream. This matches the

requirement that kh ≥ kcH−h where H is the final number

of compactors. Notice that kh is at least 2.

Setting H ′ = H in Equation 3 and requiring failure

probability at most δ we conclude that it suffices to set

k = (C/ε)
√

log(2/δ). The space complexity of the algo-

rithm is O
(∑H

h=1 kh

)
.

H∑
h=1

kh ≤
H∑

h=1

(kcH−h + 2) ≤ k/(1− c) + 2H =

O(k + log(n/k))

Setting δ = Ω(ε) suffices to union bound over the failure

probabilities of O(1/ε) different quantiles. This provides a

mergeable sketching algorithm for the all quantiles problem

of space O((1/ε)
√

log(1/ε) + log(εn)).
The KLL sketch provides a mergeable summary. In a

merge operation, same height compactors are concatenated

together. Then, each level that contains more than kh ele-

ments is compacted. The value of kh is based on the new

maximal height H which is derived from the combined

lengths of the two streams. In either of the two merged

sketches, each compaction at level h involved at least kh
items which means the proof above still holds.

Note that this result already improves on the best known

prior art in the parameter setting where n = exp(O(1/ε)).

Theorem 2. There exists a streaming algorithm that
computes an ε approximation for the rank of a single
item with probability 1 − δ whose space complexity is
O
(
(1/ε)

√
log(1/δ)

)
.

Proof: The KLL sketch maintains a total of H =
log(εn) sketches. Note, however, that only O(log(k)) com-

pactors have capacity greater than 2. More accurately the

bottom H ′′ = H − �log(k)/ log(1/c)� all have capacity

exactly 2. Each of those receives two items at a time,

performs a random match between them, and sends the

winner of the match to the compactor of the next level.

Hence, the compactor of level H ′′ simply selects one item

uniformly at random from every 2H
′′

elements in the stream

and passes that item with weight 2H
′′

to the compactor at

hight H ′′ + 1. This is easily simulated using O(1) space

which replaces the bottom H ′′ compactors and reduces the

space complexity of the algorithm.

There is, however, a drawback in replacing the bottom

H ′′ compactors with a simple sampler. When merging two

sketches, it is not clear how to merge the samplers in a

correct way. The next section explains how to do exactly

that.

III. SAMPLING AND KEEPING MERGEABLITY

In the new sketch we have, in addition to the compactors,

a new object we call a sampler. The sampler supports an

UPDATE method that introduces an item of weight w to

747575

the sketch. When observing items in a stream the weight

is always set to 1. However, when merging two sketches

we require supporting an update of arbitrary weights. At

any time the sampler has an associated height h. It outputs

items of weight 2h as inputs to the compactor of level h+1.

This associated height will increase over time to eventually

being roughly H − log(1/ε). Apart for sampler of height h,

the sketch maintains compactors at heights greater than h.

The sampler keeps a single item in storage along with

a weight of at most 2h − 1. When merging two sketches,

the sketch with the sampler of smaller height will feed its

item with its appropriate weight to the sampler of the other

sketch. Also, all compactors with height ≤ h in the ‘smaller’

sketch will feed the items in their buffers to the sampler of

the ‘larger sketch’.

The UPDATE operation is performed as follows. Denote

by v the weight of the internal item stored in the sampler and

by w the weight of the newly introduced item. If v + w ≤
2h, the sampler replaces its stored item with the new one

with probability w/(v + w) as in Reservoir Sampling. If

v+w = 2h the sampler outputs the stored item and sets the

internal weight w to 0. If however v + w > 2h (notice this

can only happen if w > 1) the sampler discards the heavier

item, and keeps the lighter item with a weight of min{w, v}.
With probability max{w, v}/2h it also outputs the heavier

item with weight 2h.

It is easy to verify that the above described sketching

scheme corresponds to the following offline operations. The

sampler outputs items by performing the action sample;

it takes as input a sequence of items W items such that

2h−1 < W ≤ 2h. With probability W/2h it outputs one

of the observed items chosen at random. With probability

1 − W/2h it outputs nothing. Before analyzing the error

associated with a sample operation we mention that, if no

merges are performed, it suffices to restrict the value of W
to be exactly 2h. However, in order to account for merges

we must let W obtain values in the range W ∈ (2h−1, 2h].

Lemma 2. Let R(x, h, i) be the rank of x after sample
operation i of the sampler of height h, where the rank is
computed based on the stream elements that did not undergo
a sample operation, and the weighted items outputted by the
sample operations 1 through i. Let R(x, h, i)−R(x, h, i−
1) = 2hYh,i. Then E[Yh,i] = 0 and |Yh,i| ≤ 1.

