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Abstract—In the turnstile �p heavy hitters problem with
parameter ε, one must maintain a high-dimensional vector
x ∈ Rn subject to updates of the form update(i,Δ) causing
the change xi ← xi+Δ, where i ∈ [n], Δ ∈ R. Upon receiving
a query, the goal is to report every “heavy hitter” i ∈ [n]
with |xi| ≥ ε‖x‖p as part of a list L ⊆ [n] of size O(1/εp),
i.e. proportional to the maximum possible number of heavy
hitters.

For any p ∈ (0, 2] the COUNTSKETCH of [CCFC04] solves
�p heavy hitters using O(ε−p lg n) words of space with O(lg n)
update time, O(n lg n) query time to output L, and whose
output after any query is correct with high probability (whp)
1−1/ poly(n) [JST11, Section 4.4]. This space bound is optimal
even in the strict turnstile model [JST11] in which it is promised
that xi ≥ 0 for all i ∈ [n] at all points in the stream,
but unfortunately the query time is very slow. To remedy
this, the work [CM05] proposed the “dyadic trick” for the
COUNTMIN sketch for p = 1 in the strict turnstile model,
which to maintain whp correctness achieves suboptimal space
O(ε−1 lg2 n), worse update time O(lg2 n), but much better
query time O(ε−1 poly(lg n)). An extension to all p ∈ (0, 2]
appears in [KNPW11, Theorem 1], and can be obtained from
[Pag13].

We show that this tradeoff between space and update time
versus query time is unnecessary. We provide a new algorithm,
EXPANDERSKETCH, which in the most general turnstile model
achieves optimal O(ε−p lg n) space, O(lg n) update time, and
fast O(ε−p poly(lg n)) query time, providing correctness whp.
In fact, a simpler version of our algorithm for p = 1 in the strict
turnstile model answers queries even faster than the “dyadic
trick” by roughly a lg n factor, dominating it in all regards.
Our main innovation is an efficient reduction from the heavy
hitters to a clustering problem in which each heavy hitter is
encoded as some form of noisy spectral cluster in a much
bigger graph, and the goal is to identify every cluster. Since
every heavy hitter must be found, correctness requires that
every cluster be found. We thus need a “cluster-preserving
clustering” algorithm, that partitions the graph into clusters
with the promise of not destroying any original cluster. To do
this we first apply standard spectral graph partitioning, and
then we use some novel combinatorial techniques to modify the
cuts obtained so as to make sure that the original clusters are
sufficiently preserved. Our cluster-preserving clustering may
be of broader interest much beyond heavy hitters.
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I. INTRODUCTION

Finding heavy hitters in a data stream, also known as

elephants or frequent items, is one of the most practically

important and core problems in the study of streaming

algorithms. The most basic form of the problem is simple:

given a long stream of elements coming from some large

universe, the goal is to report all frequent items in the stream

using an algorithm with very low memory consumption,

much smaller than both the stream length and universe size.

In practice, heavy hitters algorithms have been used to find

popular destination addresses and heavy bandwidth users

by AT&T [CJK+04], to find popular search query terms

at Google [PDGQ05], and to answer so-called “iceberg

queries” in databases [FSG+98] (to name a few of many

applications). A related problem is finding superspread-

ers [LCG13], the “heavy hitters” in terms of number of

distinct connections, not total bandwidth.

In the theoretical study of streaming algorithms, finding

heavy hitters has played a key role as a subroutine in solv-

ing many other problems. For example, the first algorithm

providing near-optimal space complexity for estimating �p
norms in a stream for p > 2 needed to find heavy

hitters as a subroutine [IW05], as did several follow-up

works on the same problem [GB09], [AKO11], [BO13],

[BKSV14], [Gan15]. Heavy hitters algorithms are also used

as a subroutine in streaming entropy estimation [CCM10],

[HNO08], �p-sampling [MW10], cascaded norm estimation

and finding block heavy hitters [JW09], finding duplicates

[GR09], [JST11], fast �p estimation for 0 < p < 2 [NW10],

[KNPW11], and for estimating more general classes of

functions of vectors updated in a data stream [BO10],

[BC15].

In this work we develop a new heavy hitters algorithm,

EXPANDERSKETCH, which reduces the heavy hitters prob-

lem to a new problem we define concerning graph clustering,

which is an area of interest in its own right. Our special goal

is to identify all clusters of a particular type, even if they

are much smaller than the graph we are asked to find them

in. While our algorithm as presented is rather theoretical

with large constants, the ideas in it are simple with potential

practical impact.

The particular formulation we focus on is finding clusters

with low external conductance in the graph, and with good
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connectivity properties internally (a precise definition of

these clusters, which we call ε-spectral clusters, will be

given soon). Similar models have been used for finding a

community within a large network, and algorithms for iden-

tifying them have applications in community detection and

network analysis. In computer vision, many segmentation

algorithms such as [SM00], [AMFM11] model images as

graphs and use graph partitioning to segment the images.

In theory, there has been extensive study on the problem

with many approximation algorithms [LR88], [ARV09]. Our

focus in this work is on theoretical results, with constants

that may be unacceptable in practice.

II. PREVIOUS WORK

In this work we consider the �p heavy hitters problem for

0 < p ≤ 2. A vector x ∈ Rn is maintained, initialized to the

all zero vector. A parameter ε ∈ (0, 1/2) is also given. This

is a data structural problem with updates and one allowed

query that are defined as follows.

• update(i,Δ): Update xi ← xi +Δ, where i ∈ [n]
and Δ ∈ R has finite precision.

• query(): Return a set L ⊆ [n] of size |L| = O(ε−p)
containing all ε-heavy hitters i ∈ [n] under �p. Here we

say i is an ε-heavy hitter under �p if |xi| ≥ ε‖x
[1/εp]

‖p,

where x[k] denotes the vector x with the largest k
entries (in absolute value) set to zero. Note the number

of heavy hitters never exceeds 2/εp.

Unless stated otherwise we consider randomized data

structures in which any individual query has some failure

probability δ. Note our definition of ε-heavy hitters includes

all coordinates satisfying the usual definition requiring

|xi| ≥ ε‖x‖p, and potentially more. One can thus recover all

the usual heavy hitters from our result by, in post-processing,

filtering L to only contain indices that are deemed large by

a separate COUNTSKETCH run in parallel. A nice feature of

the more stringent version we solve is that, by a reduction in

[JST11, Section 4.4], solving the �2 version of the problem

with error ε′ = εp/2 implies a solution for the �p ε-heavy

hitters for any p ∈ (0, 2]. Hence for the remainder of the

paper, assume we discuss p = 2 unless stated otherwise. We

also note that any solution to �p heavy hitters for p > 2, even

for constant ε, δ, must use polynomial space Ω(n1−2/p) bits

[BYJKS04].

Before describing previous work, we first describe, in the

terminology of [Mut05], three different streaming models

that are frequently considered.

• Cash-register: This model is also known as the

insertion-only model, and it is characterized by the fact

that all updates update(i,Δ) have Δ = 1.

• Strict turnstile: Each update Δ may be an arbitrary

positive or negative number, but we are promised that

xi ≥ 0 for all i ∈ [n] at all points in the stream.

• General turnstile: Each update Δ may be an arbitrary

positive or negative number, and there is no promise

that xi ≥ 0 always. Entries in x may be negative.

It should be clear from the definitions that algorithms

that work correctly in the general turnstile model are the

most general, followed by strict turnstile, then followed by

the cash-register model. Similarly, lower bounds proven in

the cash-register model are the strongest, and those proven

in the general turnstile model are the weakest. The strict

turnstile model makes sense in situations when deletions

are allowed, but items are never deleted more than they

are inserted. The general turnstile model is useful when

computing distances or similarity measures between two

vectors z, z′, e.g. treating updates (i,Δ) to z as +Δ and

to z′ as −Δ, so that x represents z − z′.
For the heavy hitters problem, the first algorithm with

provable guarantees was a deterministic algorithm for find-

ing �1 heavy hitters in the cash-register model [MG82],

for solving the non-tail version of the problem in which

heavy hitters satisfy |xi| ≥ ε‖x‖1. The space complexity

and query time of this algorithm are both O(1/ε), and

the algorithm can be implemented so that the update time

is that of insertion into a dynamic dictionary on O(1/ε)
items [DLM02] (and thus expected O(1) time if one allows

randomness, via hashing). We measure running time in the

word RAM model and space in machine words, where a

single word is assumed large enough to hold the maximum

‖x‖∞ over all time as well as any lg n bit integer. The

bounds achieved by [MG82] are all optimal, and hence

�1 heavy hitters in the cash-register model is completely

resolved. An improved analysis of [BICS10] shows that this

algorithm also solves the tail version of heavy hitters. In

another version of the problem in which one simultaneously

wants the list L of ε heavy hitters together with additive

ε′‖x‖1 estimates for every i ∈ L, [BDW16] gives space

upper and lower bounds which are simultaneously optimal

in terms of ε, ε′, n, and the stream length.
For �2 heavy hitters in the cash-register model, the

COUNTSKETCH achieves O(ε−2 lg n) space. Recent works

gave new algorithms using space O(ε−2 lg(1/ε) lg lg n)
[BCIW16] and O(ε−2 lg(1/ε)) [BCI+16]. A folklore lower

bound in the cash-register model is Ω(1/ε2) machine words,

which follows since simply encoding the names of the up

to 1/ε2 heavy hitters requires Ω(lg(
(

n
1/ε2

)
)) bits.

Despite the �1 and �2 heavy hitters algorithms above

in the cash-register model requiring o(ε−p lg n) machine

words, it is known finding ε-heavy hitters under �p for any

0 < p ≤ 2 in the strict turnstile model requires Ω(ε−p lg n)
words of memory, even for constant probability of success

[JST11]. This optimal space complexity is achieved even in

the more general turnstile model by the COUNTSKETCH of

[CCFC04] for all p ∈ (0, 2] (the original work [CCFC04]

only analyzed the COUNTSKETCH for p = 2, but a a very

short argument of [JST11, Section 4.4] shows that finding
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reference space update time query time randomized? norm

[CM05]∗ ε−1 lg n lg n n lg n Y �1
[CM05]∗ ε−1 lg2 n lg2 n ε−1 lg2 n Y �1
[NNW14] ε−2 lg n ε−1 lg n n lg n N �1
[CCFC04] ε−p lg n lg n n lg n Y �p, p ∈ (0, 2]

[KNPW11], [Pag13]∗ ε−p lg2 n lg2 n ε−p lg2 n Y �p, p ∈ (0, 2]
[CH08] ε−p lg n lg n ε−p · nγ Y �p, p ∈ (0, 2]

This work ε−p lg n lg n ε−p poly(lg n) Y �p, p ∈ (0, 2]
Figure 1. Comparison of turnstile results from previous work and this work for �p heavy hitters when desired failure probability is 1/poly(n). Space is
measured in machine words. For [CH08], γ > 0 can be an arbitrarily small constant. If a larger failure probability δ � 1/ poly(n) is tolerable, one lgn
factor in space, update time, and query time in each row with an asterisk can be replaced with lg((lgn)/(εδ)). For [Pag13], one lgn in each of those
bounds can be replaced with lg(1/(εδ)). For [CH08], the query time can be made (ε−p lgn)((lgn)/(εδ))γ .