Proof: Let r be the exact rank of x among the input

items before the sampling operation. Denote by W the sum

of weights of the input items. After the sampling, those input

items are replaced with a single element. The rank of x after

the sampling is 2h with probability W
2h
· r
W and 0 otherwise.

The first term is the probability of outputting anything. The

second is of selecting an element smaller than x. Therefore,

the expected value of the rank of x after the sample operation

is 2hW
2h
· r
W = r, hence the expected value of the difference

mentioned in the claim is 0. Clearly, the maximal value of

this difference is bounded by 2h.

Let mh be total number of times a sample operation can

be performed at height h. Since the sampler at that height

takes items with a total minimum weight of W > 2h−1 and

there are a total of n items (with overall weight n)

mh ≤ n

2h−1
.

It follows that the expression of the error accounted for

samplers of heights up to2 H ′′ can be expressed as

errH′′ =
H′′∑
h=1

mh∑
i=1

[R(x, h, i)−R(x, h, i−1)] =
H′′∑
h=1

mh∑
i=1

2hYi,h

with Yi,h being independent, E[Yi,h] = 0 and |Yi,h| ≤ 1.

We compute the sum of weights appearing in Hoeffding’s

inequality (Lemma 1) in order to apply it.

H′′∑
h=1

mh∑
i=1

22h ≤
H′′∑
h=1

n2h+1 ≤ 4n2H
′′
=

4n2H

2H−H′′ ≤
16n2

ck2H−H′′

Hence,

Pr [errH′′ > εn] ≤ 2 exp
(
−cε2k2H−H′′

/32
)

. (4)

The following is immediate from Equations 3 and 4.

Theorem 3. Assume we apply a KLL sketch that uses H
levels of compactors, with capacity kh ≥ kcH−h. Also,
assume that an arbitrary subset of the stream is fed into
samplers of heights 1 through H ′′, while the output of these
samplers is fed to appropriate compactors. Then for any
H ′ > H ′′ it holds that

Pr [errH′ > 2εn] <

2 exp
(
−cε2k2H−H′′

/32
)
+ 2 exp

(
−Cε2k222(H−H′)

)
Here, errH′ denotes the error of the stream outputted by the
compactors of level H ′, and C = c2(2c− 1).

By taking H ′ = H , H ′′ = H − O(log(k)), and k =
(1/ε)

√
log(1/δ) we obtain the following corollary.

Corollary 1. There exists a streaming algorithm that
computes an ε approximation for the rank of a single
item with probability 1 − δ whose space complexity is
O((1/ε)

√
log(1/δ)). This algorithm also produced merge-

able summaries.

2Notice that unlike compactors, there is no hierarchy of samplers.
However, due to the fact that the height of the sampler grows with time,
the sample operations may be performed on different heights. The only
guarantee is that any item appears in at most one sample operation and
that the height of the sampler is always at most H′′.

757676

IV. REDUCING THE FAILURE PROBABILITY

In this section we take full advantage of Theorem 3 to ob-

tain a streaming algorithm with asymptotically better space

complexity. Notice that the lion share of the contribution to

the error is due to the top compactors. For those, however,

Hoeffding’s bound is not tight. Let s = O(log log(1/δ)) be

a small number of top layers. For the bottom H−s layers we

use Theorem 3, applied on H ′ = H − s and corresponding

H ′′, to bound their error. For the top s we simply use a

deterministic bound.

Theorem 4. There exists a streaming algorithm that
computes an ε approximation for the rank of a sin-
gle item with probability 1 − δ whose space complexity
is O((1/ε) log2 log(1/δ)). This algorithm also produces
mergeable summaries.

Proof: Using Theorem 3 we see that the bottom com-

pactors of height at most H ′ = H − s and the sampler,

when set to be of height at most H ′′ = H − 2s− log2(k),
contribute at most εn to the error with probability 1 − δ
at long as εk2s ≥ c′

√
log(2/δ) for sufficiently small

constant c′. For the top s compactors, we set their capacities

to kh = k. That is, we do not let their capacity drop

exponentially. Those levels contribute to the error at most∑H
h=H′+1 mhwh =

∑H
h=H′+1 n/kh = sn/k. Requiring

that this contribution is at most εn as well we obtain

the relation s ≤ kε. Setting s = O(log log(1/δ)) and

k = O(1ε log log(1/δ)) satisfies both conditions. The space

complexity of this algorithm is dominated by maintaining

the top s levels which is O(ks) = O((1/ε) log2 log(1/δ)).