�p heavy hitters for p ∈ (0, 2) reduces to finding �2 heavy

hitters by appropriately altering ε).

For any p ∈ (0, 2], the COUNTSKETCH achieves optimal

O(ε−p lg n) space, the update time is O(lg n), the success

probability of any query is with high probability (whp)

1−1/ poly(n), but the query time is a very slow Θ(n lg n).
In [CM05], for p = 1 in the strict turnstile model the authors

described a modification of the COUNTMIN sketch they

dubbed the “dyadic trick” which maintains whp correctness

for queries and significantly improves the query time to

O(ε−1 lg2 n), but at the cost of worsening the update time to

O(lg2 n) and space to a suboptimal O(ε−1 lg2 n). An easy

modification of the dyadic trick extends the same bounds to

the general turnstile model and also to ε-heavy hitters under

�p for any 0 < p ≤ 2 with the same bounds [KNPW11,

Theorem 1] (but with ε−1 replaced by ε−p). A different

scheme using error-correcting codes in [Pag13, Theorem

4.1] achieves the same exact bounds for �p heavy hitters

when whp success is desired. This tradeoff in sacrificing

space and update time for better query time has been the

best known for over a decade for any 0 < p ≤ 2.

From the perspective of time lower bounds, [LNN15]

showed that any “non-adaptive” turnstile algorithm for

constant ε and using poly(lg n) space must have update

time Ω(
√
lg n/ lg lg n). A non-adaptive algorithm is one in

which, once the randomness used by the algorithm is fixed

(e.g. to specify hash functions), the cells of memory probed

when processing update(i,Δ) depend only on i and not

on the history of the algorithm. Note every known turnstile

algorithm is non-adaptive (except one that only works for a

promise problem).

In summary, there are several axes on which to mea-

sure the quality of a heavy hitters algorithm: space, up-

date time, query time, and failure probability. The ideal

algorithm should achieve optimal space, fast update time

(O(lg n) is the best we know), nearly linear query time

e.g. O(ε−p poly(lg n)), and 1/ poly(n) failure probability.

Various previous works were able to achieve various subsets

of at most three out of four of these desiderata, but none

could achieve all four simultaneously.

Our contribution I: We show the tradeoffs between

space, update time, query time, and failure probability in

previous works are unnecessary (see Figure 1). Specifically,

in the most general turnstile model we provide a new

streaming algorithm, EXPANDERSKETCH, which for any

0 < p ≤ 2 provides whp correctness for queries with O(lg n)
update time, O(ε−p poly(lg n)) query time, and optimal

O(ε−p lg n) space. In fact in the strict turnstile model and

for p = 1, we are able to provide a simpler variant of our

algorithm with query time O(ε−1 lg1+γ n) for any constant

γ > 0, answering queries even faster than the fastest

previous known algorithms achieving suboptimal update

time and space, by nearly a lg n factor, thus maintaining

whp correctness while dominating it in all of the three

axes: space, update time, and query time. Due to space

constraints, this algorithm can be found in the full version

of this paper [LNNT16].

A. Cluster-preserving clustering

Our algorithm EXPANDERSKETCH operates by reducing

the heavy hitters problem to a new clustering problem we

formulate of finding clusters in a graph, and we then devise a

new algorithm CUTGRABCLOSE which solves that problem.

Specifically, the EXPANDERSKETCH first outputs a graph

in which each heavy hitter is encoded by a well-connected

cluster (which may be much smaller than the size of the total

graph), then CUTGRABCLOSE recovers the clusters, i.e. the

heavy hitters, from the graph. There have been many works

on finding clusters S in a graph such that the conductance

of the cut (S, S̄) is small. We will only mention some of

them with features similar to our setting. Roughly speaking,

our goal is to find all clusters that are low conductance sets

in the graph, and furthermore induce subgraphs that satisfy

something weaker than having good spectral expansion. It

is necessary for us to (1) be able to identify all clusters in

the graph; and (2) have a quality guarantee that does not

degrade with the number of clusters nor the relative size

of the clusters compared with the size of the whole graph.

As a bonus, our algorithm is also (3) able to work without

knowing the number of clusters.
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In the context of heavy hitters, requirement (1) arises

since all heavy hitters need to be returned. The number of

heavy hitters is not known and can be large, as is the ratio

between the size of the graph and the size of a cluster (both

can be roughly the square root of the size of our graph),

leading to the requirement (2) above. One line of previous

works [ST04], [AP09], [GT12] gives excellent algorithms

for finding small clusters in a much larger graph with

runtime proportional to the size of the clusters, but their

approximation guarantees depend on the size of the whole

graph, violating our requirement (2). In fact, requirement (2)

is related to finding non-expanding small sets in a graph, an

issue at the forefront of hardness of approximation [RS10].

As resolving this issue in general is beyond current tech-

niques, many other works including ours attempt to solve the

problem in structured special cases. There are many other

excellent works for graph clustering, but whose performance

guarantees deterioriate as k increases, also violating (2). The

work [GT14] shows results in the same spirit as ours: if there

are k clusters and a multiplicative poly(k) gap between the

kth and (k + 1)st smallest eigenvalues of the Laplacian of

a graph, then it is possible to partition the graph into at

most k low conductance induced subgraphs. Unfortunately,

such a guarantee is unacceptable for our application due to

more stringent requirements on the clusters being required

as k increases, i.e. the poly(k) gap in eigenvalues — our

application provides no such promise. Another work with

a goal similar in spirit to ours is [PSZ15], which given

the conductances in our graphs deriving from heavy hitters

would promise to find k clusters W up to error poly(k)·|W |
symmetric difference each. Unfortunately such a result is

also not applicable to our problem, since in our application

we could have k � |W | so that the guarantee becomes

meaningless. The work [OZ14] presents a clustering algo-

rithm based on flow computations. If every cluster S has

good internal expansion, and only O(1/ lg n) conductance

in the cut (S, S̄), then the algorithm finds all the clusters.

We could use this as part of our heavy hitters algorithm,

but it would cost a lg lg n factor in space and time, since

we would have to use sub data structures with better error

guarantees to obtain conductance O(1/ lg n).
A different line of works [MMV12], [MMV14] give algo-

rithms with constant approximation guarantees but without

being able to identify the planted clusters, which is not

possible in their models in general. In their setting, edges

inside each cluster are adversarially chosen but there is

randomness in the edges between clusters. Our setting is the

opposite: the edges inside each cluster have nice structure

while the edges between clusters are adversarial as long as

there are few of them.

From the practical point of view, a drawback with several

previous approaches is the required knowledge of the num-

ber of clusters. While perhaps not the most pressing issue

in theory, it is known to cause problems in practice. For

instance, in computer vision, if the number of clusters is not

chosen correctly, algorithms like k-means tend to break up

uniform regions in image segmentation [AMFM11]. Instead,

a preferred approach is hierarchical clustering [AMFM11],

which is in the same spirit as our solution.

Definition 1. An ε-spectral cluster is a vertex set W ⊆ V
of any size satisfying the following two conditions: First,
only an ε-fraction of the edges incident to W leave W , that
is, |∂(W )| ≤ ε vol(W ), where vol(W ) is the sum of edge
degrees of vertices inside W . Second, given any subset A of
W , let r = vol(A)/ vol(W ) and B =W \A. Then

|E(A,B)| ≥ (r(1− r)− ε) vol(W ).

Note r(1 − r) vol(W ) is the number of edges one would
expect to see between A and B had W been a random
graph with a prescribed degree distribution.

Our contribution II: We give a hierarchical graph

partitioning algorithm combining traditional spectral meth-

ods and novel local search moves that can identify all ε-
spectral clusters in a potentially much larger graph for ε
below some universal constant, independent of the number

of clusters or the ratio between the graph size and cluster

sizes. More precisely, consider a graph G = (V,E). In

polynomial time, our algorithm can partition the vertices

in a graph G = (V,E) into subsets V1, . . . V� so that

every ε-spectral cluster W matches some subset Vi up

to an O(ε vol(W )) symmetric difference. Due to space

constraints, the algorithm can be found in the full version

of the paper [LNNT16]. A description of the main ideas can

be found in Section IV-A. The algorithm has the guarantee

given by Theorem 1 below.

Theorem 1. For any given ε ≤ 1/2000000 and graph G =
(V,E), in polynomial time and linear space, we can find
a family of disjoint vertex sets U1, . . . U� so that every ε-
spectral cluster W of G matches some set Ui in the sense
that
• vol(W \ Ui) ≤ 3 ε vol(W ).
• vol(Ui \W ) ≤ 2250000 ε vol(W )

Moreover, if v ∈ Ui, then > 4/9 of its neighbors are in Ui.

An interesting feature of our solution is that in optimiza-

tion in practice, it is usually expected to perform local search

to finish off any optimization algorithm but it is rarely the

case that one can prove the benefit of the local search step.

In contrast, for our algorithm, it is exactly our local search

moves which guarantee that every cluster is found.

III. PRELIMINARIES

The letter C denotes a positive constant that may change

from line to line, and [n] = {1, . . . , n}. We use “with high

probability” (whp) to denote probability 1− 1/ poly(n).
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All graphs G = (V,E) discussed are simple and undi-

rected. We say that a graph is a λ-spectral expander if the

second largest eigenvalue, in magnitude, of its unnormalized

adjacency matrix is at most λ. Given two vertex sets

S, T ⊆ V , we define E(S, T ) = E ∩ (S × T ). For S, we

define the volume vol(S) =
∑

v∈S deg(v), and boundary
∂S = E(S, S) where S = V \ S. We specify volG and ∂G
when the graph may not be clear from context. We define

the conductance of the cut (S, S) as

φ(G,S) =
|∂S|

min{vol(S), vol(S)} .

If S or S is empty, the conductance is ∞. We define the

conductance of the entire graph G by

φ(G) = min
∅�S�V

φ(G,S).

IV. OVERVIEW OF APPROACH

Due to space constraints, this paper gives only an

overview of the ideas in our work. See the full ver-

sion [LNNT16] for the details.

We now provide an overview of our algorithm, EX-

PANDERSKETCH. In the full version [LNNT16], we show

how turnstile heavy hitters with arbitrary ε reduces to

several heavy hitters problems for which ε is “large”.

Specifically, after the reduction whp we are guaranteed

each of the ε-heavy hitters i in the original stream now

appears in some substream updating a vector x′ ∈ Rn, and

|x′i| ≥ (1/
√
C lg n)‖x′

[C lgn]
‖2. That is, i is an Ω(1/

√
lg n)-

heavy hitter in x′. One then finds all the Ω(1/
√
lg n) heavy

hitters in each substream then outputs their union as the

final query result. For the remainder of this overview we

thus focus on solving ε-heavy hitters for ε > 1/
√
C lg n,

so there are at most 2/ε2 = O(lg n) heavy hitters.