Interestingly, the analysis of the top s levels is identical

to the equal capacity compactors used in the MRL sketch.

In the next section we show that one could replace the top s
levels with a different algorithm and reduce the dependence

on δ even further.

A. Gaining Space Optimality; Potentially Losing Mergeabil-
ity

The most space efficient version of our algorithm, with

respect to the failure probability, operates as follows. For δ
being the target error probability we set

s =
⌈
log2

(
c′
√
log(2/δ)/(kε)

)⌉
= O(log log(1/δ))

as in the section above but set k = O(1/ε). At any time

point we keep 2 different copies of the GK sketch, tuned

for a relative error of ε. They are correspondingly associated

with the compactors of heights h1 < h2 which are the two

largest height values that are multiples of s. The GK sketch

associated with height h receives as input the outputs of the

compactor of layer h−1. For h = 0 the GK sketch associated

with it receives as input the stream elements. When a new

GK sketch is built due to a new compactor being formed

the bottom one is discarded.

Theorem 5. There exists a streaming algorithm that
computes an ε approximation for the rank of a single
item with probability 1 − δ whose space complexity is
O((1/ε) log log(1/δ)).

Proof: Notice that the height of h1 is at least H−2s. It

follows that the total number of items that is ever fed into a

single GK sketch at most n1 = k22s. Applying Theorem 3

again, on H ′ = H − s, and H ′′ = H − 2s − log2(k), the

error w.r.t. to the output of the compactor feeding elements

into the GK sketch matching h1 is at most O(εn), with

k = O(1/ε). Therefore, the sum of errors is still O(εn).
The memory required by the GK sketch with respect to

its input is at most O((1/ε) log(εn1)) = O ((1/ε)s) =
O ((1/ε) log log(1/δ)), which dominates the memory of our

sketch with k = O(1/ε). The claim follows.
We note that the GK sketch is not known to be fully

mergeable and so that property of the sketch is lost by this

construction. That being said, we point out that the GK
sketch is one-way mergeable. One-way mergeability is a

weaker form of mergeability that informally states that the

following setting can work: The data is partitioned among

several machine, each creates a summary of its own data, and

a single process merges all of the summaries into a single

one. For example, stated in terms of Definition 3, when the

error ε(S(N), N) is linear in the size of the sketch N , i.e.,

ε(S(N), N) = εS |N |, a merge operation resulting in an

error of εS |N1| + 2εS |N2| rather than εS |N1| + εS |N2| is

one-way mergeable, while it is not (fully) mergeable. It was

pointed out by [2], [7] that any sketch for the all quantiles

approximation problem is one-way mergeable.

V. TIGHTNESS OF OUR RESULT

In [9] a lower bound is given for deterministic algorithms.

A more precise statement of their result, implicitly shown

in the proof of their Theorem 2, is as follows

Lemma 3 (Implicit in [9], Theorem 2). Let AD be
deterministic comparison based algorithm solving single
quantile ε approximate for all streams of length at most
C(1/ε)2 log(1/ε)2 for some sufficiently large universal con-
stant C. Then AD must store at least c(1/ε) log(1/ε)
elements from the stream for some sufficiently small constant
c.

Below we obtain a lower bound matching our result

completely for the case of single quantile problem and

almost completely for the case of ε approximation of all

quantiles.

Theorem 6. Let AR be a randomized comparison based
algorithm solving the ε approximate single quantile problem
with probability at least 1− δ. Then AR must store at least
Ω ((1/ε) log log(1/δ)) elements from the stream.

767777

Proof: Assume by contradiction that there exists a

randomized algorithm AR that succeeds in computing a

single quantile approximation up to error ε with probability

1−δ while storing o ((1/ε) log log(1/δ)) elements from the

stream. Let n be the length of the stream and δ = 1/2n!.
With probability 1/2 the randomized algorithm succeeds

simultaneously for all n! possible inputs. Let r denote a se-

quence of random bits used by AR in one of these instances.

It is now possible to construct a deterministic algorithm

AD(r) which is identical to AR but with r hardcoded into

it. Note that AD(r) deterministically succeeds for streams

of length n. Let n = C(1/ε)2 log(1/ε)2 for the same C as

in Lemma 3. We obtain that AD(r) succeeds on all streams

of length C(1/ε)2 log(1/ε)2 while storing o((1/ε) log(1/ε))
elements from the stream. This contradicts Lemma 3 above.

The lower bound above perfectly matches the single quan-

tile approximation result we achieve. For the all quantiles

problem, using the union bound over a set of O(1/ε)
quantiles shows that O((1/ε) log log(1/ε)) elements suffice.

This leaves a potential gap of log log(1/ε) for that problem.

ACKNOWLEDGMENTS

The authors want to thank Sanjeev Khanna, Rafail Os-

trovsky, Jeff Phillips, Graham Cormode, Andrew McGregor

and Piotr Indyk for very helpful discussions and pointers.

argument is your BibTeX string definitions and bibliog-

raphy database(s)

REFERENCES

[1] L. Wang, G. Luo, K. Yi, and G. Cormode, “Quantiles
over data streams: An experimental study,” in Proceedings
of the 2013 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’13. New York,
NY, USA: ACM, 2013, pp. 737–748. [Online]. Available:
http://doi.acm.org/10.1145/2463676.2465312

[2] M. B. Greenwald and S. Khanna, “Quantiles and equidepth
histograms over streams,” in In Data Stream Management:
Processing High-Speed Data Streams, J. G. M. Garofalakis
and R. Rastogi, Eds. Springer, 2016.

[3] G. S. Manku, S. Rajagopalan, and B. G. Lindsay, “Random
sampling techniques for space efficient online computation
of order statistics of large datasets,” SIGMOD Rec., vol. 28,
no. 2, pp. 251–262, Jun. 1999.

[4] J. Munro and M. Paterson, “Selection and sorting
with limited storage,” Theoretical Computer Science,
vol. 12, no. 3, pp. 315 – 323, 1980. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/0304397580900614

[5] M. Greenwald and S. Khanna, “Space-efficient online com-
putation of quantile summaries,” in Proceedings of the 2001
ACM SIGMOD International Conference on Management of
Data, ser. SIGMOD ’01. New York, NY, USA: ACM, 2001,
pp. 58–66.

[6] D. Felber and R. Ostrovsky, “A randomized online quantile
summary in O((1/ε) log(1/ε)) words,” in Approximation,
Randomization, and Combinatorial Optimization. Algorithms
and Techniques, APPROX/RANDOM 2015, August 24-26,
2015, Princeton, NJ, USA, 2015, pp. 775–785.

[7] P. K. Agarwal, G. Cormode, Z. Huang, J. Phillips, Z. Wei, and
K. Yi, “Mergeable summaries,” in Proceedings of the 31st
Symposium on Principles of Database Systems, ser. PODS
’12. New York, NY, USA: ACM, 2012, pp. 23–34. [Online].
Available: http://doi.acm.org/10.1145/2213556.2213562

[8] N. Shrivastava, C. Buragohain, D. Agrawal, and
S. Suri, “Medians and beyond: New aggregation
techniques for sensor networks,” in Proceedings of the
2Nd International Conference on Embedded Networked
Sensor Systems, ser. SenSys ’04. New York, NY,
USA: ACM, 2004, pp. 239–249. [Online]. Available:
http://doi.acm.org/10.1145/1031495.1031524

[9] R. Y. Hung and H. F. Ting, “A (1/ε) log(1/ε) space lower
bound for finding ε-approximate quantiles in a data stream,”
in Frontiers in Algorithmics. Springer, 2010, pp. 89–100.

[10] S. Guha and A. McGregor, “Stream order and order
statistics: Quantile estimation in random-order streams,”
SIAM J. Comput., vol. 38, no. 5, pp. 2044–2059, 2009.
[Online]. Available: http://dx.doi.org/10.1137/07069328X

[11] A. Brodnik, A. Lopez-Ortiz, V. Raman, and A. Viola, Space-
Efficient Data Structures, Streams, and Algorithms: Papers in
Honor of J. Ian Munro, on the Occasion of His 66th Birthday.
Springer, 2013, vol. 8066.

[12] Q. Ma, S. Muthukrishnan, and M. Sandler, “Frugal streaming
for estimating quantiles,” in Space-Efficient Data Structures,
Streams, and Algorithms - Papers in Honor of J. Ian
Munro on the Occasion of His 66th Birthday, ser. Lecture
Notes in Computer Science, A. Brodnik, A. López-Ortiz,
V. Raman, and A. Viola, Eds., vol. 8066. Springer, 2013, pp.
77–96. [Online]. Available: http://dx.doi.org/10.1007/978-3-
642-40273-9

777878