Our goal is to achieve failure probability 1/ poly(n) with

space O(ε−2 lg n), update time O(lg n), and query time

ε−2 poly(lg n) = poly(lg n).
There is a solution, which we call the “b-tree” (based

on [CH08]), which is almost ideal (see the full ver-

sion [LNNT16]). It achieves O(ε−2 lg n) space and O(lg n)
update time, but query time inverse polynomial in the failure

probability δ, which for us is δ = 1/poly(n). Our main idea

is to reduce to the case of much larger failure probability

(specifically 1/ poly(lg n)) so that using the b-tree then

becomes viable for fast query. We accomplish this reduction

while maintaining O(lg n) update time and optimal space by

reducing our heavy hitter problem into m = Θ(lg n/ lg lg n)
separate partition heavy hitters problems, which we now

describe.

In the partition ε-heavy hitters problem, there is some

parameter ε ∈ (0, 1/2). There is also some partition P =
{S1, . . . , SN} of [n], and it is presented in the form of an

oracle O : [n] → [N ] such that for any i ∈ [n], O(i)
gives the j ∈ [N ] such that i ∈ Sj . In what follows

0 1 01 1 1

P1 P2 P3

update(29,Δ)

enc(i) =

update(1, v) update(3, v) update(1, v)

m = 3 chunks t

Figure 2. Simplified version of final data structure. The update is x29 ←
x29+Δ with m = 3, t = 2 in this example. Each Pj is a b-tree operating
on a partition of size 2t.

the partitions will be random, with Oj depending on some

random hash functions (in the case of adapting the b-tree to

partition heavy hitters the Oj are deterministic; see the full

version [LNNT16]). Define a vector y ∈ RN such that for

each j ∈ [N ], yj = ‖xSj
‖2, where xS is the projection of x

onto a subset S of coordinates. The goal then is to solve the

ε-heavy hitters problem on y subject to streaming updates

to x: we should output a list L ⊂ [N ], |L| = O(1/ε2),
containing all the ε-heavy hitters of y. See the full version

for more details [LNNT16].

Now we explain how we make use of partition heavy

hitters. For each index i ∈ [n] we can view i as a

length lg n bitstring. Let enc(i) be an encoding of i into

T = O(lg n) bits by an error-correcting code with constant

rate that can correct an Ω(1)-fraction of errors. Such codes

exist with linear time encoding and decoding [Spi96]. We

partition enc(i) into m contiguous bitstrings each of length

t = T/m = Θ(lg lg n). We let enc(i)j for j ∈ [m]
denote the jth bitstring of length t when partitioning enc(i)
in this way. For our data structure, we instantiate m sep-

arate partition heavy hitter data structures based on the

b-tree solution, P1, . . . , Pm, each with failure probability

1/ poly(lg n). What remains is to describe the m partitions

Pj . We now describe these partitions, where each will have

N = 2O(t) = poly(lg n) sets.

Now, how we would like to define the partition is as

follows, which unfortunately does not quite work. For

each j ∈ [m], we let the jth partition Pj have oracle

Oj(i) = enc(i)j . That is, we partition the universe according

to the jth chunks of their codewords. See Figure 2 for an

illustration, where upon an update (i,Δ) we write for each

Pj the name of the partition that is being updated. The key

insight is that, by definition of the partition heavy hitters

problem, any partition containing a heavy hitter i ∈ [n] is

itself a heavy partition in Pj . Then, during a query, we

would query each Pj separately to obtain lists Lj ⊆ [2t].
Thus the Pj which succeed produce Lj that contain the jth

chunks of encodings of heavy hitters (plus potentially other

t-bit chunks). Now, let us perform some wishful thinking:
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Figure 3. Each vertex in row j corresponds to an element of Lj , i.e.
the heavy hitter chunks output by Pj . When indices in Pj are partitioned
by hj(i) ◦ enc(i)j ◦ hj+1(i), we connect chunks along paths. Case (a) is
the ideal case, when all j are good. In (b) P2 failed, producing a wrong
output that triggered incorrect edge insertions. In (c) both P2 and P3 failed,
triggering an incorrect edge and a missing vertex, respectively. In (d) two
heavy hitters collided under h3, causing their vertices to have the same
name thereby giving the appearance of a merged vertex. Alternatively, light
items masking as a heavy hitter might have appeared in L3 with the same
h3 evaluation as a heavy hitter but different h4 evaluation, causing the red
vertex to have two outgoing edges to level 4.

suppose there was only one heavy hitter i∗, and furthermore

each Lj contained exactly enc(i∗)j and nothing else. Then

we could obtain i∗ simply by concatenating the elements

of each Lj and then decoding. In fact one can show that

whp no more than an arbitrarily small fraction (say 1%)

of the Pj fail, implying we would still be able to obtain

99% of the chunks of enc(i∗), which is sufficient to decode.

The main complication is that, in general, there may be

more than one heavy hitter (there may be up to Θ(lg n)
of them). Thus, even if we performed wishful thinking and

pretended that every Pj succeeded, and furthermore that

every Lj contained exactly the jth chunks of the encodings

of heavy hitters and nothing else, it is not clear how to

perform the concatenation. For example, if there are two

heavy hitters with encoded indices 1100 and 0110 with

m = t = 2, suppose the Pj return L1 = {11, 01} and

L2 = {00, 10} (i.e. the first and second chunks of the

encodings of the heavy hitters). How would we then know

which chunks matched with which for concatenation? That

is, are the heavy hitter encodings 1100, 0110, or are they

1110, 0100? Brute force trying all possibilities is too slow,

since m = Θ(lg n/ lg lg n) and each |Lj | could be as big

as Θ(lg n), yielding (C lg n)m = poly(n) possibilities. In

fact this question is quite related to the problem of list-
recoverable codes (see the full version [LNNT16]), but since

no explicit codes are known to exist with the efficiency

guarantees we desire, we proceed in a different direction.

To aid us in knowing which chunks to concatenate with

which across the Lj , a first attempt (which also does not

quite work) is as follows. Define m pairwise independent

hash functions h1, . . . , hm : [n]→ [poly(lg n)]. Since there

are O(lg n) heavy hitters, any given hj perfectly hashes

them with decent probability. Now rather than partitioning

according to Oj(i) = enc(i)j , we imagine setting Oj(i) =
hj(i) ◦ enc(i)j ◦ hj+1(i) where ◦ denotes concatenation of

bitstrings. Define an index j ∈ [m] to be good if (a) Pj

succeeds, (b) hj perfectly hashes all heavy hitters i ∈ [n],
and (c) for each heavy hitter i, the total �2 weight from

non-heavy hitters hashing to hj(i) is o((1/
√
lg n)‖x

[1/ε2]
‖2.

A simple argument shows that whp a 1 − ε fraction of

the j ∈ [m] are good, where ε can be made an arbitrarily

small positive constant. Now let us perform some wishful

thinking: if all j ∈ [m] are good, and furthermore no non-

heavy elements appear in Lj with the same hj but different

hj+1 evaluation as an actual heavy hitter, then the indices

in Lj tell us which chunks to concatenate within Lj+1, so

we can concatenate, decode, then be done. Unfortunately

a small constant fraction of the j ∈ [m] are not good,

which prevents this scheme from working (see Figure 3).

Indeed, in order to succeed in a query, for each heavy hitter

we must correctly identify a large connected component

of the vertices corresponding to that heavy hitter’s path

— that would correspond to containing a large fraction of

the chunks, which would allow for decoding. Unfortunately,

paths are not robust in having large connected component

subgraphs remaining even for O(1) bad levels.

The above consideration motivates our final scheme,

which uses an expander-based idea first proposed in

[GLPS14] in the context of “for all” �1/�1 sparse recovery,

a problem in compressed sensing. Although our precise

motivation for the next step is slightly different than in

[GLPS14], and our query algorithm and our definition of

“robustness” for a graph will be completely different, the

idea of connecting chunks using expander graphs is very

similar to an ingredient in that work. The idea is to replace

the path in the last paragraph by a graph which is robust

to a small fraction of edge insertions and deletions, still

allowing the identification of a large connected component in

such scenarios. Expander graphs will allow us to accomplish

this. For us, “robust” will mean that over the randomness

in our algorithm, whp each corrupted expander is still a

spectral cluster (see Definition 1). For [GLPS14], robustness

meant that each corrupted expander still contains an induced

small-diameter subgraph (in fact an expander) on a small

but constant fraction of the vertices, which allowed them a

recovery procedure based on a shallow breadth-first search.

They then feed the output of this breadth-first search into

a recovery algorithm for an existing list-recoverable code

(namely Parvaresh-Vardy codes). Due to suboptimality of

known list-recoverable codes, such an approach would not

allow us to obtain our optimal results.

An expander-based approach: Let F be an arbitrary d-

regular connected graph on the vertex set [m] for some d =
O(1). For j ∈ [m], let Γ(j) ⊂ [m] be the set of neighbors

of vertex j. We partition [n] according to Oj(i) = z(i)j =
hj(i) ◦ enc(i)j ◦ hΓ(j)1 ◦ · · · ◦ hΓ(j)d where Γ(j)k is the kth
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neighbor of j in F . Given some such z, we say its name
is the first s = O(lg lg n) bits comprising the hj portion

of the concatenation. Now, we can imagine a graph G on

the layered vertex set V = [m]× [2s] with m layers. If Lj

is the output of a heavy hitter query on Pj , we can view

each element z of Lj as suggesting d edges to add to G,

where each such z connects d vertices in various layers of

V to the vertex in layer j corresponding to the name of z.

The way we actually insert the edges is as follows. First, for

each j ∈ [m] we instantiate a partition point query structure

Qj with partition Pj , failure probability 1/ poly(lg n), and

error parameter cε for a small constant c. We modify the

definition of a level j ∈ [m] being “good” earlier to say

that Qj must also succeed on queries to every z ∈ Lj . We

point query every partition z ∈ Lj to obtain an estimate

ỹz approximating yz . We then group all z ∈ Lj by name,

and within each group we remove all z from Lj except for

the one with the largest ỹz , breaking ties arbitrarily. This

filtering step guarantees that the vertices in layer j have

unique names, and furthermore, when j is good all vertices

corresponding to heavy hitters appear in Lj and none of

them are thrown out by this filtering. We then let G be

the graph created by including the at most (d/2) ·∑j |Lj |
edges suggested by the z’s across all Lj (we only include an

edge if both endpoints suggest it). Note G will have many

isolated vertices since only m·maxj |Lj | = O(lg2 n/ lg lg n)
edges are added, but the number of vertices in each layer

is 2s, which may be a large power of lg n. We let G be its

restriction to the union of non-isolated vertices and vertices

whose names match the hash value of a heavy hitter at the m
different levels. This ensures G has O(lg2 n/ lg lg n) vertices

and edges. We call this G the chunk graph.

Now, the intuitive picture is that G should be the vertex-

disjoint union of several copies of the expander F , one for

each heavy hitter, plus other junk edges and vertices coming

from other non-heavy hitters in the Lj . Due to certain bad

levels j however, some expanders might be missing a small

constant ε-fraction of their edges, and also the εm bad levels

may cause spurious edges to connect these expanders to

the rest of the graph. The key insight is as follows. Let

W be the vertices of G corresponding to some particular

heavy hitter, so that in the ideal case W would be a single

connected component whose induced graph is F . What one

can say, even with εm bad levels, is that every heavy hitter’s

such vertices W forms an O(ε)-spectral cluster as per

Definition 1. Roughly this means that (a) the cut separating

W from the rest of G has O(ε) conductance (i.e. it is a

very sparse cut), and (b) for any cut (A,W\A) within W ,

the number of edges crossing the cut is what is guaranteed

from a spectral expander, minus O(ε)·vol(W ). Our task then

reduces to finding all ε-spectral clusters in a given graph. We

show in the full version of the paper [LNNT16] that for each

such cluster W , we are able to find a (1 − O(ε))-fraction

of its volume with at most O(ε) · vol(W ) erroneous volume

from outside W , see Theorem 1. This suffices for decoding

for ε a sufficiently small constant, since this means we find

most vertices, i.e. chunks of the encoding, of the heavy hitter.

For the special case of �1 heavy hitters in the strict

turnstile model, we are able to devise a much simpler

query algorithm that works. For this special case, we also

give a space-optimal algorithm with O(lg n) update time,

whp success, and expected query time O(ε−1 lg n) (though

unfortunately the variance of the query time may be quite

high). See the full version [LNNT16] for both results.

A. Cluster-preserving clustering

An ε-spectral cluster is a subset W of the vertices in

a graph G = (V,E) such that (1) |∂W | ≤ ε vol(W ),
and (2) for any A � W with vol(A)/ vol(W ) = r,

|E(A,W\A)| ≥ (r(1 − r) − ε) vol(W ). Item (2) means

the number of edges crossing a cut within W is what you

would expect from a random graph, up to ε vol(W ). Our

goal is to, given G, find a partition of V such that every

ε-spectral cluster W in G matches some partition up to

ε vol(W ) symmetric difference.

Our algorithm CUTGRABCLOSE is somewhat similar to

the spectral clustering algorithm of [KVV04, Section 4], but

with local search. That algorithm is quite simple: find a

low-conductance cut (e.g. a Fiedler cut) to split G into two

pieces, then recurse on both pieces. Details aside, Fiedler

cuts are guaranteed by Cheeger’s inequality to find a cut of

conductance O(
√
γ) as long as a cut of conductance at most

γ exists in the graph. The problem with this basic recursive

approach is shown in Figure 4 (in particular cut (b)). Note

that a cluster can be completely segmented after a few levels

of recursion, so that a large portion of the cluster is never

found.

Our approach is as follows. Like the above, we find a low-

conductance cut then recurse on both sides. However, before

recursing on both sides we make certain “improvements”

to the cut. We say A ⊂ V is closed in G if there is no

vertex v ∈ G\A with at least 5/9ths of its neighbors in

A. Our algorithm maintains that all recursive subcalls are

to closed subsets in G as follows. Suppose we are calling

CUTGRABCLOSE on some set A. We first try to find a

low-conductance cut within A. If we do not find one, we

terminate and let A be one of the sets in the partition.

Otherwise, if we cut A into (S, S̄), then we close both

S, S̄ by finding vertices violating closure and simply moving

them. It can be shown that if the (S, S̄) cut had sufficiently

low conductance, then these local moves can only improve

conductance further. Now both S and S̄ are closed in A
(which by a transitivity lemma we show, implies they are

closed in G as well). We then show that if (1) some set S
is closed, and (2) S has much more than half the volume

of some spectral cluster W (e.g. a 2/3rds fraction), then

in fact S contains a (1 − O(ε))-fraction of W . Thus after

closing both S, S̄, we have that S either: (a) has almost none
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Figure 4. Each small oval is a spectral cluster. They are well-connected internally, with sparse cuts to the outside. The large oval is the rest of the graph,
which can look like anything. Cut (a) represents a good low-conductance cut, which makes much progress (cutting the graph in roughly half) while not
losing any mass from any cluster. Cut (b) is also a low-conductance cut as long as the number of small ovals is large, since then cutting one cluster in
half has negligible effect on the cut’s conductance. However, (b) is problematic since recursing on both sides loses half of one cluster forever.

of W , (b) has almost all of W , or (c) has roughly half of

W (between 1/3 and 2/3, say). To fix the latter case, we

then “grab” all vertices in S̄ with some Ω(1)-fraction, e.g.

1/6th, of their neighbors in S and simply move them all

to S. Doing this some constant number of times implies S
has much more than 2/3rds of W by expansion (and if S
was in case (a), then we show it still has almost none of

W ). Then by doing another round of closure moves, one

can ensure that both S, S̄ are closed, and each of them has

either an O(ε)-fraction of W or a (1−O(ε))-fraction. The

details are in the full version [LNNT16]. It is worth noting

that our algorithm can make use of any spectral cutting

algorithm as a black box and not just Fiedler cuts, followed

by our grab and closure steps. For example, algorithms from

[OV11], [OSV12] run in nearly linear time and either (1)

report that no γ-conductance cut exists (in which case we

could terminate), (2) find a balanced cut of conductance

O(
√
γ) (where both sides have nearly equal volume), or (3)

find an O(
√
γ)-conductance cut in which every W ⊂ G

with vol(W ) ≤ (1/2) vol(G) and φ(W ) ≤ O(γ) has

more than half its volume on the smaller side of the cut.

Item (2), if it always occurred, would give a divide-and-

conquer recurrence to yield nearly linear time for finding

all clusters. It turns out item (3) though is even better!

If the small side of the cut has half of every cluster W ,

then by grabs and closure moves we could ensure it is

still small and has almost all of W , so we could recurse

just on the smaller side. It appears an O(|E| lg |V |)-space

implementation of such a cutting algorithm achieving this

guarantee would lead to O(ε−2 lg2+o(1) n) query time for

whp heavy hitters (with O(ε−2 lg1+o(1) n) expected query

time), but in this version of our work we simply focus on

achieving O(ε−2 poly(lg n)).

ACKNOWLEDGMENTS

We thank Noga Alon for pointing us to [AC88, Lemma

2.3], Jonathan Kelner for the reference [OSV12], Lorenzo

Orecchia and Sushant Sachdeva for answering several ques-

tions about [OV11], [OSV12], Piotr Indyk for the reference

[GLPS14], Graham Cormode for the reference [Pag13], Yi

Li for answering several questions about [GLPS14], Mary

Wootters for making us aware of the formulation of the list-

recovery problem in coding theory and its appearance in

prior work in compressed sensing and group testing, Atri

Rudra for useful discussions on list-recovery algorithms for

Parvaresh-Vardy and Folded Reed-Solomon codes, and Fan

Chung Graham and Olivia Simpson for useful conversations

about graph partitioning algorithms. Part of the work was

done while H.N. was at the Toyota Technological Institute

at Chicago.

REFERENCES

[AC88] Noga Alon and Fan R. K. Chung. Explicit con-
struction of linear sized tolerant networks. Discrete
Mathematics, 72:15–19, 1988.

[AKO11] Alexandr Andoni, Robert Krauthgamer, and Krzysztof
Onak. Streaming algorithms via precision sampling.
In Proc. 52nd FOCS, pages 363–372, 2011.

[AMFM11] Pablo Arbelaez, Michael Maire, Charless Fowlkes,
and Jitendra Malik. Contour detection and hierarchical
image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 33(5):898–916,
2011.

[AP09] Reid Andersen and Yuval Peres. Finding sparse cuts
locally using evolving sets. In Proc. 41st STOC, pages
235–244, 2009.

676868



[ARV09] Sanjeev Arora, Satish Rao, and Umesh Vazirani.
Expander flows, geometric embeddings and graph
partitioning. Journal of the ACM (JACM), 56(2):5,
2009.

[BC15] Vladimir Braverman and Stephen R. Chestnut. Uni-
versal sketches for the frequency negative moments
and other decreasing streaming sums. In RANDOM,
pages 591–605, 2015.

[BCI+16] Vladimir Braverman, Stephen R Chestnut, Nikita
Ivkin, Jelani Nelson, David P Woodruff, and Zhengyu
Wang. BPTree: an �2 heavy hitters algorithm using
constant memory. abs/1603.00759, 2016.

[BCIW16] Vladimir Braverman, Stephen R. Chestnut, Nikita
Ivkin, and David P. Woodruff. Beating CountSketch
for heavy hitters in insertion streams. In Proc. 48th
STOC, to appear, 2016.

[BDW16] Arnab Bhattacharyya, Palash Dey, and David P.
Woodruff. An optimal algorithm for �1-heavy hit-
ters in insertion streams and related problems. In
Proceedings of the 35th ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Sys-
tems (PODS), 2016.

[BICS10] Radu Berinde, Piotr Indyk, Graham Cormode, and
Martin J. Strauss. Space-optimal heavy hitters with
strong error bounds. ACM Trans. Database Syst.,
35(4):26, 2010.

[BKSV14] Vladimir Braverman, Jonathan Katzman, Charles Sei-
dell, and Gregory Vorsanger. An optimal algorithm
for large frequency moments using O(n1−2/k) bits.
In RANDOM, pages 531–544, 2014.

[BO10] Vladimir Braverman and Rafail Ostrovsky. Zero-one
frequency laws. In Proc. 42th STOC, pages 281–290,
2010.

[BO13] Vladimir Braverman and Rafail Ostrovsky. Approxi-
mating large frequency moments with pick-and-drop
sampling. In APPROX, pages 42–57, 2013.

[BYJKS04] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and
D. Sivakumar. An information statistics approach
to data stream and communication complexity. J.
Comput. Syst. Sci., 68(4):702–732, 2004.

[CCFC04] Moses Charikar, Kevin Chen, and Martin Farach-
Colton. Finding frequent items in data streams. Theor.
Comput. Sci., 312(1):3–15, 2004.

[CCM10] Amit Chakrabarti, Graham Cormode, and Andrew
McGregor. A near-optimal algorithm for estimating
the entropy of a stream. ACM Transactions on
Algorithms, 6(3), 2010.

[CH08] Graham Cormode and Marios Hadjieleftheriou. Find-
ing frequent items in data streams. PVLDB,
1(2):1530–1541, 2008.

[CJK+04] Graham Cormode, Theodore Johnson, Flip Korn,
S. Muthukrishnan, Oliver Spatscheck, and Divesh
Srivastava. Holistic UDAFs at streaming speeds.
In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 35–46,
2004.

[CM05] Graham Cormode and S. Muthukrishnan. An im-
proved data stream summary: the count-min sketch
and its applications. J. Algorithms, 55(1):58–75, 2005.

[DLM02] Erik D. Demaine, Alejandro López-Ortiz, and J. Ian
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